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KILLING VECTOR FIELDS ON SEMIRIEMANNIAN
MANIFOLDS

By

Enric Fossas i COLET

Abstract It is well known that a Killing vector field on a riemannian
compact manifold is holonomic (Kostant (4)). In other words, the
$A_{X}$ operator $(A_{X}=L_{X}-\nabla_{X}=-\nabla X)$ lies in the holomony algebra of
the manifold.

The covariant derivative of $A_{X}$ gives us a curvature transfor-
mation. This fact and the Ambrose-Singer theorem show that the
$A_{X}$ operator lies infinitesimally in the holonomy algebra $h$ .

$(i.e. \forall Y, \nabla_{Y}A_{X}=R_{XY}\in h)$ $(^{*})$

The subject of our study is the holonomicity of a Killing vector
field on a semiriemannian compact manifold. We remark the validity

of $(^{*})$ on semiriemannian manifolds.
In order to simplify its study, we constrain it to Lorentz locally

strictly weakly irreducible manifolds (1. SWI). We remark that
Berger (1) showed that the holonomy algebra of a Lorentz manifold
which is irreducible and non locally symmetric is the whole $po(n, 1)$ .
Therefore, we can leave out this case.

Strictly weakly irreducible manifolds, defined by H. Wu $(5, 6)$

in 1963 are the cornerstones of this study. Among these we have
found examples of compact manifolds with a non holonomic Killing
vector field.

0. Preliminaries.

Let $M$ be a semiriemannian manifold of dimension $n$ and signature $s$ and
take $p\in M$. Any loop $\sigma$ with base point $p$ provides us with an isometry of
$T_{p}M$. The set of isometries can be structured as a Lie group: the holonomy
group with base-point $p,$ $G_{p}(M)$ . When we consider only nulhomotopes Ioops,
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we obtain $G_{p}^{0}(M)$ , the restricted holonomy group. Both are Lie groups. Their
algebra $h$ is the holonomy algebra of $M$ ; it is a subalgebra of $po(n, s)$ .

The $G_{p}(M)$-action on $T_{p}M$ is strictly weakly irreducible (SWI) if there is
some degenerate subspace of $T_{p}M$ invariant by the $G_{p}$-action and there are no
invariant and nondegenerate subspaces.

EXAMPLE 1. Let $e_{0},$ $e_{1},$ $\cdots,$ $e_{n}$ be a basis of $R^{n+1}$ . In this basis we define
an inner product $\langle\cdot, \cdot\rangle$ on $R^{n+1}$ by the matrix

$\left(\begin{array}{lll}0 & 1 & \\1 & 0 & \\ & & Id\end{array}\right)$

Let $G$ be the group of isometries of $(R^{n+1}, \langle\cdot, \cdot\rangle)$ which have $e_{0}$ as an
eigenvector. Then $(R^{n+1}, \langle\cdot, \cdot\rangle)$ is SWI by the G-action.

PROOF. Clearly $e_{0}$ spans an invariant degenerate subspace. If $U$ is a G-
invariant and nondegenerate subspace of $R^{n+1}$ , then

$R^{n+1}=U\oplus U^{\perp}$ (0.0)

and $U$ and $U^{\perp}$ are invariant and nondegenerate.
The eigenvector $e_{0}$ lies on $U$ or on $U^{\perp}$ . Suppose $e_{0}\in U$ . Then

$ U^{\perp}\subseteqq\{e_{0}\}^{\perp}=\langle e_{0}, e_{2}, \cdots, e_{n}\rangle$ .
If $v\in U^{\perp}$ , we can find an isometry $\varphi\in G$ such that

$\varphi(v)=e_{0}+v$

Then $e_{0}\in G(v)$ because $v\in G(v)$ and this is impossible by (0.0). (Q.E. D.)

REMARKS. i) Whenever we take into consideration the $G_{p}^{0}$-action instead
of the $G_{p}$-one, we will add the word “locally” to the other abjectives.

ii) A vector space $S$ is $G_{p}^{0}$-invariant if and only if it is h-invariant.

PROPOSITION 2. Let $M$ be a $SWI$ manifold. Then, there is an isotropic
subspace of $T_{p}M$, invariant by the $G_{p}$-action.

PROOF. The SWI condition provides us with a $G_{p}$ -invariant degenerate sub-
space $V$ of $T_{p}M$. Take $w\in V$ in such a way that $\langle v, w\rangle=0\forall v\in V$ . The sub-
space $W=G_{p}(w)$ is $G_{p}$-invariant and isotropic. (Q.E.D.)

COROLLARY 3. Let $M$ be a Lorentz $SWI$ manifold. Then,
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i) there is a G-invariant totally geodesic distribution of dimension one on $M$,
ii) if $\dim M>2$ , that distribution is unique.

PROPOSITION 4. Let $M$ be a Lorentz manifold with $\dim M>2$ . If $M$ is
locally $SWI$, then $M$ is $SWI$.

PROOF. Let $W_{q}$ be the $G_{p}^{0}$-invariant subspace of Corollary 3. If $\tau$ is a
path, by the uniqueness of the distribution (3. ii)

$\tau(W_{\tau(0)})=W_{\tau(1)}$

Where $\tau(W)$ means the parallel transport of $W$ along $\tau$ . If $\sigma$ is a loop, we have

$W_{\sigma(0)}=\sigma_{0}^{1/2}(W_{\sigma(0)})=W_{\sigma(1/2)}=\sigma_{1/2}^{1}(W_{\sigma(1/2)})=\sigma_{0}^{1}(W_{\sigma(0)})$

tus $W_{q}$ is $G_{p}$ -invariant. (Q. E.D.)

LEMMA 5. Take a basis $e_{0},$ $e_{1},$ $\cdots,$ $e_{n}$ of the Lorentz space $L_{n+1}$ . Suppose
that the inner product matrix is, in such basis,

$\left(\begin{array}{lll}0 & 1 & \\1 & 0 & \\ & & Id\end{array}\right)$ (0.1)

The matrix of an isometry $\Psi$ leaving $e_{0}$ invariant looks like

$\left(\begin{array}{lll}\lambda & a & {}^{t}w\\0 & \lambda^{-1} & 0\\0 & -\frac{Aw}{\lambda} & A\end{array}\right)$
(0.2)

where $\lambda\in R-\{0\}$ , $w\in R^{n- 1},$ $A\in O(n-1)$ , $a=(-\langle w_{f}w\rangle/2\lambda)\in R,$ $v=\lambda^{-1}(-Aw)$

$\in R^{n-1}$ .
Let $M$ be a time orientable Lorentz manifold, locally SWI. Let $D$ be the

distribution of Corollary 3. We can take a global vector field $V_{0}$ that generates
$D$ and, locally, a frame $V_{0},$ $V_{1},$

$\cdots,$
$V_{n}$ in such a way that the matrix of the

inner product is $(0,1)$ . If necessary, the field $V_{1}$ could be global.

DEFINITION. The set of isometries of lemma 5 is a group $J$ which is iso-
morphic to $R\times R^{n-1}\times O(n-1)$ with the product rule:

$(\lambda,{}^{t}w, A)\cdot(\mu,{}^{t}v, B)=$ ( $\lambda\mu,$ $\lambda^{t}v+{}^{t}wB,$ AB)

where $(\lambda,{}^{t}w, A)$ refers to the matrix (0.2).

The group $J$ is a Lie group. Its algebra $J$ is isomorphic to $R\times R^{n-1}\times o(n-1)$
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with the bracket rule:

$[(a, w, A), (b, v, B)]=(0, b^{t}w-a‘ v+{}^{t}vA-twB, [A, B])$

where $(a, w, A)$ refers to the matrix:

$\left(\begin{array}{lll}a & 0 & -tw\\0 & -a & 0\\0 & w & A\end{array}\right)$

In order to reduce the Levi-Civita connection we are going to define a fibre
bundle on $M$. Let $D$ be the distribution of Corollary 3. If $\pi:L(M)\rightarrow M$ is the
bundle of linear frames on $M$, we define $B(M)$ by:

i) $u\in L(M)$ is an isometry between $L_{n+1}$ and $T_{\pi(u)}M$.
ii) $u\in B(M)$ if and only if $u(e_{0})\in D$ and the inner product matrix related

to the basis $\{u(e_{i})\}$ is (0.1). ( $\{e_{i}\}$ basis as in lemma 5).

PROPOSITION 6. $B(M)$ is a principal fibre bundle on $M$ with structural
group $J$.

PROOF. The J-action on $B(M)$ is free; on the other hand, $B(M)/J\cong M$ and
$B(M)$ is locally trivial because so is $L(M)$ . (Q.E.D.)

PROPOSITION 7. The Levi Civita connection of $M$ is reducible to a connection
on $B(M)$ .

PROOF. Let $s(t)$ be a curve on $M$ and $\tilde{s}(t)$ one lift of $s(t)$ on $L(M)$ . In a
trivializing neighborhood we have

$\tilde{s}(t)=(s(t), W_{0}(t),$ $W_{1}(t),$ $\cdots$ , $W_{n}(t)$]

It is sufficient to prove that if $\tilde{s}(0)\in B(M)$ , then $\tilde{s}(t)\in B(M)$ . Assume $\tilde{s}(O)\in$

$B(M)$ . Then $W_{0}(0)\in D$ . Hence $W_{0}(t)\in D$ , since $D$ is parallel. And the linner
product matrix is (0.1) because it is in $\tilde{s}(0)$ and the parallel transport is an iso-
metry. (Q. E. D.)

COROLLARY 8. If $h$ is the holonomy algebra of $M$, then

$\dim h\leqq 1+\frac{n(n-1)}{2}$ .
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1. First Aproach.

THEOREM 9. Let $M$ be a Lorentz $SWI$ manifold. If $J$ is the Lie algebra

of $J$, then any Killing vector field on $M$ satisfies $A_{X}\in J$ .

PROOF. We can take a frame $V_{0},$ $V_{1},$
$\cdots,$

$V_{n}$ such that the subspace sub-
space spanned by $V_{0}$ is $D$ (Corollary 3) and the inner product is expressed in
this basis by the matrix (0.1). $A$ skew symmetric matrix takes for form:

$(0wa-au0$ $-{}^{t^{t}}w-uA$ (1.1)

where $a\in R,$ $u$ and $v\in R^{n-1},$ $A\in o(n-1)$ .
The elements of the holonomy algebra have the forme:

$\left(\begin{array}{lll}b & 0 & -tv\\0 & -b & 0\\0 & v & B\end{array}\right)$

where $b\in R,$ $v\in R^{n-1}$ , Be $o(n-1)$ .
Let (1.1) be the $A_{X}$ operator matrix. Since $[A_{X}, h]\subset h$, we have

$B\cdot w-b\cdot w=0$

hence $w=0$ or $b=0$ .
If $w=0$ the proof is finished. If this is not the case, it must be $b=0$ and

$Bw=0$ for any $(b, v, B)\in h$ . In order to have $[A_{x}, h]\subset h$ , it must be $w\cdot {}^{t}v=0$ .
But then the vector $(0,0, w)$ would be h-invariant and this is impossible be-
cause $M$ is locally SWI. Q. E. D.

REMARK. An interesting and simple case occurs when $R_{XY}D\equiv 0\forall X,$ $Y$ .
Then we can choose a frame as $V_{0},$ $V_{1},$

$\cdots,$
$V_{n}$ satisfying that $V_{0}$ is parallel.

In this case the $(b, v, B)$ elements of the holonomy algebra have $b=0$ .
Theorem 9 is not enough for this case. We also need $A_{X}V_{0}=0$ . This

This happens when the parallel vector field is globally defined and $M$ is com-
pact. The following example shows how indispensable the compactness of $M$ is.

EXAMPLE 10. Let $\alpha_{0},$ $\alpha_{1},$ $\alpha_{2}$ be coordinates of $R^{3}$ . In the associated frame

$\partial_{1}=\frac{\partial}{\partial\alpha_{1}}$ $i=0,1,2$ .

the following matrix defines an inner product
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$\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & g\\0 & g & h^{2}\end{array}\right)$ (1.2)

where $g=g(\alpha_{1}, \alpha_{2})$ and $h=h(\alpha_{1}, \alpha_{2})$ are R-valued functions and $h\neq 0$ every-
where.

Changing the frame to

$V_{0}=\partial_{0}$ , $V_{1}=\partial_{1}$ , $V_{2}=h^{-1}(-g\partial_{0}+\partial_{2})$ ,

it is easy to check that:

$[V_{0}, V_{1}]=[V_{0}, V_{2}]=0$ and $[V_{1}, V_{2}]=-h^{-1}[(\partial_{1}g)V_{0}+(\partial_{1}h)V_{2}]$

The matrices of the endomorphisms of $TM,$ $\nabla V_{0},$ $\nabla V_{1},$ $\nabla V_{2}$ , using the basis
$V_{0},$ $V_{1},$ $V_{2}$ act on the left and are given by:

$\nabla V_{0}\equiv 0\nabla V_{1}\equiv[000$
$\frac{\partial_{1}g0}{h}0\frac{\partial_{1}h0}{h}0$

$\nabla V_{2}\equiv[000$ $\frac{-\partial_{1}g}{h_{0}}0\frac{-\partial_{1}h}{h_{0}}0$

Finally
$R_{V_{1}V_{2}}V_{1}=h^{-2}[h(\partial_{1}\partial_{1}h)-(\partial_{2}\partial_{1}g)+h^{-1}(\partial_{1}g)(\partial_{2}h)]V_{2}$ .

Then $V_{0}$ is parallel and $\dim h\leqq 1$ . If $\dim h=1(i.e. R_{V_{1}V_{2}}V_{1}\neq 0)$ , then the holo-
nomy algebra $h$ is spanned by

$(000$ $001$ $-100$ (in the basis $V_{0},$ $V_{1},$ $V_{2}$).

Note that the inner product matrix is (0.1).

A Killing vector field

$X=x_{0}V_{0}+x_{1}V_{1}+x_{2}V_{2}$

such that $A_{X}V_{0}=aV_{0}$ must satisfy:

$x_{0}=-a\alpha_{0}+F(\alpha_{1}, \alpha_{2})$

$x_{1}=a\alpha_{1}+K$ $(K=cst)$ (1.3)

$x_{2}=x_{2}(\alpha_{1}, \alpha_{2})$

and
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$\partial_{1}F-x_{2}h^{-1}(\partial_{1}g)=0$

$-(\partial_{1}x_{2}+(a\alpha_{1}+K)h^{-1}(\partial_{1}g))=h^{-1}(\partial_{2}F-x_{2}\partial_{1}h)$ (1.4)

$\partial_{2}x_{2}+(a\alpha_{1}+K)\partial_{1}h=0$ .
We are interested in a solution with $x_{2}=0$ . Then (1.4) becomes:

$\partial_{1}F=0$

$-(a\alpha_{1}+K)h^{-1}(\partial_{1}g)=h^{-1}(\partial_{2}F)$ (1.5)

$(a\alpha_{1}+K)(\partial_{1}h)=0$

Hence $\partial_{1}h=0$ . Finally,

$F=G(\alpha_{2})$ , $g=(-\partial_{2}G)\log(a\alpha_{1}+K)$ , $h=1$ (1.6)

satisfies (1.5).

SUMMARIZING THE EXAMPLE. In the subspace of $R^{3}$ defined by $a\alpha_{1}+K>0$ ,

we consider the inner product

$\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & g\\0 & g & 1\end{array}\right)$

where $g$ is given by (1.6). This manifold is locally SWI. The vector field $\partial_{\alpha}$

is parallel and $\dim h=1$ . The vector field

$X=(-a\alpha_{0}+G)V_{0}+(a\alpha_{1}+K)V_{1}$

is a non holonomic Killing vector field since $A_{X}V_{0}=aV_{0}$ and $\forall h\in h,$ $h(V_{0})=0$ .

COROLLARY 11. Let $(M, g)$ be a compact Lorentz locally $SWI$ manifold.
Let $h$ be the holonomy algebra and assume that there is on $M$ a global parallel

light-like vector field $V_{0}$ . Let $X$ be a Killing vector field. Then $A_{X}V_{0}=0$ .

PROOF. It is easy to check that

$grad(g(V_{0}, X))=A_{X}V_{0}$ .

By Theorem 9, $A_{X}V_{0}=aV_{0}$ . Actually a is a constant. In fact, for every

vector field $Y$ ,

$0=R_{XY}V_{0}=(\nabla_{Y}A_{X})V_{0}=(\nabla_{Y}A_{X})V_{0}+A_{X}(\nabla_{Y}V_{0})=\nabla_{Y}(A_{X}V_{0})$

$=\nabla_{Y}(aV_{0})=(Ya)V_{0}+a(\nabla_{Y}V_{0})=(Ya)V_{0}$

because $V_{0}$ is parallel. Hence $Ya\equiv 0$ and a is constant. Taking a frame $V_{0}$ ,
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$V_{1},$
$\cdots,$

$V_{n}$ where the inner product is expressed by (0.1), it is easy to verify
that

$a=V_{1}g(V_{0}, X)$

Since $M$ is compact, $g(V_{0}, X)$ reaches a maximum (minimum), On this point

$a=V_{1}g(V_{0}, X)=0$

so $A_{X}V_{0}=0$ . (Q. E.D.)

2. General case.

DEFINITION. Let $\varphi,$ $\psi$ be endomorphisms of $T_{p}M$. We define

$\Phi(\varphi, \psi)=-trance(\varphi\circ\psi)$

This is a bilinear form called the Cartan-Killing form.

THEOREM 12. (2) Let $M$ be a semiriemannian compact manifold, $X$ a Killmg
vector field on M. If $\Phi$ is nondegenerate on the holonomy algebra, then the $A_{X}-$

operator decompose in the form
$A_{X}=h+B_{X}$

where $h\in h,$ $B_{X}h^{\perp}and$ $\Phi(B_{x}, B_{X})=0$ . This decomposition is unique.

REMARK. On Lorentz surfaces the Cartan-Killing form is negative definite.
A Lorentz surface which is not flat is locally SWI.

COROLLARY 13. Let $M$ be a compact Lorentz surface. If $X$ is a Killing
vector field on $M$ then $A_{X}\in h$ .

THEOREM 14. Let $M$ be a Lorentz $SWI$ manifold, $h$ its holonomy algebra,
$V_{0}$ a light-like vector field in the direction of the parallel l-distribution $D$ and $r$

the radical of the trace form on $h$ .
Let $X$ be a Killing vector field on $M$, we have
i) If $\dim M=3$

a) $\dim h=2$ implies $X$ is holonomic.
b) $\dim h=1$ implies $\dim r=1$ .
c) If $\dim h=1,$ $M$ is compact and $V_{0}$ is global, then $X$ is holonomic

(See 10 for the noncompact case).

ii) If $\dim M=4$ and $h(V_{0})\neq 0$ , then
a) $\dim h\leqq 4$

b) If $\dim h\neq 3$ , then $X$ is holonomic. (See 22 for $\dim h=3$).

iii) If $\dim M=4$ and $h(V_{0})=0$ , then
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a) $\dim h\leqq 3$

b) If $M$ is compact, $V_{0}$ is global and $\dim h=3$ , then $X$ is holonomic.

PROOF. i) In an adequate basis, the holonomy algebra $h$ is generated by

a) $(001$ $-100$ $000$ ($000$ $001$ $-100$ c) $(000$ $001$ $-100$

Theorem 9 implies a).

The SWI character of $M$ implies b) and Corollary 11 implies c).

ii) In this case the discussion is longer but the tools are the same as in i)

plus the fact that $[A_{X}, h]\subset h$ .
iii) In an adequate basis, the elements of the holonomy algebra can be

written as

$a[0000$ $0001$ $-1000$ $0000+b[0000$ $0001$ $0000$ $-1000+c[0000$ $0000$ $0001$ $-1000$

so that $\dim h\geqq 3$ . Hence Corollary 11 gives iii-b). (Q. E. D.)

3. Lorentz nondegenerate case.

THEOREM 15. Let $M$ be a compact Lorentz locally $SWI$ manifold, $h$ its
holonomy algebra $ ond\Phi$ the Cartan-Killing from. Assume that $\Phi$ is nondegene-
rate on $h$ . Then if $X$ is a Xilling vector field, we have $A_{X}\in h$ .

To prove the Theorem we use the following lemmas:

LEMMA 16.
$\Phi(A, [B, C])=\Phi([A, B], C)$ .

LEMMA 17. Let $V$ be a K-vector space. Assume that $A,$ $B\in End(V)$ and
$[A, B]=0$ . Then $\forall p\in K[x],$ $Kerp(\Phi)$ is B-invariant.

LEMMA 18. Let $V$ be a Lorentz vector space. Take a basis where the inner
product is given by (0.1) and an endomorphism A which has in this basis the
form;
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$A=(00b$ $-b0v-{}^{t}v\backslash \Psi^{0}$

where $b\in R,$ $v\in R^{n-1}$ and $\Psi\in o(n-1)$ . If $b\neq 0$ or $\Psi\neq 0$ , then there is a subspace

of $V$ which is A-invariant and nondegenerate by the Lorentz inner product.

PROOF. Let $e_{0},$ $e_{1},$ $\cdots,$ $e_{n}$ be our basis. Since $\Psi\in o(n-1)$ , there exists an
orthonormal basis $u_{2},$ $\cdots$ , $u_{n}$ of $\langle e_{0}, e_{1}\rangle^{\perp}$ in such a way that $\Psi$ is given by the
matrix

$B=[0a_{1}$

$-a_{1}0.0a_{1}$

$-a_{1}0$

$0a_{r}$

$-a_{r}0.0a_{r}$

$-a_{r}00$

.
$0$

Related to the basis $e_{0},$ $e_{1},$ $u_{2},$ $\cdots,$ $u_{n}$ the endomorphism $A$ is

$(00b$ $-b0v-tB^{v}0$

If $b\neq 0$ or $\Psi\neq 0$ , then $b^{2}+a_{i}^{2}\neq 0$ for some $a_{i}$ . The subspace $Ker(A^{2}+a_{i}^{2}I)$

is A-invariant and nondegenerate by the Lorentz inner product. This is the
primary component associated to the eigen-value $a_{i}$ . (Q.E.D.)

PRROF OF THEOREM 15. Theorem 12 allows us to decompose

$A_{X}=K+B_{X}$

where $K\in h,$ $B_{X}\in h^{\perp}$ and $\Phi(B_{X}, B_{X})=0$ .
It is easily verified that

$[B_{X}, h]=0$ $\forall h\in h$ (3.1)

In fact, from Lemma 16

$\Phi([B_{X}, h], 1)=\Phi(B_{X}, [h, 1])=0$ .
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Then
$\Phi([B_{X}, h], 1)=0$ $\forall h\in h$ .

But $[B_{X}, h]\in h$ and $\Phi$ is nondegenerate on $h$ , hence (3.1) holds.
By theorem 9, there exists a frame $V_{0},$ $V_{1},$

$\cdots,$
$V_{n}$ where $B_{X}$ is expressed by

$(00b$ $-b0v-{}^{t}vB^{0}$

where $b\in R,$ $v\in R^{n-1},$ $B\in o(n-1)$ and $b^{2}=\Phi(B, B)$ .
We must consider two cases
a) $b\neq 0$

By Lemma 18 there is a nondegenerate subspace of $TM$ which is $B_{X}$ in-
variant. By Lemma 17 this subspace is h-invariant. Then $M$ will not be locally
SWI.

b) $b=0$ . Consequently $B_{X}\equiv 0$ .
An element of $h$ can be written as

$\left(\begin{array}{lll}a & 0 & -{}^{t}w\\0 & -a & 0\\0 & w & H\end{array}\right)$ .

Then, since $A_{X}$ lies in the normalizer of $h$ and $\Phi$ is nondegenerate on $h$,
it must be

$Hv+av=0$

$\forall(H, a)$ such that $H\in o(n-1),$ $a\in R$ and $\exists w\in R^{n-1}$ such that

$\left(\begin{array}{lll}a & 0 & -w\\0 & -a & 0\\0 & w & H\end{array}\right)\in h$ .

If $a\neq 0$ for some $H\in h$, it must be $v=0$ . 0therwise, if $v\neq 0$ , a frame such
as $V_{0},$ $V_{1},$

$\cdots,$
$V_{n-1},$ $ V_{n}=v/\Vert v\Vert$ could be taken. In such a frame, the elements

of the holonomy algebra $h$ are expressed by

$[000a-a0w_{n-1}wH_{0}^{w}o-t$ $-w_{0}0^{n-1}0$
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where $w\in R_{1}^{n-2}w_{n-1}\in R$ and $H\in o(n-2)$ . Since some $w_{n-1}$ must be different
from $0$ , we can choose an h-basis

$I_{i}=(0, w_{i}, 0, H_{i})$ $i=1,$ $\cdots,$ $(r-1)$ ; $I_{r}=(0, w_{r}, 1, H_{r})$ .
Let $J$ be the ideal spanned by $I_{1},$

$\cdots,$
$I_{r-1}$ and assume that

$L=(0, w, \epsilon, H)$

is a generator of $J^{\perp}\subset h$ . It is easily verified that

$\Phi([L, I_{i}], I_{j})=\Phi(L, [I_{i}, I_{j}])=0$ $\forall i,$ $j\in\{1, \cdots, r\}$ . (3.2)

By the nondegeneracy of $\Phi$

$[L, I_{i}]=0$ . (3.3)

The $L$ matrix in the $V\prime s$ frame takes the form

$(000$ $u00-{}^{t}uU^{0}$

where $u\in R^{n-1},$ $U\in o(n-1),$ $U\neq 0$ .
Again by Lemma 18 there is a subspace of $TM$ which is L-invariant and

nondegenerate. Using (3.3) and Lemma 17, we see that it is h-invariant. But
this is impossible because $M$ is locally SWI. Then $v=0$ implies $v=0$ . (Q.E.D.)

PROPOSITION 19. Let $M$ be a compact Lorentz locally $SWI$ manifold. Let
$\Phi,$ $h$ and $D$ be as above. Suppose that the Ricci tensor is negative semidefinite,
$h$ is nondegenerate by $\Phi$ and $h(D)=0$ . Then any Killing vector field $X$ must lie
in the distribution $D^{\perp}$ .

PROOF. Since $h(D)=0$ , we can locally choose a vector field $V_{0}$ which is
parallel and $RV_{0}=D$ . In a frame $V_{0},$ $V_{1},$ $\cdots$ , $V_{n}$ where the inner product is
given by (0.1), the elements of $h$ can be expressed by

$(000$ $00v-B^{{}^{t}v}0$

Note that $\Phi$ is negative semidefinite on $h$ .
Since $A_{X}V_{0}=0$ , from Theorem 15 and $grad(g(V_{0}, X))=A_{X}V_{0}$ , we obtain

that $g(X, V_{0})$ is constant. If this constant were different from zero one could
choose a frame $V_{0}X,$ $V_{2},$ $\cdots$ , $V_{n}$ in such a way that the inner product would
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be given by

$\left(\begin{array}{lll}0 & 1 & 0\\1 & 2f & 0\\0 & 0 & Id\end{array}\right)$ .

It is well known that $\Delta f=-trace(A_{X}\circ A_{X})-Ricci(X, X)$ , which is positive

or zero in this case. By integrating $\Delta f$ on the compact manifold $M$,

$0=\int_{M}\Delta f$ . (3.4)

Then $\Delta f=0$ and trace $(A_{X}\circ A_{X})=0$ . In the frame we have just defined, $A_{X}$ is

$(000$ $00v-c_{0}0v$ (3.5)

Now we could integrate

$\frac{\Delta f^{2}}{2}=\Delta f\cdot f+g(gradf, gradf)$

so as to obtain by (3.4)

$0=\int_{M}g(gradf, gradf)$ . (3.6)

Since $gradf$ is spatial like, $gradf=0$ . But $gradf=A_{X}X$. Then $f$ is con-
stant and $A_{x}\equiv 0$ . (See (3.3)). Consequently $X$ is parallel and the subspace
spanned by $X$ and $V_{0}$ is invariant and nondegenerate. This is a contradiction.
Hence $g(X, V_{0})=0$ . (Q. E. D.)

THEOREM 20. With the hypotheses of Proposition 19, the Killing vector field
$X$ is light-like and parallel.

PROOF. By Theorem 14, $A_{X}\in h$ . If we take $f=(1/2)g(X, X)$ , then $\Delta f=0$

and
$\Phi(A_{X}, A_{X})=0$ (3.6)

as in the last proposition.
In a frame $V_{0},$ $V_{1},$

$\cdots,$
$V_{n}$ where the inner product is given by (0.1), the $A_{X}$

matrix is

$(000$ $0v0-{}^{t}vB^{0}$
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where $v\in R^{n-1}$ and $B\in o(n-1)$ . But $B\equiv 0$ by (3.6). Hence $A_{x}$ is in the radical
of $\Phi_{1h\times h}$ . Then $A_{X}\equiv 0$ and $X$ is parallel.

Finally since $M$ is locally SWI, $X$ must be light-like. By Proposition 19,
$g(X, V_{0})=0$ . Then $X=kV_{0}$ and $k$ is a constant. (Q.E.D.)

COROLLARY 21. Let $M$ be a compact locally $SWI$ manifold. Assume that
the Ricci tensor is negative semidefinite and the trace form $\Phi$ is nondegenerate

on $h$ . If $D$ and $h(D)$ are as in Proposition 19, either there are no Killing vector

fields on $M$ or there is a parallel light-like Killing vector field $X$ on $M$ and any
other Killing vector field is $\lambda X$, where $\lambda$ is a constant.

4. Examples.

In this section we show that Theorem 12 cannot be improved and we com-
plete Theorem 14. We will construct a compact Lorentz SWI manifold with a
non holonomic Killing vector field $X$ that cannot admit a decomposition like in
Theorem 12.

EXAMPLE 22. Let $S^{1}$ be the unit circle included in the euclidean plane. We
define:

$U_{1}=S^{1}\backslash \{(1,0)\}$ $U_{2}=S^{1}\backslash \{(-1,0)\}$

$U_{12}^{+}=\{(x, y)\in S^{1} : y>0\}$ $U_{12}^{-}=\{(x, y)\in S^{1} : y<0\}$

$U_{12}^{+},$ $U_{12}^{-}$ are the path-components of $U_{1}\cap U_{2}$ .
Let $\pi;M\rightarrow S^{1}$ be the bundle on $S^{1}$ such that

i) $\pi^{-1}(U_{1})\cong S^{1}\times S^{1}\times S^{1}\times U_{i}$ $i=1,2$

ii) The transition function $\varphi:U_{1}\cap U_{2}\rightarrow Aut(S^{1}\times S^{1}\times S^{1})$ is given by:

$\varphi(x):S^{1}\times S^{1}XS^{1}-S^{1}\times S^{1}\times S^{1}$

$(z_{0}, z_{1}, z_{2})-(z_{0}\cdot z_{2}^{-1}, z_{1}, z_{2})$ if $x\in U_{12}^{+}$

$\varphi(x):S^{1}\times S^{1}\times S^{1}-S^{1}\times S^{1}\times S^{1}$

$(z_{0}, z_{1}, z_{2})->(z_{0}\cdot z_{2}, z_{1}, z_{2})$ if $x\in U_{12}^{-}$ .
$M$ is a fiber bundle on $S^{1}$ with the fibre isomorphic to $S^{1}\times S^{1}\times S^{1}$ .
In order to define a metric tensor on $M$, consider a system of coordinates

on $\pi^{-1}(U_{1})$

I $\rightarrow\pi^{-1}(U_{1})$

$(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3})-(e^{\pi ta_{0}}, e^{2\pi i\alpha_{1}}, e^{2\pi t\alpha_{2}}, e^{2\pi i\alpha_{3}})$

where $I=(0,1)$ .
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We write $\partial_{i}=\partial/\partial\alpha_{1},$ $i=0,1,2,3$ . In this basis the inner product is given
by the matrix

$\left\{\begin{array}{llll}0 & 1 & 0 & 0\\1 & h & 2\alpha_{3} & 0\\0 & 2\alpha_{3} & 1 & 0\\0 & 0 & 0 & 1\end{array}\right\}$

where $h=h(\alpha_{1}, \alpha_{2}, \alpha_{3})$ is a real $C^{\infty}$ function well defined on $\pi^{-1}(U_{1})$ such that

$\lim_{\alpha_{3}\rightarrow 0,1}h=0$
(4.1)

and this also holds for the successive derivatives.
Analogously, on $\pi^{-1}(U_{g})$ consider a system of coordinates

I $\rightarrow\pi^{-1}(U_{2})$

$(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime})-(e^{2\pi i\alpha_{0}^{\prime}}, e^{2\pi i\alpha_{1}^{\prime}}, e^{2\pi i\alpha_{2}^{\prime}}, e^{2\pi i(a_{3}^{\prime}+(1/2)})$

where $I=(O, 1)$ .
We write $\partial_{1}^{\prime}=\partial/\partial\alpha_{1}^{\prime},$ $i=0,1,2,3$ . In this basis the inner product is given

by the matrix

$\left\{\begin{array}{llll}0 & 1 & 0 & 0\\1 & h^{\prime} & 2\alpha_{3}^{\prime} & 0\\0 & 2\alpha_{3}^{\prime} & 1 & 0\\0 & 0 & 0 & 1\end{array}\right\}$

where $h^{\prime}=h^{\prime}(\alpha_{0}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime})$ is a real $C^{\infty}$ function well defined on $\pi^{-1}(U_{2})$ such that

$h_{|n-1(U_{1}\cap U_{2^{)}}}^{\prime}\equiv h_{|\pi-1(U_{1}\cap U_{2})}$ and $h_{|\pi-1(\{(1.0)\})}^{\prime}\equiv 0$ .
This Inner product is well defined on $M$ and has signature one.
One can check, for instance on $\pi^{-1}(U_{1})$ that, in the $\partial_{1}$ basis,

$\nabla\partial_{0}=[0000$ $\frac{\partial_{0}h}{00,02}$

$0000$

$0000]$

(4.2)
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$\nabla\partial_{1}=[00\frac{\partial_{0}h}{2}0$

(

$-4t_{s_{l_{30}^{+h)\frac{\partial_{0}h}{\frac{\partial_{0}^{2}h}{2}}+t_{3}\partial_{2}h\frac{\partial_{2}h}{2}}}}^{2}\partial_{-\frac{\partial_{3}h}{2}-1}^{-0}h-\frac{\partial_{2}h}{2}0$

$\frac{\partial_{3}h}{2}2t_{3}001$ (4.3)

$\nabla\partial_{2}=\left\{\begin{array}{llll}0 & \frac{\partial_{2}h}{2} & 0 & l\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & -1 & 0 & 0\end{array}\right\}$

(4.4)

$R_{\partial_{0}\partial_{1}}=\ovalbox{\tt\small REJECT}\frac{\partial_{0}\partial_{0}h}{2}(t_{3_{3}}^{00}0-\frac{\partial_{0}^{0}\partial h\partial\partial_{2_{0}^{0}}h}{h-2}0t^{2}\partial\partial 0\frac{\partial_{0}\partial_{3}h}{2}\nabla\partial_{3}=[01000_{\frac{\partial_{0}\partial_{2}h}{2}}0000\frac{\partial_{0}\partial_{2}h}{2}000$

$\frac{\partial_{0}\partial_{3}h}{2}000$

(4.5)

(4.6)

$R_{\partial_{0}\partial_{2}}\equiv 0$ (4.7)

$R_{\partial_{0}\partial_{3}}\equiv 0$ (4.8)

$R_{\partial_{0}\partial_{3}}=[000$ $(4t_{3}^{2}-h_{3})\frac{\partial_{2}\partial_{0}h}{\frac{\partial_{2}\partial_{0}h2}{2}}t_{3}\partial_{2}\partial_{2}h-2t_{3}-t\partial_{2}\partial_{0}h+\frac{\partial_{2}\partial_{2}h}{\frac{\partial_{0}^{2}h}{2}}1\frac{\partial_{2}\partial_{3}h}{2}$

$1-\frac{\partial_{0}\partial_{2}h}{2}000$ $\frac{\partial_{0}h}{2}-\frac{\partial_{0}\partial_{3}h}{2}000(4.9)$
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$R_{\partial_{2}\partial_{3}}\equiv 0$ (4.10)

$R_{\partial_{1}\partial_{3}}=[000(4t_{3}^{2}-h_{3})t_{3}\partial\partial_{2}h+t_{3}\partial_{0_{0}}h\frac{\partial_{0}h-\partial_{3}\partial_{2}h}{2}-t\partial_{3}\partial_{\frac{\frac{\partial_{3}\partial_{0}}{}2_{h^{h_{\frac{\partial_{3}\partial_{0}}{+}}}}\partial_{3}\partial_{3}h0}{2}1^{3}0}\frac{\partial_{3}\partial_{2}h\partial_{0}h2^{h}}{22}01-\frac{\partial_{3}\partial_{3}h}{2}000](4.11)$

The knowledge of the holonomy algebra determines the existence of a non-
holonomic Killing vector field. This is done in the following lemma.

LEMMA 23. In the $\partial_{i}$ basis, the holonomy algebra $h$ is generated by

$h_{1}=[1000$ $-(4t-1_{t_{3}^{-h)}}^{2}2_{0^{3}}$ $0000$ $0000$ $h_{2}=[0000$ $-2t_{3}001-1000$ $0000$

$h_{3}=[0000$ $0001$ $0000$ $-1000$

, and so $\dim h=3$ .

PROOF. In the $\partial_{i}$ basis, the skew-symmetric endomorphisms leaving $\partial_{0}$ in-
variant take the form:

$\left\{\begin{array}{llll}a & -a(4t_{3}^{2}-h)-2t_{3}b & -b & -c\\0 & -a & 0 & 0\\0 & 2t_{3}a+b & 0 & -d\\0 & 2t_{3}d+c & d & 0\end{array}\right\}$

Then $\dim\leqq 4$ and $(a, b, c, d)$ describes any of its elements.
By (4.7), $\cdots,$ $(4.11)$ , the curvature transformations span a subalgebra included

in the hyperplane $d=0$ .
Assume $p\in\pi^{-1}(U_{1})\cap\pi^{-1}(U_{2})$ . The holonomy alegebra $h_{p}$ is spanned by all

curvature transformations in $p$ and those in any other point translated to $p$ by
parallel transport. If $q\in M$, we can assume that $q\in\pi^{-1}(U_{1})$ and $\gamma$ is a path
joining $p$ and $q$ which also lies in $\pi^{-1}(U_{1})$ . Because of (4.2), $\cdots,$ $(4.5)$ we can
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assume that there exist functions

$f,$ $f_{1},$ $f_{2},$ $f_{3}$ : $I\rightarrow R$

satisfying the initial conditions

$f(O)=1$ $f_{1}(0)=0$ $f_{2}(0)=1$ $f_{3}(0)=0$

in such a way that the fields

$f(t)\partial_{0}$

$f_{1}(t)\partial_{0}+f_{2}(t)\partial_{2}+f_{3}(t)\partial_{3}$

are parallel along $\gamma$ .
This fact and (4.6), $\cdot$ .. , (4.11) show that

$(\tau^{-1}R_{XY}\tau)\partial_{0}=\lambda\partial_{0}$ (4.12)

$(\tau^{-1}R_{XY}\tau)\partial_{2}=\mu\partial_{0}$ $\forall X,$ $Y$ (4.13)

Hence the holonomy algebra $h$ is included in the hyperplane $d=0$ .
Finally, for a generic $h,$ $\dim h=3$ , since curvature transformations (4.6),

(4.9), and (4.11) are linearly independent. (Q.E.D.)

SUMMARZING THE EXAMPLE. From Example 22, $M$ is a compact Lorentz
SWI manifold. The vector $X=\partial_{1}$ on $\pi^{-1}(U_{1})$ extends to $X=\partial_{1}^{\prime}$ and it is a Kill-
ing vector field globally defined on $M$. It is non holonomic because $A_{X}$ and $h_{1}$ ,
$h_{2},$ $h_{3}$ are linearly independent and a decomposition like

$A_{X}=h+B_{X}$

where $h\in h,$ $B(B_{X}, B_{x})=0$ and $B_{x}\in h^{\perp}$ is imposSible because $\Phi(B_{X}, B_{X})\neq 0$ .
It is not difficult to give an example like this in dimension $n$ ; for instance,

by choosing an adequate inner product on $M\times S^{1}\times(n-4)\times S^{1}$ . A good metric
tensor could be

$[0001$
$2_{0^{3}}^{h_{t}^{1}}0^{2_{1}^{0_{3}}}0^{t}$

$0001$

$|_{-}I^{0_{d}]}$

where $h=h(\alpha_{0}, \alpha_{2}, \alpha_{i}),$ $i=4,$ $\cdots$ , $n-1$ .
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