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MINIMAL SURFACES WITH CONSTANT CURVATURE
AND KAHLER ANGLE IN COMPLEX SPACE FORMS

By

Yoshihiro OHNITA

Introduction.

Minimal surfaces with constant Gaussian curvature in real space forms
have been classified completely (cf. [Ca-2], [Ke-1], and their references).
Next natural interest is to investigate minimal surfaces with constant Gaussian
curvature in complex space forms, more generally in symmetric spaces. Prof.
Kenmotsu posed the following problem: Classify minimal surfaces with constant

Gaussian curvature in complex space forms.
Recently, minimal 2-spheres with constant Gaussian curvature in complex

projective spaces were classified independently by and [B-J-R-W7.
studied pseudo-holomorphic curves of constant curvature in complex Grassmann
manifolds. For an immersion ¢ of a Riemann surface M into a K&hler manifold
N, the Kdihler angle 0 of ¢ is defined to be the angle between Jd¢(d/0x) and
dp(0/0y), where z=x++/—1y is a local complex coordinate on M and J denotes
the complex structure of N. Chern and Wolfson pointed out the impor-
tance of the Kihler angle in the theory of minimal surfaces in Kdhler manifolds.
In and they investigated minimal 2-spheres in complex
projective spaces and minimal surfaces in 2-dimensional complex space forms
respectively in terms of the notion of Kéihler angle.

In this paper we classify minimal surfaces with constant Gaussian curvature
and constant Kihler angle in complex space forms.

THEOREM A. Let M be a minimal surface with constant Gaussian curvature
K immersed fully in a complex projective space CP™ of constant holomorphic
sectional curvature ¢>0. Assume that the Kdahler angle 6 of M is constant.
Then the following :

1) If K>O0, then there exists some k with 0<k<n such that K=
c/{2k(n—k)+n}, cos 0=K(n—2k)/c and M is an open submanifold of ¢n, +(S?.
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(2) If K=0, then cos 8=0, i.e., M is totally real.
3) K<O0 is impossible.

THEOREM B. Let M be a minimal surface with constant Gaussian curvature
K immersed in a complex hyperbolic space CH™ of constant holomorphic sectional
curvature ¢<0. If the Kdhler angle 0 of M is constant, then M is totally
geodesic, i.e., M is an open submanifold of CH' in CH" (K=¢, cos §=1) or RH?
in CH" (K=c/4, cos §=0).

Refer to and about the minimal immersions ¢, , in (1)
of [Theorem Al On (2) of Theorem A totally real flat minimal surfaces in com-
plex projective spaces were classified essentially by Kenmotsu [Ke-2]. It seems
not to be known if there is a minimal surface with constant Gaussian curva-
ture and nonconstant Kihler angle in complex space forms of nonzero constant
holomorphic sectional curvature. A

Eells and Wood introduced the notion of universal lift for a smooth
map to a complex projective space in order to investigate harmonic maps from
surfaces to complex projective spaces. On the other hand Bryant defined
certain fundamental operators on the space of vector-valued forms on a Rie-
mann surface, and classified minimal surfaces with constant Gaussian curvature
in real space forms by utilizing those operators. In this paper we extend
Bryant’s operators to the operators acting on the space of vector bundle valued
forms on a Riemann surface, and apply the extended fundamental operators to
the universal life for minimal immersions of surfaces. By the argument ana-
logous to that of Bryant, we show [Theorem Al By the same method we also
show Theorem B.

1. Fundamental operators on the space of
vector bundle valued smooth functions.

Let M be a connected Riemann surface and g, be a Riemannian metric
compatible with the holomorphic structure of M. We do not assume that M is
compact or that g, is complete. Let T%, .M (resp. T%. M) be the complex
line bundle of (1, 0)-forms (resp. (0, 1)-forms). Let {u, #} be a unitary basis of
T .MC with ueT®M and 2T "M, and {w, @} be its dual basis. Denote
by V¥ the Riemannian connection of (M, gy). The curvature form R¥ and the
Gaussian curvature K of M are defined by R*(V, W)=[V¥, V%1% 41 and
K=gy(R"(u, #)u, #t). Put t=T% »,M and z-'=T% ,M. For m=0 we let z™
(resp. =™) be the m-th power tensor product of 7 (resp. 7-!). Using the identi-



Minimal surfaces with constant curvature 193

fication @™=(@)~™ for all m, we have a canonical pairing ™ Xr*—z™** for all
m and k. Set 9= P C=(z™) as a Z-graded vector space.
m=-—oo

Let E be a complex vector bundle over M with an indefinite Hermitian
fibre metric <, >® and a connection V¥ compatible with {,>*. Le C*(E) denote
the vector space of all smooth sections of E defined on M. Consider the tensor

product bundle EQr™(m<&Z). For each m we equip the bundle EQr™ with
the tensor product connection D=VERXV¥. Set &= é C(E®t™) as a Z-graded

vector space. We have a pairing ¢, ): &XE—T gotten by extending the inde-
finite Hermitian fibre metrix <{,»% of E in the obvious fashion. We define
operators D, : C(ERt™)—C=(ERr™*) and D} : C(EQt™)—C(EQr™ ') by
Dho=D,0)Qw, Dho=(Dz0)Ru for s=C=(EQr™). We define the fundamental
operators X, Y on & by X= éo} D, Y= é D!. Set 4=XY +Y X, the Laplace-

Beltrami operator on each graded piece.

PROPOSITION 1.1. Assume that the curvature form RE of the bundle E

satisfies the condition
(1.1) ARE=RE(u, a)=2-1
for some real valued function A on M. Then for any c=C(EXr™),
(1.2) [X, Y]o=Q—mK)o .
Moreover if A and K are constant, then we get
(1.3) [H, X]=K-X, [H,Y]=—K.Y,
[X, Y]=—H,

where the operator H on & is defined by H= ——m_ém(l—mh')lm and I, : C*(EQt™)
—SC(EQQt™) is the identity. i

ProOOF. Let o= C*(EXt™) and write o =sX(@w)™ locally, where s is a local

smooth section of E. Since R¥*(u, #)w=—K-w, R"(u, n)o=K-o, by we
have

[X, Y]o=(R¥(u, #)s)Q@)™+(—mK)s(@)™
=(A—mK)o .
If 2 and K are constant, we have the first formula of [1.3),
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[H, X]o=H(Xo)—X(Ho)
=(—A+(m+1)K)Xo—(—A+mK)Xo
=K -Xo.
The second formula of is similar. g.e.d.

REMARK. (1) In case 4=0 these are just the formulas used by [Br].

(2) Generally a holomorphic connection satisfying the condition for
some constant 4 over a Kdhler manifold is called an Einstein-holomorphic con-
nection.

2. Harmonic map equation to a complex projective space.
Let C"*' denote the complex (n-+1)-space equipped with the standard Her-
mitian inner product {v, w>=ié viwt for v=@° -, v"), w=W", ---, wM)EC"*.

Let CP™ be an n-dimensional complex projective space and = : C"*'\{0}—>CP"
be its canonical projection. C**'\{0} is a principal bundle over CP" with the
structure group C*, where C* denotes the group of non-zero complex numbers.
For a positive constant ¢, set S***'(¢)={veC"*'; (v, v)>=1/c}. The Hopf fibra-
tion =z:S®***'(¢/4)—CP" is obtained by restricting the canonical projection
w: C*"*"\{0}—>CP". The Fubini-Study metric on CP™ with constant holomorphic
sectional curvature ¢(>0) is characterized by the fact that the Hopf fibration
w: S (¢/4)»CP" is a Riemannian submersion. We endow CP™ with the
Fubini-Study metric g of constant holomorphic sectional curvature ¢. Let L be
the universal bundle over CP™; the fibre L, over any xCP"™ can be identified
with the complex 1-dimensional subspace of C"*! determined by x. Thus L is
identified as a holomorphic subbundle of the trivial bundle C"**=CP™x C"*
over CP". Let L' be the subbundle of C"*' whose fibre at x is the orthogonal
complement of L, in C"*', L+=C"*'/L can be given a holomorphic structure.
We endow the bundles L and L* with the Hermitian connected structure in-
duced from the Hermitian inner product {,> of C™*'. We give L*®@L* the
tensor product Hermitian connected structure, where L* denotes the dual bundle
of L. Then there exists a natural bundle isomorphism h: T*2CP"—L*QQL*
preserving connects and satisfying <ha(Z), h(W)>=(c/2)g(Z, W) for Z,We
T&HOCP™ (cf. [Ee-W, p. 224]).

Let ¢ : M—CP" be a smooth map from a Riemann surface to a complex
projective space. We say ¢ is full if its image lies in no proper complex pro-
jective subspace of CP". Denote by do () the (1, 0)-component of d¢(§) for
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EeT M°.
Consider the exact sequence of vector bundles over CP™:

4

J
0 L cr+t L+ 0

where 7 is the natural inclusion and j; is given by the orthogonal projection
along L. Tensoring with L* and pulling back via a map ¢: M—CP" gives
the exact sequence over M

0—> p (L*@L) —> g~ L @C™) —> g L*@L*) —> 0.
Note that the bundle ¢ ' (L*@L) has the “identity” section, which we denote
simply by 1. We call the section @=:i(1)eC>(¢~(L*QC™"*")) the universal lift
of ¢ (cf. [Ee-W]). We give the bundles ¢'L, ¢ 'L*, ¢~'L*, ¢ (LQC™*) and
¢ '(Lg, L*) the pull-back Hermitian connected structures. Pulling back
h: T®OCP"-»L*QL* by ¢, we get a connection-preserving bundle isomorphism

2.1 h: o (THOCP™) —> ¢~ (L*QL™)
satisfying
<h((dp) (), h((de) - 2())>=(c/2)g((dp)* (&), ((dp)* (7))

for any &, n=T . M°.

Set E=¢@ "(L*QC"*")=(p~'L*)QC"*' and denote by D the covariant differ-
entiation in the bundle E. We apply results of Section 1 to the bundle E and
use the formulation and notation in Section 1.

Now we give a description of the curvature form for the bundle E. Letw
be the fundamental 2-form of (CP", g) defined by w(Z, W)=g(Z, JW) for Z, W
eT,CP", where J denotes the canonical complex structure CP". For any
VelC=(E) and peC=(p™'L),

(RE(u, m)VY(p)=R" ™ (u, a)(V(p))— V(R* X u, @)p)
=— V(e 'R%(u, #)(p)).

Since it is known that the curvature form of the universal bundle L is given
by RI=—(c/2)v/—1lw, we get

RE(u, w)=(c/2)v/—1(¢p*w)(u, @) .
Hence we can write

2.2) ARE=(c/2)-pI,
where g is a smooth function on M defined by

p=v—1(¢p*w)(u, ).
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g is called the Kdhler function of a map ¢ (cf. [E-G-T, p. 573]). When ¢ is
an isometric immersion, the function g is related to the Kahler angle 6 of ¢
by p=cos 8. Then p=1 (resp. p=—1) if and only if ¢ is holomorphic (resp.
anti-holomorphic), and g=0 if and only if ¢ is totally real.

It is easily shown that if a smooth map ¢: M—CP" satisfies #=0, there
are a covering space v: M—M and a horizontal smooth map @ M—S2+1(¢c/4)
relative to the Hopf fibration z: S*"*+'(¢/4)—>CP" such that we@g=¢-v. More-
over ¢ is harmonic if and only if ¢ is harmonic. Therefore every minimal
surface in CP™ with ¢=0 can be locally and isometrically lifted to a minimal
surface in S?"*!(c/4).

PROPOSITION 2.1. (i) @ always satisfies
(2.3) KD, D>=1.

(ii) For any £€=C=(TMF®), D:P<=C=(E) has image in ¢ 'L*. In particular
@ always satisfies
(2.4) <X®, 9,=0, Yo, 0>=0.

Thus we may regard D@ as a section of ¢ '(L*QL™).
(iii) Under the isomorphism (2.1),

(2.5) h((de)*2(§)=DP

for any £T . MF.
@iv) A smooth map ¢: M—CP" is harmonic if and only if

(2.6) 40+ |DD|*P=0.

This proposition is essentially due to Lemma 4.3 and Propositions 4.5, 4.6

in [Ee-W]. In they introduced the notion of complex isotropy of a
map. A smooth map ¢: M—CP" is called complex isotropic if

2.7) KX?D, Y9»=0
for all p, ¢=0 with p+¢g=1.

Suppose that ¢: M—CP" is a minimal surface with constant Gaussian cur-
vature K. If ¢ is complex isotropic, then we have K>0. Because, according
to [Ee-W], ¢ has a horizontal holomorphic lift of ¢ relative to a twistor fibra-
tion 4, ,—~CP™. Here 4,  is endowed with the structure of a homogeneous

Kidhler submanifold in a complex projective space. Hence & induces a holo-
morphic isometric immersion of M into a complex projective space. Thus by
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virtue of a result of Calabi [Ca-I], K must be positive.

PROPOSITION 2.2. (i) ¢ is conformal if and only if @ satisfies
2.8) | (XD, Y OY=0.
(ii) ¢ s an isometric immersion if and only if @ satisfies (2.8) and
2.9 (XD, XO>+Y D, YD>=c/2.
(iii) The Kdhler function p of a map ¢ is given by
(2.10) (XD, XO>— YD, YD>=(c/2)p .
(iv) ¢ is a minimal isometric immersion if and only if @ satisfies (2.8) and

(2.11) 40+ (c/2)9=0.
PRrROOF. By we have
(2.12) (DD, D, ®>=(c/D(@x8)&, N+~ —1Lp*®)E, 1)

for & n=T.M. Let {e, ¢;} be an orthonormal basis of T .M so that u=
A/ 2)ey—~—1ey), a=1/+2)e1++/—1e,). Using [2.12), we compute

(2.13) (XD, YO =(c/2){(1/D)(p*g)es, er)—(p*g))es, ¢3))
—(V=1/2)(¢*g)es, en)},

(2.14) KXP, XP>=(c/2){(1/D)(p*g)es, e)+(p*g)es, €2))
—(1/2)(p*w)(e,, es)},

(2.15) YO, YO =(c/2){1/4)(p*g)es, e)+(p*g)es, ¢2))

+(1/2)(¢*w)(e,, e2)}.

implies (i). From [2.14) and [2.15) we get (ii) and (iii). If ¢ is a minimal
isometric immersion, by (iv) of Proposition 2.1l and (ii) we get and [2.11)
Conversely suppose and [2.11). By [2.3), we compute <X@, XO>+
YD, YOy=—ALKYXD, O)—<XYD, O>=—L4D, ®>=(c/2). Hence ¢ is a minimal
isometric immersion. So we get (iv). qg.e.d.

3. Minimal surfaces with constant curvature and
Kihler angle in a complex projective space.

Let M be a Riemann surface with a Hermitian metric g5 and K denote its
Gaussian curvature. Let ¢: M—CP" be a smooth map and p=+'—1(¢*w)(u, &)
be the Kihler function of ¢, where u and # denote a unit (1, 0)-vector on M
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and its conjugate. In this section we assume that K and p are constant on M.
Consider the bundle E=¢~'(L*®C"*") and the universal lift @<= C=(E) of ¢.

PROPOSITION 3.1. Suppose that a section ¥ of C>(E) satisfies 4V +(c/2)¥ =0.
Then, for each m=0,
3.1 Y X =(1/2)[mim+1)K—(c/2){1+Cm+Dp} X7,
3.2) XY™ =1/2)[m(m+1)K—(c/2){1—C2Cm+1)p} Y "7 .
ProoF. We show [3.1) and [3.2) by the induction on k. Since ¥<é& has
degree 0, HV =—(c/2)p-¥.
QU= XY +Y XU =—(c/2)¥,
(—HP=XY =Y X)W =(c/2)p-V.

It follows that
YXU=—(c/2)Q+p)/2-T, XYU=—(c/2)Q—p)/2-T .
This verifies our claim when m=0. Now suppose that

YX™"T=(1/2)[mm—1)- K—(c/2){1+2m—1)p} ] X™'T ,
and
XY™ =(1/2)[m(m—1)- K—(c/2){1—2m—1)p} JY ™¥ .

We compute
Y X" =XY(X"¥)~[X, YIX™¥
=XY X™¥)+HX™T)
=(1/2)[m(m—1)- K—(c/2)- {1+@2m—Dp}1X"¥,
—{(c/2)yp—m-K} X™F
=1/2)[m(m+1)- K—(c/2){1+Cm+Dp} 1X T,
XY "=y (XY "¥)—-HY"¥)
=1/2Imm—1)K—(c/2){1 —Cm—1)p} ]Y &
+{(c/2)u+mK}Y ¥
=1/2)[mim+1)K—(c/2){1—-Cm+1)p} Y ¥ .
So the induction is complete. g.e.d.

PROPOSITION 3.2. Suppose that @ satisfies 4P+ (c/2)@=0. Then, for each
m=0,
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(X™mHQ, XY= ™D, Y™ D)>=0

and < X™D, X™"Qy=A,, <¥Y"O®,Y™®P>=B,,, where A, and B, are constants de-
pending only on m, K and p satisfying

AozBozl y

Ana=1/2)[(c/D{1+Cm+1)p} —mim+1)-K]- An
and

Bnn=1/2)[(c/2){1-2m+1Dp} —m(m+1)- K] Bn .

PrROOF. We show this proposition by the induction on m. and
verify our claim when m=0. Suppose that our claim is true for m=p. Apply-
ing Y to <X?"@, X?®>=0, we get

Y X?PHQ, XPQ)4-<XP+D, XP,'P>=0.
So by and the assumption of the induction we have
KXPHO, X210 =—(1/2)[p(p+1)- K—(c/2){1+2p+1D)p} KX?P, X?P)
=Apii.
Applying X to this equation, we get
(XP2Q, XPHQYHL(X PP, Y XPHDYy=XAp,1=0.
By we have
XP2Q, XPH O =—(1/2)[p(p+1)- K—(c/2){1+2p+)p} KX+ D, X?D)
=0.
Similarly by and the assumption of the induction we have <Y ?*'@, Y ?*'Q)

=B+ is constant and <Y ?**@, Y*+*'@>=0. So the induction is complete. q.e.d.

Put

an=Q1/2)[(c/2){1+Cm+1)p} —m(@m~+1)-K],
and

ba=Q1/2)[(c/2){1—2m~+1)p} —m(m+1)-K].
Then from Propositions and we get

(3.3) Ap+1=(1pAp y Bp+1:prp 5
(3.4) YaX?D=(—1Y1a,_, - apX P~10
3.5) XY 2D =(—1Ytb,_y - by Y *~2D

for p=¢=0.
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LEMMA 3.3. Suppose that @ satisfies 4P+ (c/2)P=0. If An+1=0 for some
m=0, then @ is complex isotropic and satisfies
(3.6) (X?D, X1D»=0
for any p and q with p, g=m+1 or m=p>q¢=0. Similarly, if Bn+1=0 for some
m=0, then @ is complex isotropic and satisfies
3.7 KY?Q, Y0>=0
for any p and q with p, q=m+1 or m=p>q=0.

PROOF. Assume that An+;=0 for some m=0 and let m be the smallest

integer satisfying An.+;=0. From we have A,=0 for all p=m+1. Apply-
ing X to <X™@, X™'@>=0, we get

(X™1Q, X" 1Y 4L X™D, Y X™'Py=0.
Since X™*'®=0, by we have
Ap-p{X™D, X™2D>=0.

Since An+0, from [3.3) we see an-,#0. Hence <X™@, X™*@>=0. Similarly,
applying X to this equation, we have <(X™®, X™*@>=0. Inductively we get
(X™D, X1P>=0 for each ¢ with 0<¢g<m—1. Applying Y to <X™®, X@>=0
for each ¢ with 0=<¢g=m—2,

Y XD, XY+ X™D, X1+ D)=0.

By we get an--<X™ '@, X@>=0. Since a,-,#0, we have < X™ '@, X0)
=0 for each ¢ with 0<¢<m—2. Inductively, we obtain <X?®, X1@>=0 for
any p, ¢ with m=p>¢=0. So we get[3.6). In particular <X?®, @»=0 for all
p=1. We show the complex isotropy of @ by the induction on p-+gq.
shows our claim when p+g¢=1. We suppose that <X?@, Y@>=0 for any p
and ¢ with 2>p+¢g=1. Using this assumption repeatedly, we compute, for
each p, ¢ with p+g=k,

(X?Q, YID)=X{X?Q, YI'Q)>—(X?+'Q, Y- D)
=—(KX?HQ, YD)
=—XKXPHQD, Y Q)L X P2 Q, YD)
—(X?PHQ, Y D)
=(—1)KX?*Q, ¢>=0.

Therefore we get the complex isotropy of ¢. When Bn.;=0 for some m=0,
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similarly we can show and the complex isotropy of ¢. g.e.d.

We shall study a map ¢: M—CP" satisfying 40+ (c/2)@=0 in each case:
K>0, K=0, K<0.

PROPOSITION 3.4. Suppose that @ satisfies 4P+(c/2)@=0 and ¢ is full. If
K>0, then ¢: M—CP™ is a minimal isometric immersion and there exists some [
with 0=ZI<n such that k=c/{2l(n—D+n}, p=K-(n—20)/c and ¢(M) is an open
submani fold of ¥, ,: S*—>CP".

ProOOF. Since K>0, an, bpy——o0 as m—co. Since A4,=0, B,=0 for all
m, by there are k, [=2 such that a,=b,=0, a,.,#0 and b,_,#0. From
ak=bz=0 we have

{ (c/2D{1+2k+1)p} —k(k+1)- K=0,
(¢/2){1—-Ql+Dp} —II+1)K=0.

By a simple computation we get u=K(k—I[)/c and K=c/(2ki+k+[). We have
Ap,=B,=0 for any p=k+1, g=(+1, and A,=<X?0, X?0>>0, B,=<Y?0,Y®D)
>0 for any 0<p=<k, 0=¢=<!l. Set Z,=@, Z,=(1/vA,)-XPOD for each 1<p<k,
and Z_,=(—1)%1/+/By)-Y® for each 1<¢=<!. Then by Lemma 3.3 we have
{Z py Zgp=0p,q for —I<p, g<k. If we regard each Z, as a vector bundle E-
valued function on the bundle SO(M) of orthonormal frames compatible with
the orientation of M, then {Z,(p), Zo(p), Z_-(p); 1Ep=k, 1=q<!} is unitary
in C™*' for any unit element p=¢ 'L at every point of SO(M). Hence
{Z,, Z, Z_q; 1Sp<k, 1<qg<l} is projective unitary in C"*' at every point of
SO(M). By [3.3), (3.4), [3.3) we compute
DZ,=XZ,+YZ,

':'\/E;'Zp-l-l_“\/ap—l‘zp-l for 1§p§k ’
DZOZ'\/—G—;‘ZI—’\/E'Z_]_, al’ld
DZ-q'—_-'\/l—):_—l'Z._(q_l)'—"\/i):‘Z_(q.H) for 1_§Q§l .

3.8)

From these equations and the fullness of ¢ we see k+/=n. So we get u=
Kn—-20)/c, K=c/{2l(n—0)+n}. Moreover we have

3.9) ap,=(c/2)-(n—I—p)I+p+1)/{2l(n—D)+n}
for 0<p<k—1 and
(3.10) bp=(c/2)-(I—q)(n—I+q+1)/{2l(n—0)+n}

for 0<¢=<i—1. {Z,, Z,, Z_4; 1<p<k, 1<q=<l} can be regarded as a map from
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SO(M) to a projective unitary group PU(n+1). Using (3.8), [3.9), [3.10) and
results of [B-Oh, §2], by virtue of the congruence theorem for smooth maps
to a homogeneous space (cf. or [Je]) we conclude that ¢ is locally con-
gruent with ¢, ;. g.e.d.

REMARK. From the complex isotropy of ¢, we also can get the conclusion

of this proposition by results of [Ee-W], [Ca-1], and [B-J-R-W].

PROPOSITION 3.5. Suppose that @ satisfies AP+(c/2)®=0. If K=0, then
©=0.

PROOF. In this case an=(c/H{14+CCm+1p} and br=(c/4){1—Cm+1)y}.
If #+0, then an——o0 or bp——co0 as m—oo, By we get An=0 or B,=0
for some m=1. By virtue of ¢ is complex isotropic. From (iv) of
IProposition 2.2 ¢ is a complex isotropic, minimal isometric immersion. But
since K=0, it’s impossible. Therefore we have p=0. qg.e.d.

By the argument similar to that of [Br, Theorem 2.3] we show the fol-

lowing.

PROPOSITION 3.6. Suppose that @ satisfies AdP+(c/2)@=0. Then K<O is
impossible.

PROOF. Suppose K<0. If A,=0or B,=0 for some m=1, then by
3.3 and (iv) of [Proposition 2.2 ¢ becomes a complex isotropic minimal isometric
immersion. But since K<O0, it’s impossible. Therefore A4,,>0 and B,>0 for
all m=0. From an>0, bp>0 for all m=0. We fix an integer m with
m=2. For any integer p with p=m, applying X ™! to the equation < X?+'@,6 X?Q>
=0, by we compute

XX, X20y="8 ("1 )Xo, y iy vy

:n:g-:(mr_l)(_l)m_lap o Qpom-1- X XTHPHIQ, X P-(M-1-D P
:Tgol(m—r_l)(_l)m_l-r(Ap/Ap—m+1+r)(XpH”@, XP-m+l+tr@y

0.

Hence we have

m-1 -1
'rgo(mr )(—1)m-1—’(1/Ap+r)<Xp+r+m@, X2+ @Sy =0
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for each p=1. This equation says that the sequence {(1/A,XX?*"®, X7} ;
peZ, p=1} satisfies a difference equation of order m—1: mE___“,; m:l)(——l)m‘l‘rx“r

=0. By a well-known result about difference equations, there exists a poly-
nomial R,(s), of degree at most m—2 in s with coefficients in C*(z™) so that

3.6) 1/ AKX P+ D, XPD)y=Rn(p)
for all p=1. For p=0, define Z,=(1/+A,)X?P. Then we have <Z,, Z,>=1,
<Zp+1, Zp>:0. When m22, fOI' all le

<Zp+m; Zp>=(1/’\/Ap+m’\/1_4_1-7)<Xp+m@; Xp@>

:'\/Ap/Ap+m Rm(p> .
Since K<0, we have

VAp/Apsm<Cn/p™
for some positive constant C, which depends on K and pg. Because from
we compute
VA Apin=(apsm-) " (Qprm-2)" -+ ~(ap)”?
=[(e/H{1+@p+2m—Dp} —(p+m—1)(p+m)K/2]™*

o [e/DU+@p+Dp —p(p+DK/2]*<Cn/ ™ .

Since R,(p) is of degree at most m—2, when m=1
im <Z psm, Zp>(u™)=0
D—oo

for each unit vector u=T M. Let usTEOM be a fixed unit (1, 0)-vector at
x&M and p=L, be a fixed unit element. We define the vectors W, in C™*
by (Zp):(u?)(p)=W,. Then {Z,im, Z:>U™)=Wpim, Wp>.

Let »>n be any integer and let e>0 be small. By the above argument,
there exist an integer p so large that |<W iz, Wpsi|<e for all k[, 0Zk,
I<r, while Wyss, Wpir>={Zps, Zp+r»>=1 for all k. Taking e sufficiently
small, this implies that the »+1 vectors {W,, .-, W,.,} are linearly independent
in C™*'. Since r>n, this is impossible. g.e.d.

Combining Propositions B.4, B.5 and 8.6, by (iv) of [Proposition 2.2] we obtain
Theorem Al We remark about the case K=0. Let ¢: M—CP" be a totally
real flat minimal surface. By the total realness of ¢, ¢ can be locally lifted to
a flat minimal surface @: M—S?"*'(¢/4). By Theorem 3.1 of [Br]l, ¢ extends
to a minimal immersion of C. So ¢ also extends to a totally real minimal
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immersion of C into CP". Such minimal immersions are completely classified

by [Ke-Z2].

4. The case when the ambient space is a complex hyperbolic space.

In C**' we consider an indefinite Hermitian inner product <, >, » defined by
n . .
<z, w>1.n=~Z°w°+; ziwt.
=1

Fixing any negative constant ¢, we let H?"*}(¢)={z= C"**; <z, z);,,=1/c}. The
group S'={ev-10} acts freely on H?®"*'{(c/4) by z—ev-7%z. An n-dimensional
complex hyperbolic space CH™ is the base manifold of the principal S'-bundle
H?"*(¢/4) with the projectionn =: H®***'(¢/4)—»CH". For each z= H***'(c/4),
we define a subspace %, of T,H2**'(c/4) by 4 ,={weC"**; <z, wd, ,=0}. The
restriction of <,>, , to each 4, is positive definite. Then we can define a
Riemannian metric g on CH™ so that dz: (4,, (, )= (T, »>CH", g») is a linear
isometry for each z& H?*"*'(¢/4), where (,)=Re<{, >, .. g gives the standard
Kéihler structure on CH™ of constant holomorphic sectional curvature ¢. We
define a holomorphic line subbundle L, of the trivial bundle C"*! over CH" by
(L)z=C-z for x=n(z)eCH" and z= H?"*!(¢/4). The restriction of <{,>;, . to
L, defines an indefinite (negative definite) Hermitian fibre metric <,) of L,.
Then L, has the Hermitian connection with respect to the holomorphic struc-
ture and the indefinite Hermitian fibre metric. Let L1 be the complex vector
subbundle of C™*! defined by (Li).={weC™*"';<w, 2),,,=0 for all ze(L),}.
We have an orthogonal direct sum C"*'=L,(HL%{ with respect to <, >;, .. We
endow the bundle L{ with the Hermitian fibre metric {, ) by restrictinng <, D1, »
to Li. Lt has the holomorphic structure through the bundle isomorphism L=
C**'/L,. With respect to them L+{ has the Hermitian connection. Now we
consider the tensor product bundle L¥® L+ with the Hermitian connected struc-
ture induced from those of L, and L{. Then there exists a connection-preserv-
ing biholomorphic isomorphism h:T®®CH"—L¥QL4{ such that <a(Z), h(W))
=—(c/2)g(Z, W) for Z, WeTL CH™".

Let ¢: M—CH™ be a smooth map from a Riemann surface. We consider
the exact sequence of the complex bundles equipped with pull-back indefinite
Hermitian connected structure:

] 7
00— o {LIRQL,) — ¢ (LTRQC"*) —> ¢ " (LTRLT) — 0,

where 7 is the inclusion map and s is the orthogonal projection along L, rela-
tive to {,>,n Set E=¢ '(LTRC"*'). We call the section /(1) C=(E) the
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universal lift @ of ¢, where 1 denotes the identity section. Let {,)> and D
denote the indefinite Hermitian fibre metric and the covariant differentiation in
the bundle E. Then we have the following:

1) K9, ¢y=-1.
(2) For any £€C(TM®), D:® has image in ¢ 'L{.
Moreover h((dp)**)=D®.
(3) ¢ is harmonic if and only if in any chart
D’"D'®—<D'®, D'OP>D=0
or
D'D"®—<D"®, D"®>D=0.

More generally the similar formulation for indefinite complex space forms

was given by in detail.
Let M be a Riemann surface with a compatible Riemannian metric and
¢: M—CH" be a smooth map. The following is shown easily:

(i) <@, D>=—1, KXO, O>=<Y O, ®>=0.

(ii) ¢ is conformal if and only if <X®@, Y @>=0.

(ili) ¢ 1s an isometric immersion if and only if <X@, Y@>=0 and <X®, X0}
+<YOD, YO)=—c/2.

(v) Let @ be the Kéhler angle of ¢ and put g=cos §. Then <X@, X0)
—Y D, YDy=—(c/2)p.

(vi) Suppose that ¢ is an isometric immersion. Then ¢ is minimal (or
harmonic) if and only if 4@+ (c/2)P=0.

Suppose that K and g are constant and @ satisfies 40+(c/2)@=0. Fol-
lowing the calculations in Section 3, we easily establish the same formulas as
in Propositions and 3.2 for a negative constant ¢. So we get, for m=0,

4.1) Api1=anAn, By =bnBn
where A, =<XX"@, X"®),B,=<KY ™0, YD),
4.2) an=~1/2)[(c/2){1+Cm~+Dp}—mim~+1)-K],

“4.3) bn=1/2)[(c/2){1—Cm+1)p} —m@m~+1)-K].

Now assume that ¢: M—CH" is a minimal surface with constant Gaussian
curvature K and constant Kidhler angle #. By the equation of Gauss we have

4.4) K=(c/H1+3p*)—(1/2)|e|*<0,



206 Yoshihiro OHNITA

where ||a| denotes the length of the second fundamental form a of ¢. By [4.4)
we compute

a,=(c/H(1+p)=0,
be=(c/4)(1— =0,
a,=(1/2){(c/2)3pA—p)+al?},

by =(1/2){(c/2)3(— )L+ )+ lall*},
a,=(1/2){(c/2)(—2+5p—9p)+3]al} >0,
be=(1/2){(c/2)(—2—5p—9*)+3]a|*} >0.

Therefore form ((4.2), we have an>0, b, >0 for any m=2. We see that
if #<0 (resp. ¢£=0), then a,=0 (resp. b,=0).

LEMMA 4.1. The case a,<0 and a,>0 is impossible. Similarly, the case
b,<0 and b, >0 is also impossible.

PROOF. Suppose that a,<0 and a,>0. Since a, >0 for any m=2, by (4.1
we have A, >0 for all m=1. By the argument similar to the proof of Proposi-
tion 3.6, we derive the same identies as [[3.6). We define Z,=(1/+vA,)X?® for
p=1. Then we have <(Z,, Z,>=1 and the same estimate E_To(Z“m, Zp>=0

pointwise on M for any m>0. Hence we again derive a contradiction from the
finite dimensionality of C**'. When b,<0 and b,>0, by the similar argument
we can derive a contradiction. g.e.d.

PROOF OF THEOREM B. First suppose that —1<u<0. Then a,=0. If
p=—1, we have b,<0, b,=(1/2)|al?. By Lemma 4.1 we get b,=0, i.e. M is
totally geodesic and anti-holomorphic. If —1<ux<0, we have 4,<0. By
4.1 we get a,=0. Hence we get p¢=0 and |a]?*=0. Thus M is totally real
and totally geodesic.

Next suppose that 0=<pg=<1. Then 5,=<0. If pg=1, we have ¢,<0, a,=
(1/2)[la)®. By Lemma 41 M is holomorphic and totally geodesic. If 0<pu<1,
we have b,<0 and b,=0 by Lemma 4.1. Therefore M is totally real and totally
geodesic. qg.e.d.
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