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HYPERSURFACES IN THE QUATERNIONS II

By

Hideya HASHIMOTO

1. Introduction.

Let H=spangr{l, 7, 7, £} be the quaternions. We shall fix the basis {1,7, 7, 2}
throughout this paper. Then, we may regard H as a 4-dimensional Euclidean
space R* in the natural way. An oriented hypersurface M® in H admits a global
orthonormal frame field as follows. Let (M?® f) be an oriented hypersurface of
H and & a unit normal vector field on M%.  Then {&7, &/, &k} is a global ortho-
normal frame field on f(M®). We shall call this orthonormal frame field an
associated one of f(M?®) and the dual frame field of {&7, &j, &k} as associated
dual frame field, respectively. We may remark that the associated frame field
on M?® (intrinsically) of an oriented hypersurface (M3, af) in H coincides with
the associated one of the hypersurface (M? f) for any a=Sp(1). We note that
the associated frame field of (M?, bf) are different from the associated one of
M3, f) for b=SO4) and b&£SH(1). This paper is a continuation of the previous
one ([3]). Let x be the unit normal vector field of a unit 3-sphere S® in H,
then the vector fields {x7, x/, xk} are killing vector fields on S* (see [3], [5)),
and each integral curve of x: (dr xj or xk) is a geodesic in S® and a circle in
H. We shall prove the followings:

THEOREM A. Let (M3, f) be an oriented hypersurface in the quaternions H
and & a global normal vector field of M®in H. If each 1-form of the associated
dual frame field on M?® is a contact form on M® and each integral curve of the
associated orthonormal frame field is a circle in H, then

(1) M3 is locally isometric to a 3-dimensional round sphere in H and the im-
mersion f is totally umbilic,
or

(2) M3 is locally isometric to S*XR? (S is a circle) and the immertion f is

a locally product one.

TEEOREM B. Let (M3, f) be an oriented complete hypersurface in the quater-
nions H and & a global unit normal vector field of M® in H. If each integral
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curve of any one of the vector fields belonging to the associated frame field, say
&, is a geodesic in M?® (the first curvature of the integral curve in H is non-zero)
and p(&7, £k)=0 (or <0 where p is the Ricci curvature of M?®), then

(1) M3 is isometric to a 3-dimensional round sphere in H and the immersion
f is totally umbilic,
or

(2) M is isometric to M!XR? (M! is a l-dimensional Riemannian manifold)
and the immertion f is a (non-totally geodesic) product one.

REMARK. We shall give an example of the second case of Theorem A
after the proof of Here, we remark that K. Nomizu and K. Yano
([15]) proved that the submanifold M" in R"*? is umbilical if and only if
every circle in M” is a circle in R**?,

In this paper, all the manifolds are assumed to be connected and class C*
unless otherwise stated. The author would like to express his heartly thanks
to Professor K. Sekigawa and Mr. T. Koda for their constant encouragement
and many valuable suggestions and to the refree for his many valuable comments.

2. Preliminaries.

First, we shall recall some elementary properties of the quaternions H=
spanr{l, 7, 7, k} with 2=j2=k*=—1, ij=—ji=k, jk=—kj=i and ki=—ik=].
Let ¢,> be the canonical inner product of H. For any x&H, we denote by X
the conjugate of x. We write down some elementary formulae of H.

{xw, y>=Lx, yw), Kwx, y>=<Xx, Wy)
2.1 xXy=5%,
{x, yo=(x5+y%)/2, <X, ¥>=<Xx,y>

for any x, y, wsH (see [2]).

We recall also some elementary formulae of hypersurfaces in the Euclidean
space. We denote by R"*! an (n+1)-dimensional Euclidean space. Let M" be
an n-dimensional hypersurface in R"*!. We denote by V, D and V* the Rie-
mannian connection of M”, R**! and the normal connection of M” in R"*! re-
spectively, and ¢ the second fundamental form of M” in R**!. Then, the Gauss
formula and the Weingarten formula are given respectively by

(22) O'(X, Y)"—-"ny—‘v,\'y
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(2.3) D &=—A«(X)

for any X, Yex(M") (¢(M") denotes the Lie algebra of all diffecentiable vector
fields on M™), where & is the unit normal vector field of M™ in R"*! and — A(X)
denotes the tangential part of D,é&.

The tangential part A.(X) is related to the second fundamental form ¢ as
follows:

(2.4) Ka(X, Y), E£>=CA(X), Y for any X, Ye2x(M").

Then, the -Gauss, Codazzi equations are given respectively by
(2.5) (R(X, VZ,Wy=La(X, W), oY, Z))—<o(X, Z), a¥Y, W)
(2.6) (Vxo)Y, Y)=(roXX, Z)

for any X, Y, Z, Wex(M"), where R is the Riemannian curvature tensor of
M* defined by R(X,Y)=[Yx, Vel—Vir.x3 and (VxaX¥, Z)=V}(a(Y, Z))
—o(VxY, Z)—a(Y,VxZ). We shall give some elementary formulae of an
oriented hypersurface in H for the sake of later uses. Let (M? f) be an oriented
hypersurface in H. We denote by & the unit normal vector field of M*® in H.

Then, we may easily see that {&:, &/, £k} is a global orthonormal frame field
on M:®.

By [(2.1) and [2.3), we get
Vx(§i)=0a(X, §/)k—a(X, §k)] ,
(2.7) Vx(Ej)=0a(X, §k)i—a(X, &k,
Vx(§k)=0(X, &)j—0o(X, £5)i .
We put the shape operator A; by

a A p
A B v
g v 7
where a=<a(&i, &), &>. B=<a(&], &), &, r=Xa(&k, §k), &>, 2=Ka(§1, 1), &>, p=
Ka(&i, &k), & and v=<a(&], k), £). Then they are differentiable functions on
M? By [2.5) and [2.8), the Ricci tensor p is given by

p&i, &) (&, &) p(ér, Ek)]

(2.8) A=

(2.9) o(&j, &) pj, &) p(&s, &k)
pk, &) p(&k, &)) p(ék,ER)
a(B+1)——p* ri—pv Bp—va
=|TA—py Br+a)—yv*—4* av—Ap
Bu—va av—Ap  rla+B)—ut—v*).
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3. Codazzi equation, eonnection and differential forms with
respect to the associated orthonormal frame field.

For the sake of later uses, we shall give some formulae. From the defini-
tion of Vo, (2.6) and [2.7), we have

{(Ve0)§1, §7), E>=6i(B)+2p(57, £R)=E1(A)—p(&J, §F),
(Veo) bk, ER), E>=8i(r)—2p(5], ER)=ER(p)+-p(E7, &),
(Ve;0)Ek, Ek), £>=67(11+20(Ek, E)=ER()—p(Ek, &),
@.1 {(Ves0X&i, 1), £>=Ej(a)—2p(Ek, §)=Ei(A)+pEk, &),
{(Vero )&, &), E>=Ek(a)+20(&1, £7)=Ei(pr)— (&7, §7),
Nero)&J, §7), E>=ER(B)—2p(&1, §))=E5()+ (&7, £7),
((Vei0) (€7, §R), E>=Ei(W)+alr—B)+2*—p*,
=£j()+Bla—1)+v* —2=ERA)+T(B—a)+p*—1*.

Next, we shall give another expression of the connection of M*® with respect
to the associated orthonormal frame field {&7, &7, £k}. We define the map ¢ by

¢: X(M?*) — {R3-valued C=-functions on M?*}
X—> (X, &>, <X, &7, KX, §R)).
Then, for any Y ex(M?), we get

3.2) Y=«Y)-f

where “-” is a formal inner product of R® and F=%¢&i, &/, £k). Then the in-
duced connection V is given by

3.3) VY ={X((Y)+(YI)XO(X)}-F

where O(X):='({o(X, &), &, <o(X, &)), &, <o(X, &k), £)) and X is the can-
nonical exterior product of R®. In fact, by [2.7) and [3.2), we get

3.4 VY =Vx((Y)-F)=XY)) - f+c(Y)-VNxf
=X((Y))F+e(Y)-(B(X)XF).

On one hand, the property of the exterior product of product of R? we get
3.5) (V) (O(X)XF)=Y)XO(X))-F.
From [3.4) and we have (3.3).

Lastly, we give the expression of the dual 1-forms and connection forms
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with respect to the associated orthonormal frame field {&z, &7, §k}. We put

fl:zsiy fZ:ZEj: f3::$k'

Let {®;}i1,2: be the dual 1-forms on M® of {f;}i=1,2.s and @i (X):={xfs, [
the connection forms on M® From we get

3 3 3
(3.6) Wip—— j21 hs0;, Wa3 == — E; hljwj s (031=—‘121 hejw; .
= j= =

where hq;:=<a(f:, f7), &-
On the other hand, Cartan’s structure equations are given by

3.7 dwizgwijij
3
(38) dwijzkéw,-k /\wk,-+(1/2)k$_1R,;jklwk /\(01

where R :=<{R(fi, f)fe, fi>-

LEMMA 3.1. The 1-form w, is a contact form if and only if heothss=B+7
#0 everywhere on M2,

ProoOF. By (3.6) and [3.7), we get
3.9 d(lh:—'h13w1/\w2-hlzws/\w1+(h22+h33)0)2/\w3 .

On one hand, the 1-form ®, is a contact form if and only if w,Adw,#0 every-
where on M%. By we get

0¢w1/\d0)1=(hzz+ h33)(01 /\0)2/\(03 .

4. Circles of the hypersurfaces in H.
In this section, we suppose that (M3, f) is an oriented hypersurface in H

and £ is the unit normal vector field of M?® in H.

PROPOSITION 4.1.
(1) Any integral curve of & is a circle (an extrinsic circle) in H if and
only if
Vero )&, &), §>+p(&i, §/)=0,

<(VEJU>(EZ; El), f>"10(51, Sk)-‘——‘O N
{Nei0)(&7, &), £5=0.

(2) Any integral curve of & 1is a circle (an intrinsic circle) in M® if and
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only if
{(Nera)&i, &), £>+p(&1, §5)=<0a(&, &), a(éi, §5)>=0,
{(Ve;0)8i, &i), E<—p(&i, ER)+<a (6, &1), a(§i, §R)>=0,
(3) Any integral curve of & is a geodesic in M® if and only if
Ka(&i, &7), §>=Xa(&i, &k), £>=0.
PrOOF. In [6], a curve ¢(?) in R” is a circle in R™ if and only if
Dy( D)+ Dyc||*¢=0.
Therefore, the integral curve of & is a circle in H if and only if
4.1 D¢i(Dey(80)+ || Deo(§0)11°6i=0.
By and [2.7), we get
4.2) D¢i(Dgi(81))=Des(Nei(§0)+a (&, §1))
=V (Vei(§0))+ 081, Vei(§0))— Ao cer,e0(§0)+VE(0 (&7, §7)) .
On one hand, by [2.7) and [2.8), we get

(4.3) o(&i, Veu(§i)=0,  a(&i, &)=ak.
By [2.7), [4.2) and [4.3), we get
(4.4) D¢i(Dei(&2))
=Ve{<a(&i, &7), §>8k—<a (i, &k), 561t —a A&+ Neo) i, &)
=(8i<a(&i, £7), E))k+(a(&i, 1), E)Neu(§R)—(8i<a (&7, §R), £0)E7
—(Ka(&i, &k), EOWu(EN—alabi+2a8j+psk}+(Neo)(éi, &)
= {{(Vei0) (&1, £7)+0(Neil&0), £5)+0(&i, Veu(§))), £D}ER
+<a (&, §1), £ {Ka(&i, &0), £>67—<a(&i, &7), £D&i}
— {{(Vei0) &, §R)+0(Vei(8D), ER)+ (&P, Veu(ER)), D167
—<a(§i, &k), £>{<a(&i, §k), D61 —<a (&1, &1), £DER}
—a’§i—(ad)fj—(apw)bk+Neo)(&l, &)
=—{a’+ 2+ p?}&i— {(K(Neu0)(&i, §R)+0(Nei(§D), ER)+a(&i, Veu(ER), 5165
+{<NVeia)(&1, £+ 0(Nu(&D), §5)+ 0§, Veaul))), £ k+Nea)(&i, &)

On the other hand, by [2.7), we get
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<a(&i, Vel §R)), §>=X0a(&z, Veulé))), £>=0,
Co(Veu(§0), §R), E>=p(&1, &7),

Co(Neil&9), €7D, E>=—p(&i, §R),

I Des(§D*=a®+ 2%+ p* .

By [(4.1), and (4.5), we have (1). Similarly, we have (2). By we have
(3) immediately. a

4.5)

THEOREM 4.2. Let M3, f) be an oriented hypersurface in H and & the unit
normal vector field of M® in H. If both integral curves of the two vector fields
{&i, &7} (or {&], &R} or {&k, &i}) are intrinsic circles and extrinsic circles simult-
aneously, then

1) M3 is locally isometric to a 3-dimensional round sphere in H and the
immersion f is totally umbilic,
or

(2) M3 is locally isometric to M!XR®* (M! is a l-dimensional Riemannian
manifold) and the immertion f is a locally product one.

PROOF. We suppose that the integral curves of {&7, &5} are intrinsic circles
and extrinsic circles simultaneously. By the assumtion and (1), (2) of Proposi-
tion 4.1, we get

(4.6) al=ap=pBA=PFp=0 on M3,

First, we assume that af is not identically zero. Let U be a connected com-
ponent of the set {p=M?|(aB)(p)#0}. Then, by [(4.6), we get

4.7) A=p=y=0 on U.

Hence {&7, &j, &k} are eigenvector fields of A, on U. By (3.7);, we have

(4.8) ay—B)=Bla—1=r(f—a) onU.

By [(4.8), we have a=p=r on U. Hence each point of U is an umbilical point,
so U is an open and closed non-empty subset in M3, Since M3 is connected, it
is a round sphere.

Next, we assume that af is identically zero on M®. In this case, the proof
is divided the following three cases

Case (1) a is not identically zero (or 8 is not identically zero).
Case (2) « is identically zero on M® and there exist a point p=M?® such
that B(p)+0.



216 Hideya HASHIMOTO
Case (3) a and B are identically zero.

Case (1): Let U be a connected component of {p=M?|a(p)+0}. Then we get
4.9) f=A=p=0 on U.

By the assumption (the integral curve of &5 is an intrinsic and extrinsic circle
simultaneously), we get

(Nei0)85, §1), £+ p&7, §)=0,
(4.10) (Nera)(§7, §1), §>—p &7, §0)=0,
{(Ves0)&7, §7), §>=0.
By (3.1);, (4.9) and [4.10), we get
(4.11) p(&j, eH=0 on U.
By and (4.11), we get
p&i, E)=p&J, EH)=pEk, §)=0 on U.

Hence Theorem B in [3], we have each point of U is an umbilical point or
locally flat. The former case, by [4.9), we get a=f=r=212=p=v=0. This is
a contradiction. Hence the former case does not occur. The latter case, by

(2.9), we get

4.12) 7r=v=0 on U.
From (1) of Proposition 4.1, [3.1) and (4.12), we get
(4.13) X(a)=0 for any XeT ,M* (peU).

Hence a is nonzero constant on U. Therefore U is an open and closed subset
in M? since M’ is connected, we have U=M?®. By [4.13)and Theorem B in [3],
M? is locally isometric to S*XR* (where S! is a circle in R?).

Case (2): By the same argument of Case (1), we get the conclusion.

Case (3): Taking account of the assumption, (1) of Proposition 4.1
and [(4.10), we get

p&i, §)=p&J, Ek)=p(k, §)=0  on M’.

Hence Theorem B in [3], we have the desired conclusion.

5. The Proof of Theorem A.

LEMMA 5.1. Each integral curve of the associated orthonormal frame field
{61, &7, §k} of M?® is a circle in H if and only if
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(1) &j(a)—3p(&z, §R)=0,
(2) &k(a)+3p(&i, £5)=0,
) &R(B)—3p&i, £1)=0,
4 &G(B)+3p&s, §R)=0,
®) &(—3p&s, EA=0,
6) &5(r)+3pék, £)=0,
(7)  &i(a)=&i(H)=E&i(1)=0,
®) &/(B)=£i(»=&;(H=0,
Q) ER(N)=ER(1)=ER()=0.

Proor. From (1) of Proposition 4.1], (3.1), by the direct calculation, we can
easily get the desired equations above. O

From Lemma 5.1, we may note that the mean curvature of M® is constant
if M?® satisfies the assumption of Theorem A.

LEMMA 5.2. If each integral curve of the associated orthonormal frame field
{&i, &7, &k} of M? is a circle in H and if {w:}i=1,,s are contact forms, then 2, p
and vy are constant functions on M2,

Proor. By [2.7), we get

&, §/1=pbi+vEj—(a+ Bk,
6.1 (&7, §k]=25]+péh—(B+D)ki,

[Ek, &i]l=vER+A5i—(T+a)E] .
By the definition of the Lie bracket, and (7), (8) of Lemma 5.1, we get
(5.2) (&, §71(D=Ei(§5(A)—E&5(&i(A))=0.
By and (7), (8) of Lemma 5.1, we get

0=[&, §51D)=—(a+pB)k(4) .
Since w, is a contact form and Lemma 3.1, we have
Ek(2)=0.

From this and (7), (8) of Lemma 5.1, 2is a constant function on M® Similarly,
we see that g and v are constant functions on M® |
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LEMMA 5.3. Let (M3, f) be an oriented hypersurface in H. If each integral
curve of the associated orthonormal frame field {&i, &7, &k} is a circle in H.

Then we have
(1) (a+P)p&i, §/)+vp6k, &)+3ppés, §R)=0,
() (rta)pk, &)+vpéi, £)+34p&7, §R)=0,
@) (B+1np&s, ER+po@i, £)+34p(Ek, §)=0,
@) (a+Pp&i, §N+pp€s, §R)+3vpk, §)=0,
5) (rt+a)pk, &)+2p&f, ER)+3vp(i, §/)=0,
6) (B+1p&J, Ek)+2p&k, &)+3ppéi, £))=0,
(7 ppéi, £)—2p(Ek, §)=0,
@) 20(j, ER—vp&i, £)=0,
) voplk, &)—ppEk, §/)=0.

PROOF. By and (1), (2), (7) of Lemma 5.1, we get

6.4 (&7, &§7)(a)=péi(a)+vEj(a)—(a+ B)Ek(a)
=3{vp(Ek, &)+(a+ B, §1)}.

By [2.9), (1), @) of Lemma 5.1, Lemma 5.2 and the definition of Lie bracket,
we get

(5.5) (&, §51(a)=Ei(6j(a))—E&5(&i(a))=Ei(Ej(a))
=38i(p(&k, §1))=3&i(Bp—vA)=3i(B)u
=—9up&j, Ek) .

Hence, by [5.4) and [5.5), we have (1). Similarly, by and (1), 2), (7) of
Lemma 5.1, we get

(5.6) L&/, ER1(@)=28j(a)+ pEk(a)—(B+T)Ei(a)
=3{Ap(Ek, &)—pp(&i, £))}.
By [2.9), Cemma 5.1, Lemma 5.2 and the definition of Lie bracket, we get

(6.7) (&7, r)(a)=E&](Ck(a))—ER(E (a))=E7(—3p(&l, §)))—ER(Bp(Ek, &1))
=—3{&5(rA—pv)+ER(Bu—vA)} =—3{£5(A+ER(B) 1}
=9{2p(Ek, &)—pp(&i, £))}.
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From [(5.6) and [5.7), we have (7). Similarly, by calculating
[&k, &il(a), [&, £51(B), [&7, ER1(B), [k, &1(B),

(&, £71(r), &4, §k1(r) and [§k, &1(),
we have (3)~(6), (8) and (9). O

Now, we are in a crucial position to prove For simplicity,
we put

A:=p(&i, &), Bi=p&j, k), C:=pEk &).

Then the equations of Lemma 5.3 can be rewritten as follows:
(@+B)A+vC+3uB=0,
(B+1B4+pA+32C=0,
(r+a)C+2B+3vA=0,
(5.8) (@+B)A+pB+3uC=0,
(B+7)B+AC+3pA=0,
7+a)C+vA+32B=0,

pA—AC=2B—vA=vC—uB=0.
By [5.8), we get

(5.9) {(a+ B)A+4pv} C={(B+T1)v+4Ap} C={(7+a)pu+4v2} C=0

We suppose that C is not identically 0 on M? Let U be a connected com-
ponent of the set {p=M?*|C(p)+0}. By [5.9), we get

(5.10) (a+B)A+4py=(B4+7)v+4ip=(1+a)p+4v2=0 on U.
By [5.10), we get

(5.11) aipy+ 2048+ p?)—22p*=0 on U.

We differentiate by the direction &; and by Lemma 5.2, we get
(5.12) §7(a)Apy=0 on U.

Suppose that there is a point p in U such that 2ux(p)=0. Since 4, ¢ and v are
constant functions on U, because of Lemma 5.2, we may suppose that A=0. By
and the fact that {®;}:-.,. . are contact forms on M? we get A=p=y=0
on U. From this and (6) of Lemma 5.3, we have C=0o0n U. Thisis a contra-
diction. Hence Apv+0 on U. By (5.12), we get

(5.13) &j(a)=0 on U.
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By and the same argument as above, we get

(5.14) Ek(a)=0 on U.
By [5.13) and [5.14), (1), (2) of Lemma 5.1, we get
(5.15) i, §5)=p&, §R)=0 on U.

On one hand, since Apv+0 on U, by (5.15) and (8) of Lemma 5.3, we have C=
o7, §£)=0 on U. This is a contradiction. Hence we have

(5.16) Cc=0 on M3.
By and {w;}i-1..; are contact forms on M3, we get
A=B=C=0.

This means that {&, &/, &k} is a Ricci adapted frame on M?® and hence, by
Theorem B in (also see [4]), M?® is totally umbilic or locally flat. On the
other hand, by Lemmas and 5.2, @, B, 7, 4, # and v are constant functions
on M® Hence M? is a isoparametric hypersurface in Rt We conclude that M?
is locally isometric to S'XR? or a 3-dimensional sphere. This completes the

proof of [Theorem Al O

Now, we shall give an example (S* XR?, f) of the second case of Theorem A.

Let b be a fixed unit vector of H and ¢(#) the curve in H defined by
c(t)=cost (m,bi +m,bj+m,bk)+(sint)b

where (m,)>+(m,)2+(m;)2=1 and mm,m,;+0 (fixed). We put Ri:=
spanr{b, mbi+m,bj+ms,bk}. Let ¢ and d be orthonomal vectors in H which
are orthogonal to R}. We define the immersion f following:

f:S*'%XR?—=H
t, x, y) —> (cost)(m,bi +m,bj+msbk)+(sint)b+ xc+ yd

By direct calculation, the second fundamental form with respect to {&7, &7, &k}

(where £=c(?), is given by
(’(ml)2 mims MMy

A5=—Lm1mz (M) mamy

mims momg  (ms)?

Hence by Lemma 3.1, {®;:}:-1.. s are contact forms on S'xR2
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6. Proof of Theorem B.

By the assumption, (each integral curve of & is a geodesic in M?®) and (3)
of Proposition 4.1, the shape operator A. with respect to the associated ortho-
normal frame field {&7, &7, &k} is given by

a 0 0
(6.1) A= 0 B v
0 v 7

In particular, we easily see that & is a eigenvector field of A,. Hence, we put
e,=E& and e,, ¢; other (local) eigenvector field of A, (i.e., Asle;)=2es, 1=1,2,3).
Then we may put

e 1 0 0 )
(6.2) e, |=|0 cos@ —sinf ||&;
L e, 0 siné cos 0 || &k

where 6 is a continious function M?, The functions e, B, v and v are repre-
sented by the eigenvalues {2;}i-1.2,s 0f A and 6 in such a way that

a=4, B=<a(&j, &7), £)=2; cos’0+ 4, sin?f ,
(6.3) r=<0(&k, &k), §>=2,sin?*0+ 4, cos®d ,
v=<Xa(&J, &k), E>=(A3—A:)sin  cos @ .
LEMMA 6.1. If each integral ccrve of & is a geodesic in M® and 0 is a
differentiable function, then we have
Ve,e:=0,  Veei=2e, Veer=—4her,
Ve,eo=(i+ei(0)es, Vees=—ey(0), Vee.=2e,—es(fes,
Vees=(A+ei(0))es, Vees=—2Re1+ex(0)es, Vees=es(Be,.

PROOF. We put e=‘(ey, e,, e;). By [6.2), we get
(6.4) f=tpe

where
1 0 0

o= 0 <cosf —sinf]|.

0 siné cos 0
By (3.3) and [6.4), we get
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(6.5) ViV =[p{X(Y)F+«(Y)XO(X)}]-e for any X, Y=x(M?) -

From the definition of ¢, ® and {e;}i-1...s, We get

1 0 0
(6.6) tle)=| 0|, elex)=| cos@|, ¢le;)=|sinf |,
0 —siné cos 0
A 0 0
6.7) Oe)=| 0 |, Be,)=2,] cos@|, ©O(e;)=2,sinb
0 —sin 6 cos 6

From the definition of vector cross product of R®, we get
(6.8) c(e) X(ex)=1(e,), t(es) X t(es)=1¢(ey), t(es)Xe(e)=1c(e,) .

From (6.4)~(6.8), we get

0
Ve,e:=| ¢ —(1+e(0)sinf ||-e=—(2,+ei(0))e;.
—(di+e(8))cosb
By the same calculation, we get the other equalities. O

LEMMA 6.2. If each integral curve of &i is a geodesic in MP{and 6 is a
differentiable function M®, then we have

(1) (23— XA +ey(0))+2:(2:—2,1)=0,
(@) (A—2:)(Ait+ey(0))+ A2 —4)=0,
(3) 22343—A1(A:+25)=0,

(4)  ex(As)+es(0)2:—2:)=0,

(B)  es(2)+ex(0)(2,—4,)=0,

(6) ei(d)=e(2:)=0,

(7)  e(A)=es(4,)=0.

PRrROOF. By [(2.6) and Lemma 6.1, we get
0=(V,,Ae)es)—(Ve, Ae)er)
=V, (Agle))— Ae(Ve,e2)— Ve (Agle)+ AV e1)
=V, (A:82)— Ae(Ve,e2)—Ve,(A1e1)+ A:(Ve e1)
=e,(A)es—ex(A)er+ {(A+e1(8))(As— )+ (A — A1)} es .
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Hence we have (1), (6), and (7),. By the same way, we get the remaining
equalities. O

LEMMA 6.3. 2,=4; on M2

PROOF. We suppose it is not so and derive the contradiction. Let V bea
set {pEM?®|A(p)#A:(p)} (#¢) and U a connected component of V. Then 8 is
differentiable function on U. Hence we can apply By (3) of
we get

24+2,#0 on U.

In fact, if there is a point x in U at which (4,4 4;)(x)=0, by (3) of Lemma 6.2,

we get A,=A4;=0 at x. This is a contradiction. O
Also, by (3), (6) of Lemma 6.2, we get

(6.9) 81(21)(22-1-23):0 on U.

By and (6.9), we have

(6.10) e (4,)=0 on U.

By (6.10) and (7) of Lemma 6.2, we see that i,=a (#0) is a constant function
on U. Let 7(f)=exp,(t&i) be a geodesic emanating from p<U in the direction
&<T,(M?). Since M*® is complete, 7({)eM?® for any t=R. More, by (6) of
we have r(t)eU for any t=R. From these facts and (1) of Pro-
position 4.1, 7(¢) is a closed circle in H and contained in U. By (2.9),, we get

(6.11) §i(B)=—3p(s, §k) (dB(z())/dt=—3p(§], &k)).

Since f is a differentiable function on M?, B(z(#)) is a periodic function on z(¢).
By the assumption (p(§7, ££)=0 or <0) and [(6.1I), B(z(t)) is a decreasing (or
increasing) function on the closed circle z(¢). Hence B(z(¢)) is a constant func-
tion. Therefore, by (6.11), {&, &7, &k} is a Ricci adapted frame on U. By
Theorem B in [3], U is totally umbilic or locally flat. We see immediately
that U cannot be totally umbilic. So, U must be locally flat and hence the
following two cases are possible:

(*) 121:2220 and /237‘:0
or
(**) A,=2;=0 and 4,+0.

However, both two cases contradicts the assumption (4;=a+0). m

From and Lemma 6.3, we get
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(6.12) a=24;, fB=r and v=0.

By we see that {§7, £/, ék} are eigenvector field of A,. Hence we may
put #=0 identically on M® From this argument, the following two cases may
occur:

(i) B=r is not identically 0 on M,
or

(il) B=r=0 identically on M2,

Case (i). Let V be a connected component of the open set {p=M?|B(p)+0}.
Since =0, by (1), (2) of we get

a=‘8=7=21=22:23¢0 on V.

Hence each point of V is a umbilical point, so V is a open and closed subset
in M®. Since M® is connected, it is a round sphere.

Case (ii). In this case, M? is Ricci flat and a0, hence it is (non-totally
geodesic) flat. This completes the proof of Theorem B.
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