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§1. Introduction.

As is well known, if a theory T is consistent in the first order predicate
calculus, then it is still consistent in the first order predicate calculus with
Hilbert’s e-symbol (assumed with equality axioms), which we shall call e-calculus
in short. This fact was given by Hilbert and Bernays [2]. Maehara showed
that it is still consistent in e-calculus extended with additional axioms :

(*) Vx(A(x) <« B(x)) — exA(x)=exB(x),

where A(a) and B(a) are arbitrary formulae with possibly e-symbols. These
theorems however require careful reading, when the theory 7 has axiom sche-
mata. In applying the theorems, axiom schemata for 7 may not be applied to
formulae containing s-symbols even in the e-calculus. For instance, ZF+4—AC,
Zermelo-Fraenkel set theroy with the negation of the axiom of choice, yields a
contradiction in e-calculus if the schemata are allowed to apply to all formulae
of the language of e-calculus.
Noting this, we naturally ask the following :

(xx) What kind of axiom schemata can be consistently extended to the e-
calculus in the above sense?

Even in the model theoretical sense, this is not a trivial question. It is
partially answered in [3], where the schema is mathematical induction and the
theory in question have certain strong properties. Our purpose here is to answer
it in more general cases. The precise description of our result is given in the
next section after defining some necessary notions.

§2. Preliminaries.

We use the letters L, L’ to denote languages for the first order predicate
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calculus. An L-formula is a formula of L, L(P) (respectively L(¢)) is the
language obtained from L by adding a new predicate symbol P(respectively
Hilbert’s e-symbol). We call shortly e-calcults for the logical calculus for L(s),
which has (in addition to the usual ones) the equality axioms for e-terms and
the axioms of the following forms:

dxB(x) —> B(exB(x)),

where B(a) is an arbitrary L(e¢)-formula (possibly with free variables other
than a). To avoid inessential complications, any language is assumed to have
no function symbol. For easy readability, we write ¥ for a finite sequence of
variables x;, x,, ---. An L(P)-formula A(P) (with the indicated P standing for
all its occurrences in A(P)) is called an L-schema, and for a language L', A(L’-
formulae) stands for the set of all formulae of the following form :

A(4xB(x)),

where B(a) is an L’-formula.

DEFINITION 2.1. A theory T in L is S-rich, if there is an L-formula S(q, b, ¢)
(containing no other occurrence of free variable) such that the following two
sentences are provable in T:

(1) 3xVy, z—S(x, v, 2),
(2) Vu, x, yIwVz, w(SW, z, w)yoSu, z, w)V(z=xAw=y)).

DEFINITION 2.2. (1) An L(P)-formula is called a mono-positive L-clause,
if it is a subformula of a formula of the following form:

ANP(@NDP@INTP@)INNTP(@,),

where A is an L-formula,
(2) An L(P)-formula is called a mono-negative L-clause, if it is a subformula
of a formula of the following form:

AN—P@NAP@)IANP@)IN - NP(a,)

where A is an L-formula.

(3) A mono-positive (resp. mono-negative) L-dnf is a finite disjunction of
mono-positive (resp. mono-negative) clauses.

(4) A fomula 3% A is called an m.p. 2 (resp. m.n.2) L-formula, if 4 is a
mono-positive (resp. mono-negative) L-dnf.

(5) An L(P)-formula is called m.p. I7, (resp. m.n. Il,) L-formula if it is of
the form VXA with A a m.p. Y (resp. m.n.Y) L-formula.
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(6) An L-schema A(P) is called monadic I/, if it is a m.p. [, L-formula

or a m.n.//, L-formula.

Now, our result can be described as follows:

THEOREM 2.3. (main theorem) Let T be a set of L-formulae and A(P) a
monadic Il, L-schema. If the theory

T+ A(L-formulae)
is S-rich and consistent, then the theory
T+ A(L(e)-formulae)

is consistent in e-calculus.

Assuming a slightly stronger property for 7, we can obtain a similar result
for e-calculus extended with the axioms (%) (see Introduction). But, so far, we
have not succeeded in proving it for every S-rich theory T. ‘

As will be stated in the last section, the mathematical induction schema is
essentially monadic I7,, so: ' o '

COROLLARY 2.4. (cf. Theorem 3 of [1]) Let T be an "S-rz'c‘h' thééry m L,
and suppose that there are a unary formula N(a), a unary function’, and a con-
stant 1 such that the formula N(1) and the formula

(#) (ADAVx(Ax) —> A(x")) —> Vx(N(x) —> A(x))

are provable in T for every L-formula A(a). Then the theory T together with
additional axioms of the form (#) for all L(g)-formulae A(a) is consistent in e-

calculus.

In fact, we shall prove [Theorem 2.3. in a stronger form:

THEOREM 2.5. Suppose T is a set of L-formulae and A,(P), -+, Ax(Py)
are monadic 11, L-schema. If the theory
T+ A(L-formulae)+ --- + A,(L-formulae)
is S-rich and conststent, then the theory
T-+ A(L(e)-formulae)+ + A (L(g)-formulae)

is consistent in e-calculus.

The above theorem is obtained by a routine argument repeatedly using the
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following lemma:

LEMMA 2.6. Suppose T is a set of L-formulae, A\(P,), -+, A.(P,) are monadic
I, L-schemata, the theory T+ A,(L-formulae)+---+ A,(L-formulae) is S-rich and
consistent, B(ad, b) is an L-formula (all free variables in which are indicated by
a,b), Q isa predicate symbol not in L and E(Q) is the set of four L(Q)-formulae
VIyQ(x, ), VEVYVZ(Q(Z, MAQ(X, 2)—>y=2), VVIEVYW2z(T=F Ay=2z A\ Q(il, y)
—Q(Z, 2)) and ViVy(3zB(%, 2) AQ(X, y)—B(%, v)). Then the theory T+ E(Q)+
A(L(Q)-formulae)+ --- + A, (L(Q)-formulae) is S-rich and consistent.

§3. Proof of the theorem.

It suffices to prove so the rest is devoted to the proof of the
lemma. We assume the hypothesis of Lemm 2.6 throughout this section. Since
the S-richness is obviously preserved by extension, the only problem is in the
consistency.

Let T* stand for the theory T+ A, (L-formulae)+ --- +A.(L-formulae). By
S-richness of T%*, there is an L-formula S(a, b, ¢) such that the following are.
provable in T*:

(1) 3IxVy, z—S(x, y, 2),

(2) Yu, x, y3uVz, w(S(v, z, w) < Su, z, wW)V(z=xAw=y)).

The proof is done by a so-called forcing argument, for which we prepare
some notions.

DEFINITION 3.1. Let n be the length of the sequence 4 used in the L-
formula B(a, b).

(1) Tuple (a, a,, ---, a,) stand for the L-formula 3z, --- z,(a=z,Az,=a, N\
Ntatn-1V%, ¥(S(2i, x, ¥) & x=a ;. ANy=2441)),

(2) a~b stands for the L-formula

3%(Tuple(a, £)A\Tuple(d, %)),

(3) Cond(a) stands for the L-formula
Yw, x, y, 2(S(a, w, x)AS(a, y, 22 Aw~y—x=2)AYw, %, ¥(S(a, w, y)ATuple (w, %)
A3zB(x, z2)—B(%, ¥)),

(4) a>Db stands for the L-formula

Vx, y(S(b, x, y) —> S(a, x, y)).
Note that:
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LEMMA 3.2. The following are provable in T*:
(1) Vx, yIAzVv, w(S(z, v, w) @ v=xA\w=y),
(2) VxIyTuple(y, %).

Clearly, the relation pDgq is shown to be a partial order in T*, and 3xCond(x)
follows from 3JxVy, z—S(x, y, z). We use the letters p, ¢, and » as variables
satisfying Cond(-); thus, Vp(---) and 3p(---) stand for Vp(Cond(p)—---) and
Ip(Cond(p)/\--+) respectively.

DEFINITION 3.3. With a variable p and an arbitrary L(Q)-formula C, we
associate an L-formula pl—-C by the following recursive definition:

(1) pl~R(J) stands for the formula R(a), if R is a predicate symbol in L.

(2) pIQ(a, b) stands for Ix(Tuple(x, @)AS(p, x, b)),

3) pCAD stands for pI-CApI-D,

(4) pCvVD stands for p—-CV pi-D,

(5) pl-—C stands for Vq(gDp——g-C),

(6) pl-C—D stands for VgD p(gi-C—ql—D),

(7) pI-VYxC stands for VxVgDp3rDg(ri-C),

(8) plI-3xC stands for Ix(pi-C).

We let pl-*C stand for the formula VY¢Dp3IrDg(r-C), and -*C for
Vo(pI=*C).

LEMMA 3.4. (1) If an L(Q)-formula C is logically valid, then the formula
pI*C is provable in T*,

(2) For any L(Q)-formulae C and D, the formula (pi—*C)N(pI-*(C—D))—
(pI=*D) s provable in T*,

(3) If C is an L-formula, then the formula (pI—*C)—C is provable in T*,

PrOOF. The assertions (1) and (2) are proved by routine arguments. (3)is
clear from the definition.

By virtue of (1) and (2) of the lemma, the set of all those L(Q)-formulae C
that (J-*C) is provable in T* is closed under logical deductions, and from (3)
follows that for all formulae C in T*, (=*C) is provable in T*. So, in order
to show the consistency of the theory in question, we suffices to show that:

LEMMA 3.5. The followz'ng are theorems in T*:
(1) H*Vx3yQ(x, ),
(@) H*VZ, ¥, 2(Q(%, NAQ(X, 2)>y=2),
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(3) I*VX, ¥(3zB(%, 2)ANQ(X, )~ B(%, y)),
(4) E*NWVEIVYV(i0 =X Ny=2A\Q(W, y)—Q(X, 2))
(®) F*Ai(2xC(x)),

for every i=1, ---, n, and every L(Q)-formula C(a).

PROOF. (1) Note that in general, pi—*VxCoVx(pl-*C). Thus:
F*Vx3yQ(x, ¥)
— VZIF*3yQ(%, )
—— V¥xVpIgDpIyg-Q(X, )

Suppose (in T*) that £ and p are given. If Jv, w(Tuple(v, Z)AS(p, v, w)), then
by such v and w, pI-Q(X, w). So, suppose not. By lemma 3.2.(2), there is v,
such that Tuple(v,, ). Take y, such that (3zB(%, z)—»B(%, v,)). By the pro-
perty of the formula S, there is ¢ such that

VZ, w(S(Q) <, w) > S(p; -4 w)v(z:Ul/\w:yl)) .

Then, Cond(q), ¢gDp, and Tuple(v,, ) and S(q, v,, ¥,), which implies ql-Q(%, y,),
q.e.d. ,

(2) It suffices to show that for any %, y, z, Vp(pI-Q(X, WAQ(Z, y)—y=2).
Suppose pI-Q(X, y) and pI-Q(X, z). Take v, w such that Tuple(v, %), Tuple(w, %),
and S(p, v, Y AS(p, w, ). Then v~w, which implies y=2z by Cond(p), q.e.d.

(3) Let X, y, and p be given, and suppose that pl-Q(%, v) and 3zB(Z%, z).
Then we can take w such that Tuple(w, X) and S(p, w, y). Hence by Cond(p),
B(z, v), q.e.d.

(4) Follows from the equality axioms in T*.

(5) We use Sublemma 3.6 below. By the assumption, each A;(P;) is monadic
11, L-schema. Hence, for every L(Q)-formula C;(@), by Sublemma 3.6. (5), there
is an L-formula C*(p, @) such that VpA,(AXC*(p, %))—(*A;(AxC (%)) is pro-
vable in T*. Since the left hand of the implication is an axiom of T%,
—*A;(AxC (X)) is provable in T*, q.e.d.

SUBLEMMA 3.6. (1) If an L(P)-formula C(P) is a mono-positive L-clause,
then the following is provable in T* for any L(Q)-formula D(a):
C(Ax(FgDp(-g*D(%))) —> (gD p)g-*C(Ax D(%))),

(2) If an L(P)-formula C(P) is a mono-negative L-clause, then the following
1s provable in T* for any L(Q)-formula D(a@):

CQx(p-*D(%))) —> (gD pX(gI-*C(Ax D(%))),
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(3) If an L(P)-formula C(P) is a mono-positive or mono-negative L-dnf, then
for any L(Q)-formula D(G), thereis an L-formula D*(p, @) such that the following
is provable in T*:

CQAxD*(p, %)) —> (gD p)g-*C(Ax D(X))),

(4) If an L(P)-formula C(P) is m.p. 2 or m.n. X, then for and L(Q)-
formula D(@), there is an L-formula D*(p, @) such that the following is provable
in T*:

C(AzD*(p, %)) —> (gD p)gI-*C(Ax (%)),

(5) If an L-schema C(P) is monadic II,, then for any L(Q)-formula D(a),
there is an L-formula D*(p, @) such that the following is provable in T*:

VpC(AxD*(p, %)) —> (F*C(AXxD(%))).

Proor. (1) If C(P) is of the form AA—P@@)N---N—P(@,)N\P(a), the
left hand of the arrow is of the form

AN—IgDpgI-*D@ NN - A—3gDplg=*D(@ ) A\ FgD p(gi-*DX(a)),

which implies AA p*—D(@ )N pl-*—D(@.)AJgD p(gl-*D(a@)), which implies
(gD p)g-*AAN—-D@ )N A D(@,)AD(@)), which is the right hand of the
arrow. : _

(2) Note that —(pl—-*D(a)) implies (gD p)(gl-*—D(@)). The rest is similar
to the above.

(3) Let D*(p, @) be (3gDp)gl-*D(a)) or (pI-*D(a)) according whether C(P)
is mono-positive or mono-negative. The assertion comes from the fact that
(3gDpXgi-*C) V(gD p)gi-*C,) implies (gD p)(gl=*C,V C,).

(4) C(P) is of the form 3zC’(P, z). By the above, for any L(Q)-formula
D(@) there is an L-formula D*(p, @) such that (in T*) C'(AxD*(p, %), b)—
(gD p)gI-*C'(Ax D(%), b). Thus the assertion immediately follows from the
fact that (3%)IgDp)gl-*E(%)) implies (gD p)(g-*IXE(X))

(5) C(P) is of the form V¥yC'(P, ¥). By the above,

C'(QxD*(p, %), b) —> (3D p)g-*C'(AXD(%, b)).
Hence, from VpC(AxD*(p, %)) follows VY p(¢Dp)ql-*C'(AXD(X), ¥)),
which implies Vy(-*C’(Ax D(%), %)),
which implies F*V3C’(AXD(%), ¥)), q.e.d.
§4. Remarks.

As an example of monadic /7, schemata is a schema of mathematical induc-



98 Masazumi HANAZAWA

tion, whose standard form is
PAVX(N@X)N P(x) —> P(x")) —> Vx(N(x) —> P(x)),
which can be written equivalently as
Vx3y, z(mP(LHVIND)IAz=Y AP(HAP(2)V (Nx)V P(x)).

On the other hand, there is a monadic /I, schema that holds in ZF+—AC
but yields a contradiction in e-calculus. The following is such one:

Vx3ywWo, w, z(z=<, w) —> (z€y — wexAvEWA P, w)).

The gap between the forms of these two schemata is rather wide. Natural
questions arising from this are left open.
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