KILLING VECTOR FIELDS ON SEMIRIEMANNIAN MANIFOLDS

By
Enric Fossas i Colet

Abstract

It is well known that a Killing vector field on a riemannian compact manifold is holonomic (Kostant (4)). In other words, the A_{X} operator $\left(A_{X}=L_{X}-\nabla_{X}=-\nabla X\right)$ lies in the holomony algebra of the manifold.

The covariant derivative of A_{X} gives us a curvature transformation. This fact and the Ambrose-Singer theorem show that the A_{X} operator lies infinitesimally in the holonomy algebra \boldsymbol{h}. $$
\begin{equation*} \text { (i.e. } \left.\forall Y, \nabla_{Y} A_{X}=R_{X Y} \in \boldsymbol{h}\right) \tag{*} \end{equation*}
$$

The subject of our study is the holonomicity of a Killing vector field on a semiriemannian compact manifold. We remark the validity of (*) on semiriemannian manifolds.

In order to simplify its study, we constrain it to Lorentz locally strictly weakly irreducible manifolds (1.SWI). We remark that Berger (1) showed that the holonomy algebra of a Lorentz manifold which is irreducible and non locally symmetric is the whole $p o(n, 1)$. Therefore, we can leave out this case.

Strictly weakly irreducible manifolds, defined by H. Wu $(5,6)$ in 1963 are the cornerstones of this study. Among these we have found examples of compact manifolds with a non holonomic Killing vector field.

0. Preliminaries.

Let M be a semiriemannian manifold of dimension n and signature s and take $p \in M$. Any loop σ with base point p provides us with an isometry of $T_{p} M$. The set of isometries can be structured as a Lie group: the holonomy group with base-point $p, G_{p}(M)$. When we consider only nulhomotopes loops,

[^0]we obtain $G_{p}^{0}(M)$, the restricted holonomy group. Both are Lie groups. Their algebra \boldsymbol{h} is the holonomy algebra of M; it is a subalgebra of $\boldsymbol{p o}(n, s)$.

The $G_{p}(M)$-action on $T_{p} M$ is strictly weakly irreducible (SWI) if there is some degenerate subspace of $T_{p} M$ invariant by the G_{p}-action and there are no invariant and nondegenerate subspaces.

Example 1. Let $e_{0}, e_{1}, \cdots, e_{n}$ be a basis of R^{n+1}. In this basis we define an inner product $\langle\cdot, \cdot\rangle$ on R^{n+1} by the matrix

$$
\left(\begin{array}{ccc}
0 & 1 & \\
1 & 0 & \\
& & I d
\end{array}\right)
$$

Let G be the group of isometries of ($R^{n+1},\langle\cdot, \cdot\rangle$) which have e_{0} as an eigenvector. Then ($\left.R^{n+1},\langle\cdot, \cdot\rangle\right)$ is SWI by the G-action.

Proof. Clearly e_{0} spans an invariant degenerate subspace. If U is a G invariant and nondegenerate subspace of R^{n+1}, then

$$
\begin{equation*}
R^{n+1}=U \oplus U^{\perp} \tag{0.0}
\end{equation*}
$$

and U and U^{\perp} are invariant and nondegenerate.
The eigenvector e_{0} lies on U or on U^{\perp}. Suppose $e_{0} \in U$. Then

$$
U^{\perp} \cong\left\{e_{0}\right\}^{\perp}=\left\langle e_{0}, e_{2}, \cdots, e_{n}\right\rangle .
$$

If $v \in U^{\perp}$, we can find an isometry $\varphi \in G$ such that

$$
\varphi(v)=e_{0}+v
$$

Then $e_{0} \in G(v)$ because $v \in G(v)$ and this is impossible by (0.0). (Q. E. D.)
Remarks. i) Whenever we take into consideration the G_{p}^{0}-action instead of the G_{p}-one, we will add the word "locally" to the other abjectives.
ii) A vector space S is G_{p}^{0}-invariant if and only if it is \boldsymbol{h}-invariant.

Proposition 2. Let M be a SWI manifold. Then, there is an isotropic subspace of $T_{p} M$, invariant by the G_{p}-action.

Proof. The SWI condition provides us with a G_{p}-invariant degenerate subspace V of $T_{p} M$. Take $w \in V$ in such a way that $\langle v, w\rangle=0 \forall v \in V$. The subspace $W=G_{p}(w)$ is G_{p}-invariant and isotropic.
(Q. E. D.)

Corollary 3. Let M be a Lorentz SWI manifold. Then,
i) there is a G-invariant totally geodesic distribution of dimension one on M, ii) if $\operatorname{dim} M>2$, that distribution is unique.

Proposition 4. Let M be a Lorentz manifold with $\operatorname{dim} M>2$. If M is locally $S W I$, then M is $S W I$.

Proof. Let W_{q} be the G_{p}^{0}-invariant subspace of Corollary 3. If τ is a path, by the uniqueness of the distribution (3. ii)

$$
\boldsymbol{\tau}\left(W_{\tau(0)}\right)=W_{\tau(1)}
$$

Where $\tau(W)$ means the parallel transport of W along τ. If σ is a loop, we have

$$
W_{\sigma(0)}=\sigma_{0}^{1 / 2}\left(W_{\sigma(0)}\right)=W_{\sigma(1 / 2)}=\sigma_{1 / 2}^{1}\left(W_{\sigma(1 / 2)}\right)=\sigma_{0}^{1}\left(W_{\sigma(0)}\right)
$$

tus W_{q} is G_{p}-invariant.
(Q.E.D.)

Lemma 5. Take a basis $e_{0}, e_{1}, \cdots, e_{n}$ of the Lorentz space L_{n+1}. Suppose that the inner product matrix is, in such basis,

$$
\left(\begin{array}{ccc}
0 & 1 & \tag{0.1}\\
1 & 0 & \\
& & I d
\end{array}\right)
$$

The matrix of an isometry Ψ leaving e_{0} invariant looks like

$$
\left(\begin{array}{ccc}
\lambda & a & { }^{t} w \tag{0.2}\\
0 & \lambda^{-1} & 0 \\
0 & -\frac{A w}{\lambda} & A
\end{array}\right)
$$

where $\lambda \in R-\{0\}, w \in R^{n-1}, \quad A \in O(n-1), \quad a=(-\langle w, w\rangle / 2 \lambda) \in R, \quad v=\lambda^{-1}(-A w)$ $\in R^{n-1}$.

Let M be a time orientable Lorentz manifold, locally SWI. Let D be the distribution of Corollary 3. We can take a global vector field V_{0} that generates D and, locally, a frame $V_{0}, V_{1}, \cdots, V_{n}$ in such a way that the matrix of the inner product is $(0,1)$. If necessary, the field V_{1} could be global.

Definition. The set of isometries of lemma 5 is a group J which is isomorphic to $R \times R^{n-1} \times O(n-1)$ with the product rule:

$$
\left(\lambda,{ }^{t} w, A\right) \cdot\left(\mu,{ }^{t} v, B\right)=\left(\lambda \mu, \lambda^{t} v+{ }^{t} w B, A B\right)
$$

where $\left(\lambda,{ }^{t} w, A\right)$ refers to the matrix (0.2).
The group J is a Lie group. Its algebra J is isomorphic to $R \times R^{n-1} \times o(n-1)$
with the bracket rule:

$$
[(a, w, A),(b, v, B)]=\left(0, b^{t} w-a^{t} v+^{t} v A-^{t} w B,[A, B]\right)
$$

where (a, w, A) refers to the matrix:

$$
\left(\begin{array}{rrr}
a & 0 & -{ }^{t} w \\
0 & -a & 0 \\
0 & w & A
\end{array}\right)
$$

In order to reduce the Levi-Civita connection we are going to define a fibre bundle on M. Let D be the distribution of Corollary 3. If $\pi: L(M) \rightarrow M$ is the bundle of linear frames on M, we define $B(M)$ by:
i) $u \in L(M)$ is an isometry between L_{n+1} and $T_{n(u)} M$.
ii) $u \in B(M)$ if and only if $u\left(e_{0}\right) \in D$ and the inner product matrix related to the basis $\left\{u\left(e_{i}\right)\right\}$ is (0.1), ($\left\{e_{i}\right\}$ basis as in lemma 5).

Proposition 6. $B(M)$ is a principal fibre bundle on M with structural group J.

Proof. The J-action on $B(M)$ is free; on the other hand, $B(M) / J \cong M$ and $B(M)$ is locally trivial because so is $L(M)$.
(Q.E.D.)

Proposition 7. The Levi Civita connection of M is reducible to a connection on $B(M)$.

Proof. Let $s(t)$ be a curve on M and $\tilde{s}(t)$ one lift of $s(t)$ on $L(M)$. In a trivializing neighborhood we have

$$
\tilde{s}(t)=\left(s(t), W_{0}(t), W_{1}(t), \cdots, W_{n}(t)\right]
$$

It is sufficient to prove that if $\tilde{s}(o) \in B(M)$, then $\tilde{s}(t) \in B(M)$. Assume $\tilde{s}(0) \in$ $B(M)$. Then $W_{0}(0) \in D$. Hence $W_{0}(t) \in D$, since D is parallel. And the linner product matrix is (0.1) because it is in $\tilde{s}(0)$ and the parallel transport is an isometry.
(Q.E.D.)

Corollary 8. If \boldsymbol{h} is the holonomy algebra of M, then

$$
\operatorname{dim} \boldsymbol{h} \leqq 1+\frac{n(n-1)}{2}
$$

1. First Aproach.

Theorem 9. Let M be a Lorentz SWI manifold. If \boldsymbol{J} is the Lie algebra of J, then any Killing vector field on M satisfies $A_{X} \in J$.

Proof. We can take a frame $V_{0}, V_{1}, \cdots, V_{n}$ such that the subspace subspace spanned by V_{0} is D (Corollary 3) and the inner product is expressed in this basis by the matrix (0.1), A skew symmetric matrix takes for form:

$$
\left(\begin{array}{rrr}
a & 0 & -{ }^{t} u \tag{1.1}\\
0 & -a & -{ }^{t} w \\
w & u & A
\end{array}\right)
$$

where $a \in R, u$ and $v \in R^{n-1}, A \in \boldsymbol{o}(n-1)$.
The elements of the holonomy algebra have the forme:

$$
\left(\begin{array}{rrr}
b & 0 & -{ }^{t} v \\
0 & -b & 0 \\
0 & v & B
\end{array}\right)
$$

where $b \in R, v \in R^{n-1}, B \in \boldsymbol{o}(n-1)$.
Let (1.1) be the A_{X} operator matrix. Since $\left[A_{X}, \boldsymbol{h}\right] \subset \boldsymbol{h}$, we have

$$
B \cdot w-b \cdot w=0
$$

hence $w=0$ or $b=0$.
If $w=0$ the proof is finished. If this is not the case, it must be $b=0$ and $B w=0$ for any $(b, v, B) \in \boldsymbol{h}$. In order to have $\left[A_{X}, \boldsymbol{h}\right] \subset \boldsymbol{h}$, it must be $w \cdot{ }^{t} v=0$. But then the vector ($0,0, w$) would be \boldsymbol{h}-invariant and this is impossible because M is locally SWI.
Q. E. D.

REMARK. An interesting and simple case occurs when $R_{X Y} D \equiv 0 \quad \forall X, Y$. Then we can choose a frame as $V_{0}, V_{1}, \cdots, V_{n}$ satisfying that V_{0} is parallel. In this case the (b, v, B) elements of the holonomy algebra have $b=0$.

Theorem 9 is not enough for this case. We also need $A_{X} V_{0}=0$. This This happens when the parallel vector field is globally defined and M is compact. The following example shows how indispensable the compactness of M is.

Example 10. Let $\alpha_{0}, \alpha_{1}, \alpha_{2}$ be coordinates of R^{3}. In the associated frame

$$
\partial_{1}=\frac{\partial}{\partial \alpha_{1}} \quad i=0,1,2
$$

the following matrix defines an inner product

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \tag{1.2}\\
1 & 0 & g \\
0 & g & h^{2}
\end{array}\right)
$$

where $g=g\left(\boldsymbol{\alpha}_{1}, \alpha_{2}\right)$ and $h=h\left(\alpha_{1}, \alpha_{2}\right)$ are R-valued functions and $h \neq 0$ everywhere.

Changing the frame to

$$
V_{0}=\partial_{0}, \quad V_{1}=\partial_{1}, \quad V_{2}=h^{-1}\left(-g \partial_{0}+\partial_{2}\right),
$$

it is easy to check that:

$$
\left[V_{0}, V_{1}\right]=\left[V_{0}, V_{2}\right]=0 \quad \text { and } \quad\left[V_{1}, V_{2}\right]=-h^{-1}\left[\left(\partial_{1} g\right) V_{0}+\left(\partial_{1} h\right) V_{2}\right]
$$

The matrices of the endomorphisms of $T M, \nabla V_{0}, \nabla V_{1}, \nabla V_{2}$, using the basis V_{0}, V_{1}, V_{2} act on the left and are given by:

$$
\nabla V_{0} \equiv 0 \quad \nabla V_{1} \equiv\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \frac{\partial_{1} g}{h} & \frac{\partial_{1} h}{h}
\end{array}\right) \quad \nabla V_{2} \equiv\left(\begin{array}{ccc}
0 & \frac{-\partial_{1} g}{h} & \frac{-\partial_{1} h}{h} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Finally

$$
R_{V_{1} V_{2}} V_{1}=h^{-2}\left[h\left(\partial_{1} \partial_{1} h\right)-\left(\partial_{2} \partial_{1} g\right)+h^{-1}\left(\partial_{1} g\right)\left(\partial_{2} h\right)\right] V_{2}
$$

Then V_{0} is parallel and $\operatorname{dim} h \leqq 1$. If $\operatorname{dim} \boldsymbol{h}=1$ (i. e. $R_{V_{1} V_{2}} V_{1} \neq 0$), then the holonomy algebra \boldsymbol{h} is spanned by

$$
\left.\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { (in the basis } V_{0}, V_{1}, V_{2}\right)
$$

Note that the inner product matrix is (0.1).
A Killing vector field

$$
X=x_{0} V_{0}+x_{1} V_{1}+x_{2} V_{2}
$$

such that $A_{X} V_{0}=a V_{0}$ must satisfy:

$$
\begin{align*}
& x_{0}=-a \alpha_{0}+F\left(\alpha_{1}, \alpha_{2}\right) \\
& x_{1}=a \alpha_{1}+K \quad(K=c s t) \tag{1.3}\\
& x_{2}=x_{2}\left(\alpha_{1}, \alpha_{2}\right)
\end{align*}
$$

and

$$
\begin{gather*}
\partial_{1} F-x_{2} h^{-1}\left(\partial_{1} g\right)=0 \\
-\left(\partial_{1} x_{2}+\left(a \alpha_{1}+K\right) h^{-1}\left(\partial_{1} g\right)\right)=h^{-1}\left(\partial_{2} F-x_{2} \partial_{1} h\right) \tag{1.4}\\
\partial_{2} x_{2}+\left(a \alpha_{1}+K\right) \partial_{1} h=0 .
\end{gather*}
$$

We are interested in a solution with $x_{2}=0$. Then (1.4) becomes:

$$
\begin{gather*}
\partial_{1} F=0 \\
-\left(a \alpha_{1}+K\right) h^{-1}\left(\partial_{1} g\right)=h^{-1}\left(\partial_{2} F\right) \tag{1.5}\\
\left(a \alpha_{1}+K\right)\left(\partial_{1} h\right)=0
\end{gather*}
$$

Hence $\partial_{1} h=0$. Finally,

$$
\begin{equation*}
F=G\left(\alpha_{2}\right), \quad g=\left(-\partial_{2} G\right) \log \left(a \alpha_{1}+K\right), \quad h=1 \tag{1.6}
\end{equation*}
$$

satisfies (1.5).
Summarizing the example. In the subspace of R^{3} defined by $a \alpha_{1}+K>0$, we consider the inner product

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & g \\
0 & g & 1
\end{array}\right)
$$

where g is given by (1.6). This manifold is locally SWI. The vector field ∂_{0} is parallel and $\operatorname{dim} \boldsymbol{h}=1$. The vector field

$$
X=\left(-a \alpha_{0}+G\right) V_{0}+\left(a \alpha_{1}+K\right) V_{1}
$$

is a non holonomic Killing vector field since $A_{X} V_{0}=a V_{0}$ and $\forall h \in \boldsymbol{h}, h\left(V_{0}\right)=0$.
Corollary 11. Let (M, g) be a compact Lorentz locally SWI manifold. Let \boldsymbol{h} be the holonomy algebra and assume that there is on M a global parallel light-like vector field V_{0}. Let X be a Killing vector field. Then $A_{X} V_{0}=0$.

Proof. It is easy to check that

$$
\operatorname{grad}\left(g\left(V_{0}, X\right)\right)=A_{X} V_{0}
$$

By Theorem 9, $A_{X} V_{0}=a V_{0}$. Actually a is a constant. In fact, for every vector field Y,

$$
\begin{aligned}
0=R_{X Y} V_{0} & =\left(\nabla_{Y} A_{X}\right) V_{0}=\left(\nabla_{Y} A_{X}\right) V_{0}+A_{X}\left(\nabla_{Y} V_{0}\right)=\nabla_{Y}\left(A_{X} V_{0}\right) \\
& =\nabla_{Y}\left(a V_{0}\right)=(Y a) V_{0}+a\left(\nabla_{Y} V_{0}\right)=(Y a) V_{0}
\end{aligned}
$$

because V_{0} is parallel. Hence $Y a \equiv 0$ and a is constant. Taking a frame V_{0},
V_{1}, \cdots, V_{n} where the inner product is expressed by (0.1), it is easy to verify that

$$
a=V_{1} g\left(V_{0}, X\right)
$$

Since M is compact, $g\left(V_{0}, X\right)$ reaches a maximum (minimum), On this point

$$
a=V_{1} g\left(V_{0}, X\right)=0
$$

so $A_{X} V_{0}=0$.

> (Q. E. D.)

2. General case.

Definition. Let φ, ψ be endomorphisms of $T_{p} M$. We define

$$
\Phi(\varphi, \psi)=-\operatorname{trance}\left(\varphi^{\circ} \psi\right)
$$

This is a bilinear form called the Cartan-Killing form.
Theorem 12. (2) Let M be a semiriemannian compact manifold, X a Killing vector field on M. If Φ is nondegenerate on the holonomy algebra, then the $A_{X^{-}}$ operator decompose in the form

$$
A_{X}=h+B_{X}
$$

where $h \in \boldsymbol{h}, B_{X} \boldsymbol{h}^{\perp}$ and $\Phi\left(B_{X}, B_{X}\right)=0$. This decomposition is unique.
Remark. On Lorentz surfaces the Cartan-Killing form is negative definite. A Lorentz surface which is not flat is locally SWI.

Corollary 13. Let M be a compact Lorentz surface. If X is a Killing vector field on M then $A_{\boldsymbol{X}} \in \boldsymbol{h}$.

Theorem 14. Let M be a Lorentz SWI manifold, \boldsymbol{h} its holonomy algebra, V_{0} a light-like vector field in the direction of the parallel 1-distribution D and \boldsymbol{r} the radical of the trace form on \boldsymbol{h}.

Let X be a Killing vector field on M, we have
i) If $\operatorname{dim} M=3$
a) $\operatorname{dim} \boldsymbol{h}=2$ implies X is holonomic.
b) $\operatorname{dim} \boldsymbol{h}=1$ implies $\operatorname{dim} \boldsymbol{r}=1$.
c) If $\operatorname{dim} \boldsymbol{h}=1, M$ is compact and V_{0} is global, then X is holonomic (See 10 for the noncompact case).
ii) If $\operatorname{dim} M=4$ and $\boldsymbol{h}\left(V_{0}\right) \neq 0$, then
a) $\operatorname{dim} h \leqq 4$
b) If $\operatorname{dim} \boldsymbol{h} \neq 3$, then X is holonomic. (See 22 for $\operatorname{dim} \boldsymbol{h}=3$).
iii) If $\operatorname{dim} M=4$ and $\boldsymbol{h}\left(V_{0}\right)=0$, then
a) $\operatorname{dim} \boldsymbol{h} \leqq 3$
b) If M is compact, V_{0} is global and $\operatorname{dim} \boldsymbol{h}=3$, then X is holonomic.

Proof. i) In an adequate basis, the holonomy algebra \boldsymbol{h} is generated by
a) $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{llr}0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
c) $\left(\begin{array}{rrr}0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

Theorem 9 implies a).
The SWI character of M implies b) and Corollary 11 implies c).
ii) In this case the discussion is longer but the tools are the same as in i) plus the fact that $\left[A_{X}, \boldsymbol{h}\right] \subset \boldsymbol{h}$.
iii) In an adequate basis, the elements of the holonomy algebra can be written as

$$
a\left(\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+b\left(\begin{array}{lllr}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)+c\left(\begin{array}{lllr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

so that $\operatorname{dim} \boldsymbol{h} \geqq 3$. Hence Corollary 11 gives iii-b).
(Q. E. D.)

3. Lorentz nondegenerate case.

Theorem 15. Let M be a compact Lorentz locally $S W I$ manifold, \boldsymbol{h} its holonomy algebra ond Φ the Cartan-Killing from. Assume that Φ is nondegenerate on \boldsymbol{h}. Then if X is a Xilling vector field, we have $A_{\boldsymbol{X}} \in \boldsymbol{h}$.

To prove the Theorem we use the following lemmas:
Lemma 16.

$$
\Phi(A,[B, C])=\Phi([A, B], C)
$$

Lemma 17. Let V be a K-vector space. Assume that $A, B \in \operatorname{End}(V)$ and $[A, B]=0$. Then $\forall p \in K[x], \operatorname{Ker} p(\Phi)$ is B-invariant.

Lemma 18. Let V be a Lorentz vector space. Take a basis where the inner product is given by (0.1) and an endomorphism A which has in this basis the form :

$$
A=\left(\begin{array}{rrr}
b & 0 & -{ }^{t} v \\
0 & -b & 0 \\
0 & v & \Psi
\end{array}\right)
$$

where $b \in R, v \in R^{n-1}$ and $\Psi \in \boldsymbol{o}(n-1)$. If $b \neq 0$ or $\Psi \neq 0$, then there is a subspace of V which is A-invariant and nondegenerate by the Lorentz inner product.

Proof. Let $e_{0}, e_{1}, \cdots, e_{n}$ be our basis. Since $\Psi \in \boldsymbol{o}(n-1)$, there exists an orthonormal basis u_{2}, \cdots, u_{n} of $\left\langle e_{0}, e_{1}\right\rangle^{\perp}$ in such a way that Ψ is given by the matrix

Related to the basis $e_{0}, e_{1}, u_{2}, \cdots, u_{n}$ the endomorphism A is

$$
\left(\begin{array}{rrr}
b & 0 & -{ }^{t} v \\
0 & -b & 0 \\
0 & v & B
\end{array}\right)
$$

If $b \neq 0$ or $\Psi \neq 0$, then $b^{2}+a_{i}^{2} \neq 0$ for some a_{i}. The subspace $\operatorname{Ker}\left(A^{2}+a_{i}^{2} I\right)$ is A-invariant and nondegenerate by the Lorentz inner product. This is the primary component associated to the eigen-value a_{i}.
(Q.E.D.)

Prrof of Theorem 15. Theorem 12 allows us to decompose

$$
A_{X}=K+B_{X}
$$

where $K \in \boldsymbol{h}, B_{X} \in \boldsymbol{h}^{\perp}$ and $\Phi\left(B_{X}, B_{X}\right)=0$.
It is easily verified that

$$
\begin{equation*}
\left[B_{X}, h\right]=0 \quad \forall h \in \boldsymbol{h} \tag{3.1}
\end{equation*}
$$

In fact, from Lemma 16

$$
\Phi\left(\left[B_{X}, h\right], 1\right)=\Phi\left(B_{X},[h, 1]\right)=0 .
$$

Then

$$
\Phi\left(\left[B_{X}, h\right], 1\right)=0 \quad \forall h \in \boldsymbol{h} .
$$

But $\left[B_{X}, h\right] \in \boldsymbol{h}$ and Φ is nondegenerate on \boldsymbol{h}, hence (3.1) holds.
By theorem 9 , there exists a frame $V_{0}, V_{1}, \cdots, V_{n}$ where B_{X} is expressed by

$$
\left(\begin{array}{rrr}
b & 0 & -{ }^{t} v \\
0 & -b & 0 \\
0 & v & B
\end{array}\right)
$$

where $b \in R, v \in R^{n-1}, B \in \boldsymbol{o}(n-1)$ and $b^{2}=\Phi(B, B)$.
We must consider two cases
a) $b \neq 0$

By Lemma 18 there is a nondegenerate subspace of $T M$ which is B_{X} invariant. By Lemma 17 this subspace is \boldsymbol{h}-invariant. Then M will not be locally SWI.
b) $b=0$. Consequently $B_{X} \equiv 0$.

An element of \boldsymbol{h} can be written as

$$
\left(\begin{array}{rrr}
a & 0 & -{ }^{t} w \\
0 & -a & 0 \\
0 & w & H
\end{array}\right) .
$$

Then, since A_{X} lies in the normalizer of \boldsymbol{h} and Φ is nondegenerate on \boldsymbol{h}, it must be

$$
H v+a v=0
$$

$\forall(H, a)$ such that $H \in \boldsymbol{o}(n-1), a \in R$ and $\exists w \in R^{n-1}$ such that

$$
\left(\begin{array}{rrr}
a & 0 & -w \\
0 & -a & 0 \\
0 & w & H
\end{array}\right) \in \boldsymbol{h} .
$$

If $a \neq 0$ for some $H \in \boldsymbol{h}$, it must be $v=0$. Otherwise, if $v \neq 0$, a frame such as $V_{0}, V_{1}, \cdots, V_{n-1}, V_{n}=v /\|v\|$ could be taken. In such a frame, the elements of the holonomy algebra \boldsymbol{h} are expressed by

$$
\left(\begin{array}{cccc}
a & 0 & -{ }^{t} w & -w_{n-1} \\
0 & -a & 0 & 0 \\
0 & w & H & 0 \\
0 & w_{n-1} & 0 & 0
\end{array}\right)
$$

where $w \in R^{n-2}, w_{n-1} \in R$ and $H \in \boldsymbol{o}(n-2)$. Since some w_{n-1} must be different from 0 , we can choose an \boldsymbol{h}-basis

$$
I_{i}=\left(0, w_{i}, 0, H_{i}\right) \quad i=1, \cdots,(r-1) ; \quad I_{r}=\left(0, w_{r}, 1, H_{r}\right)
$$

Let \boldsymbol{J} be the ideal spanned by I_{1}, \cdots, I_{r-1} and assume that

$$
L=(0, w, \varepsilon, H)
$$

is a generator of $J^{ \pm} \subset \boldsymbol{h}$. It is easily verified that

$$
\begin{equation*}
\Phi\left(\left[L, I_{i}\right], I_{j}\right)=\Phi\left(L,\left[I_{i}, I_{j}\right]\right)=0 \quad \forall i, j \in\{1, \cdots, r\} \tag{3.2}
\end{equation*}
$$

By the nondegeneracy of Φ

$$
\begin{equation*}
\left[L, I_{i}\right]=0 . \tag{3.3}
\end{equation*}
$$

The L matrix in the V 's frame takes the form

$$
\left(\begin{array}{rrr}
0 & 0 & -{ }^{t} u \\
0 & 0 & 0 \\
0 & u & U
\end{array}\right)
$$

where $u \in R^{n-1}, U \in \boldsymbol{o}(n-1), U \neq 0$.
Again by Lemma 18 there is a subspace of $T M$ which is L-invariant and nondegenerate. Using (3.3) and Lemma 17, we see that it is \boldsymbol{h}-invariant. But this is impossible because M is locally SWI. Then $v=0$ implies $v=0$. (Q.E.D.)

Proposition 19. Let M be a compact Lorentz locally SWI manifold. Let Φ, \boldsymbol{h} and D be as above. Suppose that the Ricci tensor is negative semidefinite, \boldsymbol{h} is nondegenerate by Φ and $\boldsymbol{h}(D)=0$. Then any Killing vector field X must lie in the distribution D^{\perp}.

Proof. Since $\boldsymbol{h}(D)=0$, we can locally choose a vector field V_{0} which is parallel and $R V_{0}=D$. In a frame $V_{0}, V_{1}, \cdots, V_{n}$ where the inner product is given by (0.1), the elements of \boldsymbol{h} can be expressed by

$$
\left(\begin{array}{rrr}
0 & 0 & -{ }^{t} v \\
0 & 0 & 0 \\
0 & v & B
\end{array}\right)
$$

Note that Φ is negative semidefinite on \boldsymbol{h}.
Since $A_{X} V_{0}=0$, from Theorem 15 and $\operatorname{grad}\left(g\left(V_{0}, X\right)\right)=A_{X} V_{0}$, we obtain that $g\left(X, V_{0}\right)$ is constant. If this constant were different from zero one could choose a frame $V_{0}{ }^{\prime} X, V_{2}, \cdots, V_{n}$ in such a way that the inner product would
be given by

$$
\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 2 f & 0 \\
0 & 0 & I d
\end{array}\right)
$$

It is well known that $\Delta f=-\operatorname{trace}\left(A_{X}{ }^{\circ} A_{X}\right)-\operatorname{Ricci}(X, X)$, which is positive or zero in this case. By integrating Δf on the compact manifold M,

$$
\begin{equation*}
0=\int_{M} \Delta f \tag{3.4}
\end{equation*}
$$

Then $\Delta f=0$ and trace $\left(A_{X} \circ A_{X}\right)=0$. In the frame we have just defined, A_{X} is

$$
\left(\begin{array}{rrr}
0 & 0 & -{ }^{t} v \tag{3.5}\\
0 & 0 & 0 \\
0 & v & 0
\end{array}\right)
$$

Now we could integrate

$$
\frac{\Delta f^{2}}{2}=\Delta f \cdot f+g(\operatorname{grad} f, \operatorname{grad} f)
$$

so as to obtain by (3.4)

$$
\begin{equation*}
0=\int_{M} g(\operatorname{grad} f, \operatorname{grad} f) \tag{3.6}
\end{equation*}
$$

Since $\operatorname{grad} f$ is spatial like, $\operatorname{grad} f=0$. But $\operatorname{grad} f=A_{X} X$. Then f is constant and $A_{X} \equiv 0$. (See (3.3)). Consequently X is parallel and the subspace spanned by X and V_{0} is invariant and nondegenerate. This is a contradiction. Hence $g\left(X, V_{0}\right)=0$.
(Q.E.D.)

Theorem 20. With the hypotheses of Proposition 19, the Killing vector field X is light-like and parallel.

Proof. By Theorem 14, $A_{X} \in \boldsymbol{h}$. If we take $f=(1 / 2) g(X, X)$, then $\Delta f=0$ and

$$
\begin{equation*}
\Phi\left(A_{X}, A_{X}\right)=0 \tag{3.6}
\end{equation*}
$$

as in the last proposition.
In a frame $V_{0}, V_{1}, \cdots, V_{n}$ where the inner product is given by (0.1), the A_{X} matrix is

$$
\left(\begin{array}{rrr}
0 & 0 & -{ }^{t} v \\
0 & 0 & 0 \\
0 & v & B
\end{array}\right)
$$

where $v \in R^{n-1}$ and $B \in \boldsymbol{o}(n-1)$. But $B \equiv 0$ by (3.6). Hence A_{X} is in the radical of $\Phi_{1 \boldsymbol{k} \times \boldsymbol{h}}$. Then $A_{X} \equiv 0$ and X is parallel.

Finally since M is locally SWI, X must be light-like. By Proposition 19, $g\left(X, V_{0}\right)=0$. Then $X=k V_{0}$ and k is a constant.
(Q.E.D.)

Corollary 21. Let M be a compact locally SWI manifold. Assume that the Ricci tensor is negative semidefinite and the trace form Φ is nondegenerate on \boldsymbol{h}. If D and $\boldsymbol{h}(D)$ are as in Proposition 19, either there are no Killing vector fields on M or there is a parallel light-like Killing vector field X on M and any other Killing vector field is λX, where λ is a constant.

4. Examples.

In this section we show that Theorem 12 cannot be improved and we complete Theorem 14. We will construct a compact Lorentz SWI manifold with a non holonomic Killing vector field X that cannot admit a decomposition like in Theorem 12.

Example 22. Let S^{1} be the unit circle included in the euclidean plane. We define:

$$
\begin{array}{ll}
U_{1}=S^{1} \backslash\{(1,0)\} & U_{2}=S^{1} \backslash\{(-1,0)\} \\
U_{12}^{+}=\left\{(x, y) \in S^{1}: y>0\right\} & U_{12}^{-}=\left\{(x, y) \in S^{1}: y<0\right\}
\end{array}
$$

U_{12}^{+}, U_{12}^{-}are the path-components of $U_{1} \cap U_{2}$.
Let $\pi: M \rightarrow S^{1}$ be the bundle on S^{1} such that
i) $\pi^{-1}\left(U_{1}\right) \cong S^{1} \times S^{1} \times S^{1} \times U_{i} \quad i=1,2$
ii) The transition function $\varphi: U_{1} \cap U_{2} \rightarrow$ Aut $\left(S^{1} \times S^{1} \times S^{1}\right)$ is given by :

$$
\begin{aligned}
\varphi(x): S^{1} \times S^{1} \times S^{1} & \longrightarrow S^{1} \times S^{1} \times S^{1} \\
\left(z_{0}, z_{1}, z_{2}\right) & \longmapsto\left(z_{0} \cdot z_{2}^{-1}, z_{1}, z_{2}\right) \quad \text { if } x \in U_{12}^{+} \\
\varphi(x): S^{1} \times S^{1} \times S^{1} & \longrightarrow S^{1} \times S^{1} \times S^{1} \\
\left(z_{0}, z_{1}, z_{2}\right) & \longmapsto\left(z_{0} \cdot z_{2}, z_{1}, z_{2}\right) \quad \text { if } x \in U_{-1}^{-} .
\end{aligned}
$$

M is a fiber bundle on S^{1} with the fibre isomorphic to $S^{1} \times S^{1} \times S^{1}$.
In order to define a metric tensor on M, consider a system of coordinates on $\pi^{-1}\left(U_{1}\right)$

$$
\begin{aligned}
I^{4} & \longrightarrow \pi^{-1}\left(U_{1}\right) \\
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) & \longmapsto\left(e^{\pi t \alpha_{0}}, e^{2 \pi i \alpha_{1}}, e^{2 \pi t \alpha_{2}}, e^{2 \pi i \alpha_{3}}\right)
\end{aligned}
$$

where $I=(0,1)$.

We write $\partial_{i}=\partial / \partial \alpha_{1}, i=0,1,2,3$. In this basis the inner product is given by the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & h & 2 \alpha_{3} & 0 \\
0 & 2 \alpha_{3} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $h=h\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a real C^{∞} function well defined on $\pi^{-1}\left(U_{1}\right)$ such that

$$
\begin{equation*}
\lim _{\alpha_{3} \rightarrow 0,1} h=0 \tag{4.1}
\end{equation*}
$$

and this also holds for the successive derivatives.
Analogously, on $\pi^{-1}\left(U_{2}\right)$ consider a system of coordinates

$$
\begin{gathered}
I^{4} \longrightarrow \pi^{-1}\left(U_{2}\right) \\
\left(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right) \longmapsto\left(e^{2 \pi i \alpha_{0}^{\prime}}, e^{2 \pi i \alpha_{1}^{\prime}}, e^{2 \pi i \alpha_{2}^{\prime}}, e^{2 \pi i\left(\alpha_{3}^{\prime}+(1 / 2)\right.}\right)
\end{gathered}
$$

where $I=(0,1)$.
We write $\partial_{1}^{\prime}=\partial / \partial \alpha_{1}^{\prime}, i=0,1,2,3$. In this basis the inner product is given by the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & h^{\prime} & 2 \alpha_{3}^{\prime} & 0 \\
0 & 2 \alpha_{3}^{\prime} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $h^{\prime}=h^{\prime}\left(\alpha_{0}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$ is a real C^{∞} function well defined on $\pi^{-1}\left(U_{2}\right)$ such that

$$
h_{\mid \pi-1\left(U_{1} \cap U_{2}\right)}^{\prime} \equiv h_{\mid \pi-1\left(U_{1} \cap U_{2}\right)} \quad \text { and } \quad h_{\mid \pi-1(((1,0)))}^{\prime} \equiv 0 .
$$

This !nner product is well defined on M and has signature one.
One can check, for instance on $\pi^{-1}\left(U_{1}\right)$ that, in the ∂_{1} basis,

$$
\nabla \partial_{0}=\left(\begin{array}{cccc}
0 & \frac{\partial_{0} h}{2} & 0 & 0 \tag{4.2}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{align*}
& \nabla \partial_{1}=\left(\begin{array}{cccc}
\frac{\partial_{0} h}{2} & \left(-4 t_{3}^{2}+h\right) \frac{\partial_{0} h}{2}+t_{3} \partial_{2} h & \frac{\partial_{2} h}{2} & \frac{\partial_{3} h}{2}-2 t_{3} \\
0 & -\frac{\partial_{0} h}{2} & 0 & 0 \\
0 & t_{3} \partial_{0} h-\frac{\partial_{2} h}{2} & 0 & 1 \\
0 & -\frac{\partial_{3} h}{2} & -1 & 0
\end{array}\right) \tag{4.3}\\
& \nabla \partial_{2}=\left(\begin{array}{rrrr}
0 & \frac{\partial_{2} h}{2} & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \tag{4.4}\\
& \nabla \partial_{3}=\left(\begin{array}{cccc}
0 & \frac{\partial_{3} h}{2}-2 t_{3} & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{4.5}\\
& R_{\partial_{0} \partial_{1}}=\left(\begin{array}{cccc}
\frac{\partial_{0} \partial_{0} h}{2} & \left(-4 t_{3}^{2}+h\right) \frac{\partial_{0} \partial_{0} h}{2}+t_{3} \partial_{0} \partial_{2} h & \frac{\partial_{0} \partial_{2} h}{2} & \frac{\partial_{0} \partial_{3} h}{2} \\
0 & -\frac{\partial_{0} \partial_{0} h}{2} & 0 & 0 \\
0 & t_{3} \partial_{0} \partial_{0} h-\frac{\partial_{0} \partial_{2} h}{2} & 0 & 0 \\
0 & -\frac{\partial_{0} \partial_{3} h}{2} & 0 & 0
\end{array}\right) \tag{4.6}\\
& R_{\partial_{0} \partial_{2}} \equiv 0 \tag{4.7}\\
& R_{\partial_{0} \partial_{3}} \equiv 0 \tag{4.8}\\
& R_{\partial_{0} \partial_{3}}=\left(\begin{array}{cccc}
-\frac{\partial_{2} \partial_{0} h}{2} & \left(4 t_{3}^{2}-h\right) \frac{\partial_{2} \partial_{0} h}{2}-t_{3} \partial_{2} \partial_{2} h-2 t_{3} & 1-\frac{\partial_{0} \partial_{2} h}{2} & \frac{\partial_{0} h}{2}-\frac{\partial_{0} \partial_{3} h}{2} \\
0 & \frac{\partial_{2} \partial_{0} h}{2} & 0 & 0 \\
0 & -t_{3} \partial_{2} \partial_{0} h+\frac{\partial_{2} \partial_{2} h}{2}-1 & 0 & 0 \\
0 & \frac{\partial_{2} \partial_{3} h}{2}-\frac{\partial_{0} h}{2} & 0 & 0
\end{array}\right) \tag{4.9}
\end{align*}
$$

$$
R_{\partial_{1} \partial_{3}}=\left(\begin{array}{cccc}
-\frac{\partial_{3} \partial_{0} h}{2}\left(4 t_{3}^{2}-h\right) \frac{\partial_{3} \partial_{0} h}{2}-t_{3} \partial_{3} \partial_{2} h+t_{3} \partial_{0} h \frac{\partial_{0} h-\partial_{3} \partial_{2} h}{2} & 1-\frac{\partial_{3} \partial_{3} h}{2} \\
0 & \frac{\partial_{3} \partial_{0} h}{2} & 0 & 0 \tag{4.11}\\
0 & -t_{3} \partial_{3} \partial_{0} h+\frac{\partial_{3} \partial_{2} h}{2}-\frac{\partial_{0} h}{2} & 0 & 0 \\
0 & \frac{\partial_{3} \partial_{3} h}{2}-1 & 0 & 0
\end{array}\right)
$$

The knowledge of the holonomy algebra determines the existence of a nonholonomic Killing vector field. This is done in the following lemma.

Lemma 23. In the ∂_{i} basis, the holonomy algebra \boldsymbol{h} is generated by

$$
\begin{aligned}
& h_{1}=\left(\begin{array}{cccc}
1 & -\left(4 t_{3}^{2}-h\right) & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 2 t_{3} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad h_{2}=\left(\begin{array}{ccc}
0 & -2 t_{3} & -1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right) \\
& h_{3}=\left(\begin{array}{lccr}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \text { and so } \operatorname{dim} \boldsymbol{h}=3 .
\end{aligned}
$$

Proof. In the ∂_{i} basis, the skew-symmetric endomorphisms leaving ∂_{0} invariant take the form:

$$
\left(\begin{array}{ccrr}
a & -a\left(4 t_{3}^{2}-h\right)-2 t_{3} b & -b & -c \\
0 & -a & 0 & 0 \\
0 & 2 t_{3} a+b & 0 & -d \\
0 & 2 t_{3} d+c & d & 0
\end{array}\right)
$$

Then $\operatorname{dim} \leqq 4$ and (a, b, c, d) describes any of its elements.
By (4.7), \cdots, (4.11), the curvature transformations span a subalgebra included in the hyperplane $d=0$.

Assume $p \in \pi^{-1}\left(U_{1}\right) \cap \pi^{-1}\left(U_{2}\right)$. The holonomy alegebra \boldsymbol{h}_{p} is spanned by all curvature transformations in p and those in any other point translated to p by parallel transport. If $q \in M$, we can assume that $q \in \pi^{-1}\left(U_{1}\right)$ and γ is a path joining p and q which also lies in $\pi^{-1}\left(U_{1}\right)$. Because of (4.2), \cdots, (4.5) we can
assume that there exist functions

$$
f, f_{1}, f_{2}, f_{3}: I \longrightarrow R
$$

satisfying the initial conditions

$$
f(0)=1 \quad f_{1}(0)=0 \quad f_{2}(0)=1 \quad f_{3}(0)=0
$$

in such a way that the fields

$$
\begin{aligned}
& f(t) \partial_{0} \\
& f_{1}(t) \partial_{0}+f_{2}(t) \partial_{2}+f_{3}(t) \partial_{3}
\end{aligned}
$$

are parallel along γ.
This fact and (4.6), \cdots, (4.11) show that

$$
\begin{align*}
& \left(\tau^{-1} R_{X Y} \tau\right) \partial_{0}=\lambda \partial_{0} \tag{4.12}\\
& \left(\tau^{-1} R_{X Y} \tau\right) \partial_{2}=\mu \partial_{0} \quad \forall X, Y \tag{4.13}
\end{align*}
$$

Hence the holonomy algebra \boldsymbol{h} is included in the hyperplane $d=0$.
Finally, for a generic h, $\operatorname{dim} \boldsymbol{h}=3$, since curvature transformations (4.6), (4.9), and (4.11) are linearly independent.
(Q.E.D.)

Summarzing the example. From Example 22, M is a compact Lorentz SWI manifold. The vector $X=\partial_{1}$ on $\pi^{-1}\left(U_{1}\right)$ extends to $X=\partial_{1}^{\prime}$ and it is a Killing vector field globally defined on M. It is non holonomic because A_{X} and h_{1}, h_{2}, h_{3} are linearly independent and a decomposition like

$$
A_{X}=h+B_{X}
$$

where $h \in \boldsymbol{h}, B\left(B_{X}, B_{X}\right)=0$ and $B_{X} \in \boldsymbol{h}^{\perp}$ is impossible because $\Phi\left(B_{X}, B_{X}\right) \neq 0$.
It is not difficult to give an example like this in dimension n; for instance, by choosing an adequate inner product on $M \times S^{1} \times \underset{(n-4)}{\ldots \ldots} \times S^{1}$. A good metric tensor could be

$$
\left(\begin{array}{cccc|c}
0 & 1 & 0 & 0 & \\
1 & h & 2 t_{3} & 0 & 0 \\
0 & 2 t_{3} & 1 & 0 & \\
0 & 0 & 0 & 1 & \\
\hline & 0 & & I d
\end{array}\right)
$$

where $h=h\left(\alpha_{0}, \alpha_{2}, \alpha_{i}\right), i=4, \cdots, n-1$.

References

[1] Berger, B., "Sur les groupes d'holonomie homogène des variétés à connection affine et des variétés semiriemanniennes" Bull. Soc. Math. France 83. pp. 279-330 (1955).
[2] Fossas, E., "Killing vector fields and the holomomy algebra on semiriemannian manifolds" (To appear in Tsukuba J. of M.)
[3] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry. Vol. 1 and 2. Interscience. (1963).
[4] Kostant, B. "Holonomy and the Lie algebra of the infinitesimal motions of a riemannian manifold". Trans. AMS $80 \mathrm{pp} .528-542$ (1955).
[5] Wu, H., "On the de Rham decomposition theorem". Illinois J. of Math. $8 \mathrm{pp} .291-$ 311 (1964).
[6] Wu, H., "Holonomy groups of indefinite metrics". Pacific J. of Math. 20(2), pp. 351-392 (1987).

Enric Fossas
E. U. Politècnica

Avda. Victor Balaguer
08800 VILANOVA I LA GELTRU
(Barcelona-SPAIN)

[^0]: Partially supported by CAICYT M. 1095/94.
 Received January 25, 1988. Revised September 12, 1988.

