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ON MINIMAL SPANNING SYSTEMS OVER
SEMIPERFECT RINGS

By

Yutaka KAWADA

A ring A is called semiperfect in case A/rad A is semisimple and idem-
potents lift modulo rad A, or equivalently, every finitely generated right (resp.
left) A-module has a projective cover, which is uniquely determined up to A-
isomorphism (Cf. Bass [4]). The main purpose of this paper is to refine a
version of Warfield concerning Auslander-Bridger duality. (Cf. and [3])

In Section 1, we first define a minimal spanning system for a finitely
generated right (resp. left) A-module M (#0), and show that these minimal
spanning systems of M have the properties analogous to bases of a finite-di-
mensional vector space over a field.

To more exact description of minimal spanning systems of M, in Section 2
we shall use a restricted matrix theory over A which is called the fit matrix
theory, and show that any minimal spanning system of M is obtained from the
one by applying finitely many times of “elementary substitutions”.

Next in Section 3, for a finitely presented non-projective right (resp. left)
A-module M, we shall define a relation matrix R of M, and by means of R
provide characterizations of the properties that M &modyr A (resp. modp A°?) in
the sense of Auslander and Reiten [3](Cf. [2] and [11]), and that M is in-
decomposable.

Finally in Section 4, we shall consider the following condition :

(TSF) The number of all the isomorphism classes of “top-simple” right A-
modules is finite.

Then we shall show that, in case A satisfies (TSF), A has only a finite
number of two-sided ideals. It should be noted that representationfinite artinian
rings satisfy (TSF).

Throughout this paper, A is a semiperfect ring and rad A denotes the
Jacobson radical of A, and also e, f, ¢;, f;, g» and h; mean always primitive
(and hence local) idempotents of A.
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1. Minimal spanning systems of finitely generated modules.

An element u in a right (resp. left) A-module M is called right (resp. left)
local if u=wue (resp. u=cu) for some e. Throughout this paper we shall treat
only right (or left) local elements in M. A finite sequence consisting of right
(resp. left) local elements in M will be always expressed in the form of a row
(resp. column) vector.

Let M(#0) be a finitely generated right A-module. Then, without loss of

. . - - m p
generality, we can express a projective cover of M in the form: @ e, A — M,
i=1

(Cf. Mueller [9]).

DEFINITION. In the above, keeping the order of indices, (p(e,), -+, p(en))
is called a minimal spanning system (abbreviated m.s.s.) of A,. Here m is
uniquely determined by M,, and so we define m=rank M,.

This denomination is justified by the considerations below :

DEFINITION. (u;,=u;e;=M,|i=1, ---, m) is called a spanning system of M,

if M= 31 u,A.
i=1

DEFINITION. (u;=u;e;=Mylz=1,---,m)is called right A-linearly independent
if the following condition is satisfied :

a, a, m a, m
(%) (Uy, -, ux) @ J=0 with D leEDeA=s| 1 e De(radAd).
am am i=1 am 1=1

Then we have the next lemmas.

LEMMA 1.1. Let M (#0) be finitely generated, and u;,=u;e;(i=1, ---, m)
elements of M. Then, (uy, -+, un) is an m.s.s. of M if and only if (u,, -+, um)
is a spanning system of M and is right A-linearly independent.

PrOOF. Define a map p: éélei/l—»MA by putting ple)=u;(7=1, ---, m).
Then p is a projective cover of M if and only if p is an epimorphism and

Ker pC é_éei(rad A), which proves the lemma.

LEMMA 1.2, Let M4(++0) be finitely generated, and (u;=u.e;|i=1, ---, n) a
spanning system of M. Then we can choose its subsequence (u;,, ---, u;_)(m=<n)
as an m.s.s. of M.
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Proor. Casting out, in turn, redundant elements (as a spanning system of
M) from (u,, ---, u,), we get at last an irredundant spanning system (u;, -,
u;,) of M. The irredundance of (u., -, u;,) as a spanning system of M
implies the right A-linear independence of (u., -+, u;,). Because, assume that

31 ui,a0,=0 with a;,e;, A(k=1, -, m), and further that a;,¢e,,(rad A). Then,
k=1

since e, (rad A) is the unique maximal (proper) submodule of e, A, we have
a; A=e; A, and so there is an element b in Ae;, such that a;b=e;. Then we
see uilz—ézuikaikb, which contradicts the irredundance of (usj, -, us,).
Therefore (uy,, -, u:,) must be right A-linearly independent. Thus the proof
is completed by Lemma 1.1.

Accordingly, for a spanning system (u;, -+, u,) of M, it becomes an m.s.s.
of M if and only if it is “minimal” as a spanning system of M, in a sense that
any proper subsequence of it is no spanning system of M.

Lemmas 1.1 and 1.2 show also that an m.s.s. of M, has the properties
analogous to a basis of a finite-dimensional vector space over a field. However
it is invalid that, to a given right A-linearly independent system (u;=u;e;<

Myli=1, ---,l), we may always get an m.s.s. of M by adding some elements
in M.

ExaMPLE 1. Let A be the trivial extension of R by C; A=RxC, where
R and C denote respectively the field of real numbers and of complex numbers.
Then A is a commutative local artinian ring, and ((0, 1), (0, 7)) is right A-
linearly independent in A, but rank A,=1.

More strongly than (*), we may also define as follows:

DEFINITION. (u;=u;e;=M,|7=1, ---, m) is called right A-independent if the
condition below is satisfied :

a, a, m a, 0
(ul,...,um)( : ):O with ( : )e_@eiA:>( : ):( : )
Am Am =1 Am 0

In this case, ﬁ}luiAz EE@,A.
LEMMA 1.3. Let M (#0) be finitely generated. Then M is projective if
and only if an (and every) m.s.s. of M is right A-independent.

PrROOF. Trivial.
As for left A-modules, we need later similar definitions; e. g.
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DEFINITION. Let sM(=0) be finitely generated, and é%AeiiAM a pro
i=1
p('el)

: ) is called an
plem)

jective cover of M. Then, keeping the order of indices, (

m. s.s. of 4M. In this case we further define m=rank 4M.

DEFINITION. (u;=e¢,u;< M |i=1,---, m) is called left A-linearly independent
if the following condition is satisfied:

U m
(x") (a,, -+, am)( El =0 with (a,, -, an)= i@iAe,-:}
Um =
(ay, -, an)E @(rad Ade;.

2. Fit matrix theory.

In Sections 2 and 3, we shall treat only matrices of the restricted form,
which is as follows:

(1) mXn matrices P=(pq;):,; With p;;€e;Af; for every (7, j), where m,
n, e;(1=i<m) and f;(1<j=<n) are arbitrarily variable.

(I1) Matrix addition is defined only between matrices of the same type in
the sense of (I); that is, mXn matrices P=(p;;);,; wWith p;;=e;Af; and Q=
(g:7)s.; With gi;€ e, Af ;.

(IIl) Matrix multiplication is defined only between an [Xm matrix P=
(piy)i; With p;;€e;Af; and an mXn matrix Q=(g;r);» With ¢z Ef;Ags. It
should be noted that between P and Q common f;’s(j=1, -+, m) appear in the
same order. These products are sometimes called the fit products.

(IV) Scalar multiplication is not defined. However, an mXn matrix P=

(pi)i.; With p,;=e;Af; is regarded either as PeHomA(éfjA, EﬂiéleiA) or as
J= i=
PeHomA(@ Ae;, D Afj). So, in spite of (I) and (IlI), we shall allow the (fit)
i=1 j=1

products in the forms:

a a n m

P( 1 ) for ( 31 )E EBfJA and (aly T am)P for (al: T am)e @Aei-

ap a, 7=t v=

The matrix theory composed under the restrictions (I)-(IV) is called the fit

matrix theory over A, which appeared partly in the literatures. (e. g. [9])
First of all we begin with the definition below.
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DEFINITION. An nXn matrix P=(p.,):,; With p,;;&e;Af; is called invertible
if there exists an nXn matrix Q=(¢g;:);,: with g;;=f;Ae; such that

(2] fl
PQ:( ) and QP:( )
en fa

In this case, Q is uniquely determined by P, and so we define Q=P Also,
the diagonal matrices above appeared are called nXn identity matrices.

REMARK. Let an nXn matrix P=(p.;):; With p;;=e,Af; be invertible,
and assume that e¢;Af;=g;Ah; for every 7 and j(7, j=1, ---, n). Then we have
readily GE=F, EG=G, FH=F and HF=H, where by E, F, G and H we denote
respectively nXn identity matrices (8:je:):,j, (0:;f )i, s, (0:;84):,; and (Bih;,)i, 5
Therefore, if @ is the inverse of P=(p,);,; with p;;=e;Af; we see that HQG
just becomes the inverse of P=(p;;):,; wWith p,;=g:;Ah;,.

Then we have readily the next.

LEMMA 2.1. Assume that P and Q are invertible matrices and the product
PQ is defined. Then PQ is invertible and (PQ) '=Q 'P~'.

DEFINITION. An element a=eAf is called invertible if the 1X1 matrix (a)

is invertible.
As is readily seen, a=eAf is invertible if and only if aceAf\e(rad A)f.
Now by the analogy of matrices over a field, we want to define elementary

matrices.

DEFINITION. The three kinds of nXn matrices below are called elementary
matrices, where ¢;;(1=7, 7<n) denote the ordinary matrix units and f;(1=/<n)
are arbitrarily variable.

EM 1) p.(, k)= Ekfisii+fjejk+fksk,~(1"i k) and its transpose ‘p.(j, &) .
i#J,

(EM 2) 0,(; a)= 2 fieutae;; with ac=f;Ag,Nf;(rad A)g;.

e
(EM 3) 7.(J, k; a)=§__]1fisu+asjk with e f;Af,(j£k).

Obviously every elementary matrix is invertible and its inverse also becomes
an elementary matrix.

For an mXn matrix P=(p;;);.; with p;;€e;Af; we can define elementary
column transformations on P, which are induced by multiplications of elementary
matrices (except ‘p,(j, k£)) from the right. In particular, applying in turn
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elementary column transformations to P such that P=%=0 mod(e,(rad A)f ;)i s
we get at last the reduced column echelon form ﬁ:(ﬁw)i_ ;; that is, there is
an increasing sequence 1<7, <7< -+ <i,=m(1<r=<n) such that f;, r=es,, Ps,.;
=0(;# k) for each k(k=1, .-+, r) and that p,;,crad A whenever (i, j) belongs
to one of the following:

{1<iy, 721}, {1a 1 <i<idy, jzk}(k=2, -, 7) and ({i>i,, j2r+l}.

By using this fact we have the next.

PROPOSITION 2.2. An invertible matrix is expressed as a product of a finite

number of elementary matrices.

ProOOF. Under the same notations as above (together with m=mn), let P be
an invertible n X»n matrix, and P its reduced column echelon form. Then £ is
expressed in the form:

ﬁ—_—PEl Et,

where E.(1=<k<t) denote elementary matrices, and hence by Lemma 2.1 P is
an invertible matrix. On the other hand, P must be the identity matrix

e
( - ); otherwise, r<n and so p,;erad A for every (i, j)e{i=1, j=r+1},
en

and consequently P8 is no identity matrix, a contradiction. Thus P=FE;! -
E7', which proves the lemma.

Turn next our attention to finitely generated right A-modules.

DEFINITION. Let M,(+#0) be finitely generated, and let (u,, ---, u,) With
u;=ue;(z=1, ---, m) be anm.s.s. of M. Then the three kinds of substitutions
below are called elementary substitutions in M.

(ES 1) transposition: interchanging u; and u,(j+#k).
(ES 2) dilatation: replacing u; by u;a with ace,Agnei(rad A)g;.
(ES 3) transvection: replacing u; by u,+u,a with a=e,Ae;(G+k).

These are realized by multiplications of elementary matrices pn(s, &),
0n(j; a) and t,(k, j; a) respectively from the right. Hence we obtain the
following.

THEOREM 2.3. Let (uy, -+, um) and (vy, -+, Un) be given two m.s.s.’s of a
finitely generated module M. Then the one is obtained from the other by apply-
ing finitely many times of elementary substitutions in M.

PROOF. Assume that (u,, ---, u») and (v, ---, vn) are determined respec-
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. . . mn p m p, 1
tively by the projective covers &G e;A— M, and @ f;A—> M, Then by the

i=1 Jj=1

uniqueness of projective covers of M there is a commutative diagram below :

p

é e, A M,
m p'
14 M,,

where P=(p;;):,; with p,;=e;Af; must be invertible. Since p(e;)=wu; and p'(f;)
=v;, we have readily
(U1, Tty 'Um):<u1, Tty um)P'

Hence the theorem follows from Proposition 2.2.
Finally we shall come back to the fit matrix theory over A.

DEFININION. Let R=(r;;); ; with »;;=e¢;Af; be an mXn matrix (+0) and

8,
set further R=(r,, ---, rn):( : ) Then we define respectively
Sn

column rank R=rank ﬁ]l rjA(C éeﬁl), and
i= i=

row rank R=rank %1 As; (C él Afj>.
i= J=

Obviously column rank R+ row rank R in general.
Now the following is a direct consequence of Lemma 1.2.

s
LEMMA 2.4. Let R=(ry, -+, rn)——-( 51 ) be an mXxXn wmatrix (+0).
Sm
Then column rank R=t if and only if there exists a subsequence (r;, ---,r;,)

n
of (ry, -, ra) such that it becomes an m.s.s. of > r;A. Similarly,
Jj=1
row rank R=r if and only if there exists a subsequence (s, ---, 8;) of
m
t(8y, «*+, 8m) Such that it becomes an m.s.s. Of iZ‘, As;.
=1

Moreover, these ranks remain invariable whenever we multiply R by in-

vertible matrices. Namely,

PROPOSITION 2.5. Let R=(r;;):,; with r;;=e,Af; be an mXn matrix (£0)
and let P and Q be invertible matrices. If the product PRQ is defined, then we
have
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column rank PRQ=column rank R, and row rank PRQ= row rank R.

PrROOF. We have only to show the first equality. Set now R=(ry, -, ry)
and assume column rank R=¢. Then by Lemma 2.4 there isan m.s.s. (r,, -

r;,) of ﬁl r;A. Since the other r;,(t+1<k<n) becomes a right A-linear com-
=

bination of (r;,, ---, r;,) by Lemma 1.1, there isa ¢X(n—t) matrix B such that
(rjt+1’ ey P =gy, o, rft)B'

At first noting that PR=(Pr,, ---, Pr,), (Pr;,,, -, Pr; )=(Pr;, ---, Pr)

B and that, since (r;,, ---, r;,) is right A-linearly independent, (Pr;,, ---, Pr;,)

is so, we get at once an m.s.s. (Pr;, -, Pr;) of Zn(Prj)A. This shows
Jj=1

column rank PR=t.
To show next column rank RQ=t¢, by Proposition 2.2 we may assume

n
that Q is an elementary matrix. However the right A-module 3} r;A remains
Jj=1

invariable, as a whole, by applying an elementary column transformation to R.
Hence from the definition of column ranks it follows that column rank RQ=t.
Thus the lemma is proved.

ExAMPLE 2. Let 4D1I be a division ring extension such that [4r: I']=2;
that is, 4r=1I'Pd,I. Set now respectively

(A 4 10 0 0\ 01 0 d,
A= ), e,:( ), e2=< ), uz( ) and v=( )
0 r 0 0 01 0 0 00

0 4

Then A is an artinian ring with rad A———( 00

), and we see u=c,ue, and v=

e,ve,. For the next 3xX4 matrix:

e; 0 0 O
R: 0 @3 0 0 ’
0 0 u v

we get column rank R=4 but row rank R=3. Further remark that the sequence
consisting of its column vectors is right A-independent and also that the
sequence consisting of its row vectors is left A-independent.

3. Relation matrices.

We begin with the definition of relation matrices.
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DEFINITION. Let M, be a finitely presented non-projective module, and let
(x*) below denote a minimal projective presentation of M :

7 Pr m b
(+%) B AT Bed—> My —>0 (exact),
J=1 i=1
where p, denotes a projective cover of M and p, induces a projective cover of
Y1
Ker p,. Set now pl(fj):rj:( Elj )(j:l, .-+, n). Then the mXn matrix R=
Ymj

(rij)i,; With r;;&e(rad A)f; may be regarded as an m.s.s. of Ker p,, which is
called the relation matrix of M, associated with (xx).
In this case, of course (ry, -+, r,) is right A-linearly independent, and further

a1 (11 a, n
(1 pl( : ):R( : ) for every ( : )e @D fiA.
an an a,/

For another minimal projective presentation (xx’) of My, we get the follow-
ing commutative diagram:

j@ fiA b Gj Do M, ——— 0 (exact)
ooy R
é h,A L, égu‘l Po My, — 0 (exact),

whence we have the next.

LEMMA 3.1. Let M, be a finitely presented non-projective module, and R a
relaton matrix of M. Then every relation matrix of M is expressed in the form:
PRQ, where P and Q denote invertible matrices.

Taking now A-duals of (xx), we get
%

m D n q
(k) @Aei N & Af; —> Coker p,* — 0 (exact),
1= J=1

where p,*=Hom,(p,, A) and ¢ denotes the canonical epimorphism, and it follows
readily that

(2) p*a,, -, am)=(a., -, an)R for every (a,, -, an)<E énEAei.

Hence Im p,* is a finitely generated module (#0) contained in é (rad A)f;, and
Jj=1

SO ¢ is a projective cover of Coker p,* and Coker p,* is a finitely presented non-
projective left A-module.
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After Auslander and Reiten [3], we shall adopt the next:

DEFINITION. M &modps A implies that M, is finitely presented and that
M, has no projective module (#0) as its direct summand. Similarly ;Me
modp A°? is defined.

Such a property can be characterized by the fit matrix theory over A.
THEOREM 3.2. Let My be a finitely presented non-projective module, and

S
R:( : ) the relation matrix associated with (xx). Then the conditions below are
Sn

equivalent to each other.

(i) Ms=modp A.

(i) sy, -, 8m) is left A-linearly independent.

(iii) (*x%) expressed above becomes a minimal projective presentation of
Coker py*.

In these cases, further R also becomes the relation matrix of Coker p,*
associated with (xxx); that is, Coker py*=TrM,=modpA°? after Auslander and
Reiten [3].

PrROOF. (i) (iii) is well known (Cf. [2] and [11]).
(i)e(ii): To prove this, we have only to show that AM,#modp A if and
only if row rank R<m. Assume first M,=N,PL, with a projective module

L(+0). Let égiA 2 N,(1Zs<m) and Aélgi/l & L, be the projective covers
i=1 i=8+

of N, and L, respectively. Then we have a projective cover of MA:GWBL g:A
i=1

228 M,, and since Ker sPp=Ker ¢C @ g:A the relation matrix R’ of Ker a®Pp

is of the form: S{(; ), i.e. row rank R'<m. On the other hand, by Lemma 3.1

we see R'=PR(Q with invertible matrices P and Q. Therefore row rank R=
row rank R’<m by Proposition 2.5.
Conversely assume row rank R<m. In view of Lemma 2.4, by applying

. . ,_ s{yx
elementary row transformations to R we may reach to an matrix R’'= ( O)

(1=s<m). By Proposition 2.2 there is an invertible matrix P=(p;;):,; with
pi;=g:Ae; such that R”=PR. Considering the commutative diagram below :
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.EnB fiA —21—* -m e A Po > My > 0 (exact)
J=1 i=1

I
je:al fiA ISR é giA P, M, > 0 (exact),

R’ is an m. s.s. of Ker p,/. So set respectively

Ni=p/(D g:i4) and Li=ps/( & 2:4).
Then, since there follows Ker p,/C @ g:A from the form of R/, we have readily

My=N,BLs and & g,A~L,; that is, M,&modp A.

t=8§+1
(ii) @ (ii): To prove this, we have only to show that row rank R=m if
and only if Ker p,*C é fi(rad A). However this is obvious by (2). Thus the
Jj=1

proof is completed.
It should be noted that, in case My,=modr A with a relation matrix R=
8; )
(ry, -, ra)={ : ), we may regard as:
Snm

M= _é’él e:A/ 31,4 and TrMA:jé Af,/ % As;. (Ct. [I1])
i= J= =1 i=

REMARK. If M, is a finitely presented non-projective module with a 1Xn
relation matrix R, then obviously M, is indecomposable and so M,=mody A.

The following is useful to construct indecomposables, which is also observed
by H. Asashiba.

COROLLARY 3.3. Let M, be a finitely presented nonm-projective module with

Y11
an mX1 relation matrix R:( : ) Then the conditions below are equivalent to

Y m1
each other.

(1) My, is an indecomposable module.
(11) ;MAEmOdPA
(i) *(ri, o+, rmu) 28 left A-linearly independent.

PrRooOF. We have only to prove the equivalence (i)=(ii). To do so, we first
assume that M, is decomposed such as:
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M,=N,PL, (N+0 and L=+0).

S ag m
Denote by @ g.A— N, (1=<s<m) and .EB!giA LL 4 respectively the projective
=1 i=8+
m (]
covers of N and L. Then E{agiA-g M, becomes a projective cover of M.
1=1

Since top (Ker o@p) is simple and since Ker a@o=Ker oDKer p, we have
either Ker 6=0 or Ker p=0; that is, either of N and L must be projective;
i.e. Ms&modpA.

Conversely, if M,&modpA then evidently M is decomposable. Thus we
obtain the corollary.

Next we want to characterize the indecomposability of modules in modpA
by using their relation matrices. For this purpose we need the next.

DEFINITION. An nXn matrix T =(t;;);,; with {;;e;Ae; is called idempotent
if T*=T.

LEMMA 3.4. Let T=(t:;):; with t;;<e;Ae; be an nXn matrix. Then T is
idempotent if and only if there exist an invertible nXn matrix P=(pju);. with
pirEg;Ae, and a diagonal nXn matrix

&1

0Ls<n) such that T=P 'DP.

PROOF. We have only to prove the only if part. Let -7 be an idempotent

. . . . . . n
matrix which is neither zero matrix nor identity matrix, and set My= @ ¢;A.
i=1
Then, since TeEnd M, we have

M=TMD(E-T)M,,

e
where E denotes the identity matrix( 1'-. ) Hence TM as well as (E—T)M
€n

is finitely generated projective, and so we get their projective covers below :

s ag ” 0
J@lng—“’—»TMA (1Ss<n) and & g,;4 _~,(E—T)M,4

J=8+1
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Therefore there is an invertible matrix P such that P~*=¢@p :’j@ g;A = My

g
Set further ( 1‘-. ):(gly -, gn). Then, for any j (1<7<s) we have P lg;
8n

&TM and hence TP 'g,=P'g; because T*=T; i.e.
PTP'g,=g; for every ;7 (=1, -+, s).

On the other hand, for any j (s+1=<j7<n) we have P !g,=(E—T)M and hence
TP 'g,=0; i.e.

PTP'g,=0  for every j (j=s+1, -+, n).

Consequently it follows that

&

PTP-xz(gh e, s 0, -, 0): 0

which proves the lemma.
The following will be applied, in fact, to connected semiperfect rings. (Cf.

[12]) |

THEOREM 3.5. Let M, be a module in modpA and R an mXn relation
matrix of My (m=2 and n=2). Then M, is indecomposable if and only if the
condition below is satisfied: (o) If TR=RS for non-zero idempotent matrices T
and S, then both T and S must be identity matrices.

PrROOF. We shall prove that M, is decomposable if and only if there exist
“proper” idempotent matrices T and S such that TR=RS, where proper matrices
mean that they are neither zero matrices nor identity matrices.

Assume first that M, is decomposable ; i.e. M=M,PM,, and let zzq giAi»MI
(1=s<m) and i_éél g:A 2, M, be the projective covers of M; and M, respectively.
Since Ker ¢+#0 and Ker p#0 by the assumption that M,=modpA, we get
further the projective covers of Ker ¢ and Ker p; i.e. j{}? h;A S Kera (1=t<n)

n

add & h,A5Ker p.

J=t+1
Then the sequence below :
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n a® B m a
D h;A =, D g:A 2 M0 (exact)

J=1

becomes a minimal projective presentation of M,. Let R’ be the relation matrix
of M, associated with the above. Then we see easily

R, (0]
R = ) with R,#0 and R,+0,
0] R,

where R, and R, denote respectively an sXt¢ matrix and an (m—s)X(n—t)
matrix. On the other hand, by Lemma 3.1 there are invertible matrices P=
(pki)k'i with pkiegkAei and QZ(QJl)j,z with szEfj.Ahl such that R’:PRQ, and

hence
R, 0]
PRQ= ) .
0 R,

Take now the diagonal mXm (resp. nXn) matrix below:

&1 h,

0 0
Multiplying PRQ by D, (resp. D,) from the left (resp. the right), we have
R, 0
D,PRQ= =PRQD,,
0] 0]

whence it follows immediately that (P7'D,P)R=R(QD,Q™").

Conversely, assume that there exist proper idempotent matrices 7 and S
such that TR=RS. Then, by Lemma 3.4 T and S are expressed respectively
in the forms:

T=P'D,P and S=QD.Q7,

where P:(pki)k.i with pkiegkzélei and Q:(Qﬂ)j,l with leEfjflh[ are invertible
matrices, and where
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&1

ljl:: (1;§s<:nz)

and

h,
Dz—_— 0 (1§t<n)'
0
Therefore we have D,(PRQ)=(PRQ)D,, whence it readily follows that

R1 O
el )
0 R,

where R, and R, denote respectively an sX? matrix and an (m—s)X(n—t)
matrix. Considering now the commutative diagram below:

M, ——— 0 (exact)

1 R

M, —> 0 (exact),

(")

igs T 7€B=

i=1

PRQ@ is the relation matrix associated with (*+’). From the above form of PRQ
it readily follows that

Ker pi=Ker p{,/\(i@giz‘l)@Ker péf\(, é giA) ,

t=8+1

whence we have

lWAng(ggiA)@p‘,’Cé giA) .

=s+1
Hence M, is decomposable.

Accordingly we have proved that M, is indecomposable if and only if the
condition below is satisfied :
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(«’) If TR=RS for non-zero idempotent matrices T and S, then either of T
and S must be an identity matrix.

But, by the assumption that My,=modpA, if S (resp. T) is the identity matrix
then T (resp. S) must be the identity matrix. Because, if R=TR with a proper

idempotent matrix 7'=P~'D,P expressed above, then PR=D;(P R):s{(g) and

row rank PR=m by Proposition 2.5 and by Theorem 3.2, a contradiction.
Similarly, if R=RS with a proper idempotent matrix S=QD,Q~' expressed
above, then we are again led to a contradiction. Thus the proof is completed.

4. Semiperfect rings satisfying (TSF).

As is well known, in a representation-finite artinian ring its two-sided
ideals constitute always a distributive lattice (Cf. [6]), and so from the repre-
sentation theory of distributive lattices it follows that the number of its two-
sided ideals is finite (Cf. [5]).

In this section we want to show that such a property holds good under
a weaker condition than the above. We first adopt the next.

DEFINITION. A right A-module M is called top-simple if top M, is a simple
module.

Then, as was stated in the introduction, we consider the following con-
dition :

(TSF) The number of all the isomorphism classes of top-simple right
A-modules is finite.

THEOREM 4.1. Let A be a semiperfect ring satisfying (TSF). Then A has

only a finite number of two-sided ideals.

Proor. First of all, by Morita equivalence we may assume that A itself
is a basic ring, and let

be the decomposition of 1 into pairwise orthogonal primitive idempotents. It
should be noted that e¢;A=e;A only if 7/=;. We shall distinguish two steps.

Step 1. AIACrad A.
Let us set F={,I,| Icrad A}. At first remark that, for each I in F,
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eA/e ] (k=1, ---,t) are not isomorphic to each other; because, top ¢,4/e. [~
erA/erad A) (=1, ---, t) and they are not isomorphic to each other. Secondly
remark that, for any (I, J) (I#J) in FXUF, there exists at least one, say &
(1=£k<1t), such that e, A/e,l#e,A/e,] ; because, if e,A/e,l=e,A/e,J for every k
(k=1, ---, t) then

[A/I].= @:51 e A/ el =~ keial eiAjeJ=[A/J]4 and so I=],

a contradiction.
Now, for a right A-module M, denote by [M,] the isomorphism class of
M,, and set respectively

G={[e,A/e,]l] | 1=k<t, I F} and s=#G .

Then by the assumption (TSF) and by the first remark we have t<s<o. For
each [M, ]G we shall assign a natural number / (1=/<s); that is, there is a
bijection ¢: G={1, ---, s}.

To count #F we shall define the map ¢: F—{1, ---, s} as follows:

d(=(o([e1A/erI]), -+, ¢([e.A/e.]))  for each I€F.

By the second remark ¢ becomes an injective map. From the first remark
again it follows that
#Fé sPt< oo,

Sz‘ep 2. Al CA.
13
Set now H={,I, | ICA}. For each I in H, since I= X e,le,+ X ede;, we
k=1 i#J
can express it as follows:

I= 3 e,Ae,+INrad A,

ked

where A=AI)={k | e,=I, 1<k=t}, and this expression is uniquely determined
by I. Since Inrad A= F we can conclude that # H<2',P,<o. Thus the theo-
rem is proved.

The next will be required to illustrate examples later.

LEMMA 4.2, Let m and n be right ideals contained in e(rad A). Then, eA/m
=eA/n if and only if there exists an invertible element a in eAe such that
n=am.

PrROOF. Assume first that ¢A/m >~ eA/n. By the uniqueness of projective
covers, we get the next commutative diagram:
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0—> m—>eA —> eA/m — 0 (exact)

l? aJZ al?

00— 11— ¢eA—— eA/n — 0 (exact);

that is, there is an invertible element a in eAe such that n—=am. Hence the
only if part is proved. Whereas the if part is obvious, and thus the lemma is
proved.

ExaMPLE 1. (Already appeared.) A=RXC. The number of the two-sided
ideals of A is infinite, but that of the isomorphism classes of its two-sided
ideals is finite.

ExXAMPLE 2. (Already appeared.) A-:(é' ;1) with [4y: I']=2. As for

(TSF), in view of the structure of A the following right ideals (g d];) with

0 d.I’
0 o)

0+d=4d only give rise to discussion. But, for such two right ideals (
8) in e;Ae, such that

0 d.I" d.d7?!
and (0 0 0

d.d,”t O/ d.I’ 0 4.
o oo 0= T
course, the number of the two-sided ideals of A is five.

), there is an invertible element (

). Hence by Lemma 4.2 A satisfies (TSF). Of

ExAMPLE 3. (Rosenberg and Zelinsky [10])
Let F be a field and K=F(x,, x,, ---) the rational function field in countably
infinite indeterminates x., x,, --- over F. We define the ring monomorphism:

KLK by o(x;)=x;4; (=1,2, ) and ¢|F=1p. Further define the K-K-
bimodule N as follows:

xN=xK and Ng is defined by nxk=no(k) for n=N and k=K.

Let then A be the trivial extension of K by N; i.e. A=KXN. Ais a
local left artinian ring, but is not right artinian, and A has only three two-
sided ideals. But A does not satisfy (TSF), which is shown as follows:

Obviously [rad AJ,=(0, Nk). So if A/0, m)=A/(0, n) for mx and ngC Nk,
then by Lemma 4.2 there exists an invertible element (£, n) (£+#0) in A such
that (%, n)(0, m)=(0, n); i.e. n=+km, and hence dim mxy=dimung. But, since
[Nk: K]1=[K: ¢(K)]=¥,, there exist right K-submodules m; of Ng such that
dim [m;]x=¢ (=1, 2, ---). Accordingly, by Lemma 4.2 A/©0, m;) (=1, 2, --)
are not isomorphic to each other.
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