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ON THE PRESENTATI0NS OF THE FUNDAMENTAL
GROUPS OF 3-MANIF0LDS

By

Moto-o TAKAHASHI

In this paper we shall treat the closed 3-manifolds obtained by Dehn sur-
geries along certain links and find presentations of their fundamental groups.

\S 1. The 3-chain link.

First we consider the 3-chain link $K_{1}$ illustrated in the Figure 1.

Figure 1

We do Dehn surgery along each component of $K_{1}$ . Let $p_{1}/r_{1},$ $p_{2}/r_{2},$ $p_{3}/r_{3}$

be the surgery coefficients along three components $L_{1},$ $L_{2},$ $L_{3}$ of $K_{1}$ , respectively,
where $p_{i}$ and $r_{i}$ are co-prime integers $(i=1,2,3)$ . We denote the resulting 3-
manifold by $M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3})$ .

We shall find presentations of the fundamental group $\pi_{1}(M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}))$

of $M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3})$ , by the following way.
First we shall find a presentation of the link group $G$ of $K_{1}$ .
The Wirtinger presentation of $G$ is:

$\langle x_{1},$
$X_{2},$ $x_{3},$ $y_{1},$ $y_{2},$ $y_{3}|y_{2}x_{1}=x_{1}x_{2},$ $y_{3}x_{2}=x_{2}x_{3},$ $y_{1}x_{3}=x_{3}x_{1}$ ,

$x_{1}y_{2}=y_{2}y_{1},$ $x_{2}y_{3}=y_{3}y_{2},$ $ x_{3}y_{1}=y_{1}y_{3}\rangle$ . (1)
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The meridian $m_{i}$ and the longitude $l_{i}$ of each component $L_{i}$ are:

$m_{1}=x_{1}$ , $l_{1}=y_{2}x_{3}$ , $([m_{1}, l_{1}]=1)$

$m_{2}=x_{2}$ , $l_{2}=y_{3}x_{1}$ , $([m_{2}, l_{2}]=1)$

$m_{3}=x_{3}$ , $l_{3}=y_{1}x_{2}$ . $([m_{3}, l_{3}]=1)$

A presentation of $\pi_{1}(M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}))$ is obtained from (1) by adding

the relators $m_{i}^{pi}l_{i^{r}}i=1(i=1,2,3)$ . But we improve this presentation.
Since $(p_{i}, r_{i})=1$ , there are integers $s_{i}$ and $q_{i}$ such that $r_{i}s_{i}-p_{i}q_{i}=1$ . Let

$a_{i}=m_{i}^{s_{i}}l_{i^{qi}}$ . Then
$m_{i}=a_{i^{r}}i$ $l_{i}=a_{i}^{-p_{i}}$ .

So,
$x_{1}=a_{1}^{r_{1}}$ , $x_{2}=a_{2}^{r_{2}}$ , $x_{3}=a_{3}^{r_{3}}$

and
$y_{1}=l_{3}x_{2}^{-1}=a_{3}^{-p_{S}}a_{2}^{-r_{2}}$ ,

$y_{2}=l_{1}x_{3}^{-1}=a_{1}^{-p_{1}}a_{3}^{-r_{3}}$ ,

$y_{3}=l_{2}x_{1}^{-1}=a_{2}^{-p_{2}}a_{1}^{-r_{1}}$ .
Substituting these in the relators of (1), we get the following three relators:

$a_{1}^{p_{1}+r_{1}}a_{2}^{r_{2}}a_{1}^{-r_{1}}a_{3}^{r_{3}}=1$ ,

$a_{2}^{p_{2}+r_{2}}a_{3}^{r_{3}}a_{2}^{-r_{2}}a_{1}^{r_{1}}=1$ ,

$a_{3}^{p_{3}+r_{3}}a_{1}^{r_{1}}a_{3}^{-r_{3}}a_{2}^{r_{2}}=1$ .

Therefore we obtain the presentation:

$\pi_{1}(M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3}))\cong\langle a_{1},$ $a_{2},$ $a_{3}|a_{1}^{p_{1}+r_{1}}a_{2}^{r_{2}}a_{1}^{-r_{1}}a_{3}^{r_{3}}=1$ ,

$a_{2}^{p_{2}+r_{2}}a_{3}^{r_{3}}a_{2}^{-r_{2}}a_{1}^{r_{1}}=1$ , $ a_{3}^{p_{3+r_{3}}}a_{1}^{r_{1}}a_{3}^{-r_{3}}a_{2}^{r_{2}}=1\rangle$ . (2)

REMARK. This presentation is induced by the following RR-system $(c.f$ .
[1]) illustrated in the Figure 2 and hence corresponds to a Heegaard splitting

of genus 3. Actually we can easily construct a Heegaard splitting of
$M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3})$ with this RR-system.

Next we eliminate the generator $a_{3}$ in the presentation (2). From the first

relator of (2),
$a_{3}^{r_{3}r_{1}-r_{2}-p_{1}-r_{1}}=a_{1}a_{2}a_{1}$ . (3)

Substituting it in the second relator, we obtain

$a_{2}^{p}a_{1}a_{2}a_{1}a_{2}a_{1}^{r_{1}}=1$ . (4)
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Figure 2

Moreover, from the third relator and (3),

$a_{3}^{p}=a_{2}a_{1}a_{2}a_{1}^{-(p_{1}+2r_{1})}$ . (5)

But
$[a_{1}^{r_{1}}a_{2}^{-r_{2}}a_{1}^{-p_{1}-r_{1}}, a_{2}^{-r_{2}}a_{1}^{r_{1}}a_{2}^{-r_{2}}a_{1}^{-(p_{1}+2r_{1})}]=1$

is a consequence of (4). So we can eliminate $a_{3}$ by (3) and (5) (since $(p_{3}+r_{3}, r_{3})$

$=1)$ and we obtain

$(a_{1}^{r_{1}}a_{2}^{-r_{2}}a_{1}^{-p_{1}-r_{1}})^{P_{8}+r_{3}}=(a_{2}^{-r_{2}}a_{1}^{r_{1}}a_{2}^{-r_{2}}a_{1}^{-(p_{1}+2r_{1})})^{r_{3}}$ .
In order to simplify this equality, we multiply $a_{1}^{-r_{1}}$ from the left and $a_{1}^{r_{1}}$

from the right. Then,

$(a_{2}^{-r_{2}}a_{1}^{-p_{1}})^{p_{3}+r_{3}}=(a_{1}^{-r_{1}}a_{2}^{-r_{2}}a_{1}^{r_{1}}a_{2}^{-r_{2}}a_{1}^{-(p_{1}+r_{1})})^{r_{3}}$ , (6)

By (4),
$a_{1}^{r_{1}}a_{2}^{-r_{2}}a_{1}^{-(p_{1}+r_{1)}}=a_{2}^{-(p_{2}+r_{2)}}a_{1}^{-r_{1}}a_{2}^{r_{2}}$ .

Substituting this for the underlind part in (6), we obtain

$(a_{z^{-r_{2}}}a_{1}^{-p_{1}})^{p_{3}+r_{3}}=(a_{1}^{-r_{1}}a_{2}^{-(p_{2}+2r_{2})}a_{1}^{-r_{1}}a_{2}^{r_{2}})^{r_{3}}$ ,

or
$(a_{1}^{p_{1}}a_{2}^{r_{2}})^{-(p_{3}+r_{3})}=(a_{1}-a_{2}a_{1}a_{2}^{r_{2}})^{r_{3}}$ . (7)

Now, since

$a_{1}-a_{2}a_{1}a_{2}^{r_{2}}=(a_{1}a_{2}a_{1})(a_{1}^{p_{1}}a_{2}^{r_{2}})$

and
$[a_{1}^{p_{1}}a_{1}^{r_{2}}, a_{1}^{-r_{1}}a_{2}^{-(p_{2}+2r_{2)}}a_{1}^{-(p_{1}+r_{1)}}]=1$ ,
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by (4) it follows that

$(1^{-r_{1}-(p_{2}+2r_{2})-r_{1}}+2r_{2})-(p_{1}+r_{1)}$

So, by (7)

$(a_{1}^{p_{1}}a_{2^{f}}2)^{-(p_{3}+2r_{3)}}=(a_{1}^{-r_{1}}a_{2}^{-(p_{2}+2r_{2)}}a_{1}^{-(p_{1+r_{1})}})^{r_{3}}$ .
Taking the inverse we obtain

$(a_{1}^{p_{1}}a_{2}^{r_{2}})^{p_{3+2r_{3}}}=(a_{1}^{p_{1+r_{I}}}a_{2}^{p_{2}+2r_{2}}a_{1}^{r_{1}})^{r_{3}}$ .
Hence

$\pi_{1}(M_{1}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3\prime}r_{3}))\cong\langle a_{1},$ $a_{2}|$

$a_{g}^{p_{2}}a_{1}a_{2}a_{1}a_{2}a_{1}=1$ ,

$(a_{1}^{p_{1}}a_{2}^{r_{2}})^{p_{3}+2r_{3}}=(a_{1}^{p_{1}+r_{1}}a_{2}^{p_{2}+2r_{2}}a_{1}^{r_{1}})^{r_{3}}\rangle$ .
This presentation corresponds to a Heegaard diagram of genus two.

\S 2. Some other links.

We do the same thing as did in \S 1 for some other links. We describe only
the results.

2.1. Consider the link $K_{2}$ illustrated in the Figure 3.

Figure 3

Let $M_{2}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4})$ be the 3-manifold obtained by Dehn sur-
gery along each component of $K_{2}$ with surgery coefficients $p_{1}/\gamma_{1}$ $p_{2}/\gamma_{2}$ $p_{3}/\gamma_{3}$

$p_{4}/r_{4}$ . Then

$\pi_{1}(M_{2}(p_{1}, r_{1} ; p_{2\prime}r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4}))\cong\langle a_{1},$
$a_{2},$ $a_{3},$ $a_{4}|$

$a_{4}^{r_{4}}a_{1}^{p_{1}}a_{2}^{-r_{2}}=1,$ $a_{1}^{-r_{1}}a_{2}^{p_{2}}a_{3}^{r_{3}}=1$ ,

$a_{2}^{r_{2}}a_{3}^{p_{3}}a_{4}^{-r_{4}}=1,$ $ a_{3}^{-r_{3}}a_{4}^{p_{4}}a_{1}^{r_{1}}=1\rangle$

$\cong\langle a_{1},$ $a_{2}|(a_{2}^{\rightarrow p_{2}})^{r_{4}}=(a_{2}^{r_{2}}a_{1}^{-p_{1}})^{p_{4}}$ ,

$(a_{1}^{-p_{1}})^{r_{3}}=(a_{2}^{-p_{2}}a_{1}^{r_{1}})^{p_{3}},$ $[a_{1}^{p_{1}}, a_{2}^{p_{2}}]=1\rangle$ .
The corresponding RR-system is illustrated in the Figure 4.
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Figure 4

2.2. Consider the link $K_{3}$ illustrated in the Figure 5.

Figure 5

Let $M_{3}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4})$ be the 3-manifold obtained by Dehn sur-
gery along each component of $K_{3}$ with surgery coefficients $p_{1}/r_{1},$ $p_{2}/r_{2},$ $p_{3}/r_{3}$ ,
$p_{4}/r_{4}$ . Then,

$\pi_{1}(M_{3}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4}))\cong\langle a_{1},$
$a_{2},$ $a_{3},$ $a_{4}|$

$a_{2}^{-r_{2}}a_{1}^{-p_{1}}a_{4}^{r_{4}}=1,$ $a_{2}^{p_{2}+r_{2}}a_{1}^{r_{1}}a_{4}^{-(p_{4}+r_{4})}a_{1}^{p_{1}+r_{1}}=1$ ,

$a_{3}^{-r_{3}}a_{1}^{r_{1}}a_{4}^{-p_{4}}=1,$ $ a_{3}a_{4}a_{1}a_{4}=1\rangle$

$\cong\langle a_{1},$ $a_{4}|$

$(a_{1}^{-p_{1}}a_{4}^{r_{4}})^{p_{2+r_{2}}}(a_{1}^{r_{1}}a_{4}^{-(p_{4}+r_{4})}a_{1}^{p_{1}+r_{1}})^{r_{2}}=1$ ,

$(a_{1}^{r_{1}}a_{4}^{-p_{4}})^{p_{3}+r_{3}}(a_{4}^{p_{4}+r_{4}}a_{1}^{-(p_{1}+r_{1})}a_{4}^{r_{4}})^{r_{3}}=1$ ,

$[a_{1}^{-p_{1}}a_{4}^{r_{4}}, a_{1}^{r_{1}}a_{4}^{-(p_{4}+r_{4})}a_{1}^{p_{1}+r_{1}}]=1\rangle$ ,
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2.3. Consider the link $K_{4}$ illustrated in the Figure 6.

Figure 6

Let $M_{4}(p_{1}, r_{1} ; p_{2}, r_{2} ; p_{3}, r_{3} ; p_{4}, r_{4} ; p_{5}, r_{5} ; p_{6}, r_{6})$ be the 3-manifold obtained
by Dehn surgery along each component of $K_{4}$ with surgery coefficients $p_{1}/\gamma_{1}$

$p_{2}/\gamma_{2}p_{3}/r_{3},$ $p_{4}/r_{4},$ $p_{5}/\gamma_{5}p_{6}/\gamma_{6}$ . Then,

$\pi_{1}(M_{4}(p_{1}, r_{1};p_{2}, r_{2};p_{3}, r_{3};p_{4}, r_{4} ; p_{5}, r_{5} ; p_{6}, r_{6}))$

$\cong\langle a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $a_{5},$ $a_{6}|a_{1}^{-r_{1}}a_{2}^{p_{2}}a_{3}^{r_{3}}=1$ ,

$a_{2}^{r_{2}}a_{3}^{p_{3}}a_{4}^{-r_{4}}=1,$ $a_{3}^{-r_{3}}a_{4}^{p_{4}}a_{5}^{r_{5}}=1,$ $a_{4}^{r_{4}}a_{5}^{p_{5}}a_{6}^{-r_{6}}=1$ ,

$a_{5}^{-r_{5}}a_{6}^{p_{6}}a_{1}^{r_{1}}=1,$ $ a_{6}^{r_{6}}a_{1}^{p_{1}}a_{2}^{-r_{2}}=1\rangle$ .
Note that

$a_{2}^{p_{2}}a_{4}^{p_{4}}a_{6}^{p_{6}}=1$ and $a_{1}^{p_{1}}a_{3}^{p_{3}}a_{5}^{p_{5}}=1$

are consequences of the relators of this presentation. This presentation is ex-
pressed by the following 4-regular planar graph with labels (Figure 7).

Figure 7

2.4. Consider the link $L_{2n}$ illustrated in the Figure 8.
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Let $M_{\iota n}^{\prime}(p_{1}, r_{1} ; p_{2}, r_{2} ; \cdots ; p_{2n}, r_{2n})$ be the 3-ma $\cdot$

gery along each component of $L_{2n}$ with surger}

$p_{2n}/r_{2n}$ . Then,

$\pi_{1}(M_{2n}^{\prime}(p_{1}, r_{1} ; p_{2}, r_{2} ; \cdot\cdot, ;P_{2n}r_{2n}))$

$\cong\langle a_{1},$
$a_{2},$ $\cdots,$ $a_{2n}|a_{2i}a_{2i+1}a_{2i\tau 2}^{-r_{2i+2}}=r_{2t}p_{2i+1}$

$a_{2i-1}^{-r_{Zi-1}}a_{li}^{p_{2i}}a_{z_{l+1}^{r_{2i+1}}}=1$ , $(i=1,2, \cdot. . , n)(n$

For example, if $n=5$ then the presentation is expl

4-regular graph with labels (Figure 9).

Figure 9
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the results in \S 2.
;ted planar graph with the following label for
$lerep,$ $\gamma$ are co-prime integers. We call such

Figure 10

rable. We color the faces by two colors (say, red
4-color problem. We assume that $G$ is drawn on

$)^{3}$ .
copies of $G$ . We assume that $G_{1},$ $G_{2},$ $G_{3},$ $G_{4}$ are

Figure 11
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drawn on the boundaries of the 3-disks $D_{1}^{3},$ $D_{2}^{3},$ $D_{3}^{3},$ $G_{4}^{3}$ , respectively, and the
faces of $G_{1},$ $G_{2},$ $G_{3},$ $G_{4}$ are colored in the same way as $G$ . Moreover we assume
that $G_{2},$ $G_{4}$ are mirror images of $G_{1},$ $G_{3}$ , The Figure 11 is an example. (This

figure is symmetric with respect to the lines $l$ and $m.$ )

We glue the corresponding points of $\partial D_{1}^{3},$ $\partial D_{2}^{3},$ $\partial D_{3}^{3},$ $\partial D_{4}^{3}$ , in the following
way. The corresponding points in the red faces of $G_{1}$ and $G_{2}$ are glued
together; the corresponding points in the red faces of $G_{3}$ and $G_{4}$ are glued
together; the corresponding points in the blue faces of $G_{1}$ and $G_{4}$ are glued
together; the corresponding points in the blue faces of $G_{2}$ and $G_{3}$ are glued
together.

red faces blue faces
$G_{1}\rightarrow G_{2}$ $G_{1}\leftarrow G_{4}$

$c_{\S-G_{4}}$ $G_{2}\leftarrow G_{3}$

Then the corresponding vertices of $G_{1},$ $G_{2},$ $G_{3},$ $G_{4}$ are glued together. We
remove the interiors of regular neighborhoods of these vertices. Then we ob-
tain a 3-manifold, whose boundary consists of the same number of tori as the
number of vertices of $G$ . We denote this manifold by $M^{\prime}(G)$ .

In the neighborhood of a vertex the situation is as shown in the Figure 12.

Figure 12
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Here, if the label at a vertex is

$-pr$

$-rp$

then we do Dehn surgery (Dehn filling) on the corresponding boundary torus
along the loop of slope $p/r$ . Examples are shown in the Figure 13.

boundary torus

Figure 13

Then we obtain a closed orientable 3-manifold, which we denote by $M(G)$ .
We say that the graph $G$ represents $M^{1}(G)$ . For this the following theorem
holds.

THEOREM 1. Let $M$ be a closed orientable connected 3-mainfold. In order

for $M$ to be representable by an M-graph it is necessary and sufficient that $M$ is
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homeomorphic to the 2-fold branched covering space of $S^{3}$ branched along a link.

PROOF. [Necessity] Suppose that $M$ is represented by an M-graph $G$ . We
change $G$ to a link $L$ in the following way.

For every vertex of $G$ with label as shown in the Figure 14 (we can assume
$p\geqq 0,$ $r\geqq 0$) we insert the rational tangle shown in the Figure 15. (The Figure 16

Figure 14

$($

Figure 15

$p=1,$ $r=1$

$)$ $($

$\cup$

$\leftrightarrow$

$p=1,$ $r=0$ $p=0,$ $r=1$

Figure 16
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shows examples.)

Now it is not hard to see that $M$ is homeomorphic to the 2-fold branched
covering space of $S^{3}$ branched along the link $L$ now constructed.

[sufficiency] Suppose that $M$ is the 2-fold branched covering space of $S^{3}$

branched along a link $L$ . Consider a regular projection $P$ of $L$ on a plane.
We change $P$ to an M-graph $G$ by changing each crossing point to a vertex
with label as shown in the Figure 17.

$\rightarrow$

Figure 17

Then as above $M$ is represented by this M-graph. $q.e.d$ .

Next we shall find a presentation of the fundamental group of $M^{\prime}(G)$ .
Let $\mathcal{F}$ be the set of all faces of $G$ and let $\mathcal{F}_{1}$ (resp. $\mathcal{F}_{2}$ ) be the set of all

red (resp. blue) faces of $G$ . Let $\mathcal{V}$ be the set of all vertices of $G$ . For each
vertex $V$ we correspond generators $b_{V},$ $c_{V}$ and write the following at the
vertex $V$ .

Figure 18

For each face $\Delta$ of $G$ , we correspond the relator $r_{\Delta}=1$ in the following
way as illustrated in the Figure 19.

Figure 19

THEOREM 2.

$\pi_{1}(M^{\prime}(G))\cong\langle\{b_{V}, c_{V} : V\epsilon \mathcal{F}\}|\{[b_{V}, c_{V}]=1:V\epsilon \mathcal{V}\}, \{r_{\Delta}=1:\Delta\epsilon \mathcal{F}\}\rangle$ .
Each relator $r_{\Delta}=1(\Delta\epsilon \mathcal{F}_{i})$ is a consequence of $\{r_{\Delta^{\prime}}=1:\Delta^{\prime}\epsilon \mathcal{F}_{i}-\{\Delta\}\}$ , for $i=$
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1, 2. So two of the relators of the above presentation are redundant.

PROOF. Let
$J_{i}=D_{i}^{3}-\{vertices\}$ , $(i=1,2,3,4)$ .

Let $X$ be the space obtained from $J_{1}$ and $J_{2}$ by glueinng the corresponding points
of the red faces of them.

$\pi_{1}(X)$ is a free group. Now we take a base point $0$ in the interior of $J_{2}$

and define a loop $b_{V}$ for each $V\epsilon \mathcal{V}$ as follows.
$b_{V}$ starts from $O$ , proceeds in $J_{2}$ and reaches a point $A_{1}$ of a red face $\Delta_{1}$

with vertex $V$ , and then proceeds in $J_{1}$ and reaches a point $A_{2}$ of another red
face $\Delta_{2}$ with vertex $V$ and again proceeds in $J_{2}$ and returns to $O$ .

$b_{V}$ : $0\rightarrow^{J_{2}}A_{1}\rightarrow^{J_{1}}A_{2}\rightarrow^{J_{2}}0$

It is easy to see that

$\pi_{1}(X)\cong\langle\{b_{V} : V\epsilon \mathcal{V}\}|\{r_{\Delta}=1:\Delta\epsilon \mathcal{F}_{2}\}\rangle$ ,

and that each $r_{\Delta}=1$ is a consequence of $\{r_{\Delta^{\prime}}=1;\Delta^{\prime}\epsilon \mathcal{F}_{2}-\{\Delta\}\}$ .
Next let $Y$ be the space obtained by glueing the corresponding points of

blue faces of $J_{2}$ and $J_{3}$ . We define the loop $c_{V}(V\epsilon \mathcal{V})$ as follows. $c_{V}$ starts
from $0$ , proceeds in $J_{2}$ and reaches a point $B_{1}$ of a blue face $\Delta_{3}$ with vertex $V$ ,

and then proceeds in $J_{3}$ and reaches a point $B_{2}$ of another blue face $\Delta_{4}$ with
vertex $V$ and again proceeds in $J_{2}$ and returns to $0$ .

$J_{2}$ $J_{3}$ $J_{2}$

$c_{V}$ ; $O-B_{1^{-}}B_{2^{-}}O$ .
As before, we have that

$\pi_{1}(Y)\cong\langle\{c_{V} : V\epsilon \mathcal{V}]|\{r_{\Delta}=1:\Delta\epsilon \mathcal{F}_{1}\}\rangle$ ,

and that each $r_{\Delta}=1$ is a consequence of $\{r_{\Delta^{\prime}}=1:\Delta^{r}\epsilon \mathcal{F}_{1}-\{\Delta\}\}$ .
Next let $Z$ be the space obtained from $J_{1}\cup J_{2}\cup J_{3}$ by glueing the correspond-

ing points of red faces of $J_{1}$ and $J_{2}$ and by glueing the corresponding points of
blue faces of $J_{2}$ and $J_{3}$ .

Then,
$Z=X\cup Y$ , $X\cap Y=J_{2}$ .

By using van Kampen theorem we obtain

$\pi_{1}(Z)\cong\pi_{1}(X)*\pi_{1}(Y)$

$\cong\langle\{b_{V}, c_{V} : V\epsilon \mathcal{V}\}|\{r_{\Delta}=1:\Delta\epsilon \mathcal{F}\}\rangle$ .
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Finally let $U$ be the space obtained from $Z\cup J_{4}$ by glueing the correspond-
ing points of blue faces of $J_{1}$ and $J_{4}$ and by glueing the corresponding points
of red faces of $J_{3}$ and $J_{4}$ . Then,

$U\cap J_{4}=\partial D_{4}^{3}-\{vertices\}$ .

By using van Kampen theorem again, we obtain
$\pi_{1}(U)\cong\langle\{b_{V}, c_{V} : V\epsilon \mathcal{V}\}|\{[b_{V}, c_{V}]=1:V\epsilon \mathcal{V}\}, \{r_{\Delta}=1:\Delta\epsilon \mathcal{F}\}\rangle$ .

Now it is obvious that $\pi_{1}(U)\cong\pi_{1}(M^{\prime}(G))$ . Hence we have the theorem.

Next let $G$ be an M-graph, and let $V$ be a vertex with label as shown in
the Figure 20.

Figure 20

To this vertex we correspond a generator $a_{V}$ and write the following at

the vertex $V$ .

Figure 21

For each face $\Delta$ of $G$ we correspond a relator $s_{\Delta}=1$ in the following way.

Figure 22

$s_{\Delta}=a_{V_{1}}^{p1}a_{V_{2}}^{p_{3}}\cdots a_{Vn}^{p_{n}}$ .

Then we have the following theorem.

THEOREM 3. $\pi_{1}(M(G))\cong\langle\{a_{V} : V\epsilon \mathcal{V}\}|\{s_{\Delta}=1:\Delta\epsilon \mathcal{F}\}\rangle$ . Each relator $s_{\Delta}=1$

$(\Delta\epsilon \mathcal{F}_{i})$ is a consequence of other $s_{\Delta^{\prime}}=1(\Delta^{\prime}\epsilon \mathcal{F}_{i})$ for $i=1,2$ . So two of the relators

of the above presentation is redundant.
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PROOF. A presentation of $\pi_{1}(M(G))$ is obtained from that of $\pi_{1}(M^{\prime}(G))$ in
Theorem 2 by adding the relator $b_{V}^{p_{V}}=c_{V^{r_{V}}}$ for each $V\epsilon \mathcal{V}$ . Since $[b_{V}, c_{V}]=1$ ,
$b_{V}=a_{V}^{r_{V}},$ $c_{V}=a_{V}^{p_{V}}$ for some $a_{V}\epsilon\pi_{1}(M(G))$ , as in \S 1. So the theorem is obvious
from Theorem 2.
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