EQUIVARIANT CW COMPLEXES AND SHAPE THEORY

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Ву

Takao Матимото

The aim of this note is to study a discrete group equivariant shape theory by associating an inverse system in the homotopy category of equivariant CW complexes.

1. Introduction

Let G be a discrete group and X a G-space. For a subgroup H of G we denote $X^H = \{x \in X; gx = x \text{ for every } g \in H\}$. For a G-map $f: X \to Y$ of X to another G-space Y, we denote $f^H = f \mid X^H: X^H \to Y^H$. Let \mathcal{H}_G denote the category of G-spaces and G-homotopy classes of G-maps and \mathcal{W}_G the full subcategory of \mathcal{H}_G consisting of G-spaces which have the G-homotopy types of G-CW complexes.

THEOREM 1. There is a functor \check{C}_G from \mathscr{H}_G into the pro-category pro- \mathscr{W}_G of \mathscr{W}_G so that $\check{C}_G(X)=(X_\lambda, \lceil p_{\lambda\lambda'}^X \rceil_G, \Lambda)$ has the universal property for the equivariant shape theory with a system G-map $p^X=(\lceil p_\lambda^X \rceil_G): X \to \check{G}_G(X)$, that is, $p^X: X \to \check{C}_G(X)$ is a G-CW expansion of X.

When G is a finite group, we know that a G-ANR has the G-homotopy type of a G-CW complex and vice versa. Also any numerable covering has a refinement of numerable G-equivariant covering. So, we have

TNEOREM 2. Let G be a finite group and X a G-space.

- (1) Any G-ANR expansion of X is equivalent to $p^X: X \rightarrow \check{C}_G(X)$.
- (2) The expansion $p^X: X \to \check{C}_G(X)$ is a (non-equivariant) CW expansion of X. Moreover, if X is a normal G-space, then $p^{X,H} = ([p_{\lambda}^{X,H}]): X^H \to \check{C}_G(X)^H = (X_H^H, [p_{\lambda}^{X,H}], \Lambda)$ is a CW expansion for every subgroup H of G.
- (3) Let $f: X \to Y$ be a G-map between normal G-spaces. Then, $\check{C}_G(f): \check{G}_G(X) \to \check{C}_G(Y)$ is an isomorphism in pro- W_G if and only if $f^H: X^H \to Y^H$ is a shape

equivalence for every subgroup H of G.

The case when G is a finite group is also treated by Pop [10]. But he did not mention on (2) and (3) of Theorem 2. We note also that Antonian-Mardešić [1] defined the equivariant ANR shape for compact groups. Our treatment in the case when G is not a discrete group will be discussed elsewhere.

2. A quick review of shape theory

The general references are [3], [4] and [8]. Borsuk (1968) defined the shape for compact metric spaces, Mardešić-Segal (1971) for compact Hausdorff spaces, Fox (1972) for metric spaces, and Mardešić (1973) and K. Morita (1975) for topological spaces.

Let $X=(X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $Y=(Y_{\mu}, q_{\mu\mu'}, M)$ be inverse systems in a category \mathcal{C} . A system map of X to Y consists of $\theta: M \to \Lambda$ and morphisms $f_{\mu}: X_{\theta(\mu)} \to Y_{\mu}$ in \mathcal{C} satisfying $q_{\mu\mu'}f_{\mu'}p_{\theta(\mu')\lambda}=f_{\mu}p_{\theta(\mu)\lambda}$ for $\mu \leq \mu'$, $\theta(\mu') \leq \lambda$ and $\theta(\mu) \leq \lambda$. Two system maps (f_{μ}, θ) and (f'_{μ}, θ') are said to be equivalent if each $\mu \in M$ admits a $\lambda \in \Lambda$, $\lambda \geq \theta(\mu)$ and $\lambda \geq \theta'(\mu)$, such that $f_{\mu}p_{\theta(\mu)\lambda}=f'_{\mu}p_{\theta'(\mu)\lambda}$. The procategory pro- \mathcal{C} of the category \mathcal{C} is defined by Obj (pro- \mathcal{C})=all inverse systems in \mathcal{C} and Mor(X, Y)=equivalence classes of system maps of X to Y. Let \mathcal{D} be a full subcategory of \mathcal{C} . A \mathcal{D} -expansion $p=(p_{\lambda}): X \to X$ of X is a system map which is characterized by the following universal properties due to Mardešić [4, Ch. I, Th. I]:

- (0) $X_{\lambda} \in \mathcal{D}$ for each $\lambda \in \Lambda$.
- (1) For any map $f: X \to K$ with $K \in \mathcal{D}$ there exists a morphism $h_{\lambda}: X_{\lambda} \to K$ such that $f = h_{\lambda} p_{\lambda}$.
 - (2) If $f = g_{\lambda} p_{\lambda}$ then there is a $\lambda' \ge \lambda$ such that $h_{\lambda} p_{\lambda \lambda'} = g_{\lambda} p_{\lambda \lambda'}$.

We give an exact definition of Čech expansion and Čech system due to Morita. Let W be the homotopy category of spaces which have homotopy type of CW complexes.

For a space X we associate an inverse system $\check{C}(X)=(X_{\lambda}, [p_{\lambda\lambda'}^X], \Lambda)$ in \mathscr{W} by

$$\{U_{\lambda}\}_{\lambda \in \Lambda}$$
=all numerable coverings of X , $\lambda' \geq \lambda$ iff $U_{\lambda'} < U_{\lambda}$; $X_{\lambda} = N(U_{\lambda})$ and $p_{\lambda \lambda'}^{X} : N(U_{\lambda'}) \to N(U_{\lambda})$,

where $N(\mathcal{U}_{\lambda})$ is the nerve of $\mathcal{U}_{\lambda} = \{U_{\alpha}^{\lambda}\}$ and $p_{\lambda\lambda'}^{X}$ is a simplicial map defined by choosing $\tilde{p} = p_{\lambda\lambda'}^{X}$ so that $U_{\alpha}^{\lambda'} \subset U_{\tilde{p}(\alpha)}^{\lambda}$. The homotopy class $[p_{\lambda\lambda'}^{X}]$ is independent of the choice of \tilde{p} . Then the inverse system $\check{C}(X)$ in pro- \mathcal{W} well-defined and

is called the Čech system of X. Here a pointwise finite covering $\mathcal{U}=\{U_{\alpha}\}$ of X is called numerable if it admits a locally finite partition of unity $\{\rho_{\alpha}\}$ i.e., a family of continuous functions $\rho_{\alpha}\colon X\to [0,1]$ with $\sum \rho_{\alpha}=1$ and $\rho_{\alpha}^{-1}(0,1]\subset U_{\alpha}$ such that $\{\rho_{\alpha}^{-1}(0,1]\}$ is a locally finite covering of X. By the locally finite partition of unity $\{\rho_{\alpha}\}$ subordinate to \mathcal{U}_{λ} we have a map $p_{\lambda}^{X}\colon X\to X_{\lambda}$ defined by $p_{\lambda}^{X}(x)=\sum \rho_{\alpha}(x)\langle U_{\alpha}\rangle$ where $\langle U_{\alpha}\rangle \in X_{\lambda}$ is the vertex corresponding to U_{α} . A different choice of the locally finite partition of unity gives another map contiguous to p_{λ}^{X} . So, the homotopy class of p_{λ}^{X} depends only on \mathcal{U}_{λ} and $p_{\lambda\lambda'}^{X}p_{\lambda'}^{X}\to p_{\lambda'}^{X}$. Then $p^{X}=([p_{\lambda}^{X}])\colon X\to \check{C}(X)$ is a \mathscr{W} -expansion and called the Čech expansion of X.

Any \mathscr{W} -expansion $X \to X$ is equivalent to the Čech expansion $p^X : X \to \check{C}(X)$. The equivalence class of \mathscr{W} -expansion of X is called the shape of X.

3. Equivariant Čech system $\check{C}_G(X)$ (Proof of Theorem 1)

Let G be a discrete group and X a G-space. An open covering $\mathcal{U} = \{U_{\alpha}\}$ of X is called a numerable G-equivariant covering if $gU_{\alpha} = U_{g\alpha} \in \mathcal{U}$ for each $U_{\alpha} \in \mathcal{U}$ and $g \in G$ and if \mathcal{U} has a locally finite partition of unity $\{\rho_{\alpha}\}$ such that $\rho_{g\alpha}(x) = \rho_{\alpha}(g^{-1}x)$ for any $g \in G$ and the following three sets have finite differences:

$$\{g \in G ; g\alpha = \alpha \text{ i.e., } \rho_{g\alpha} = \rho_{\alpha}\} \subset \{g \in G ; gU_{\alpha} = U_{\alpha}\} \subset \{g \in G ; gU_{\alpha} \cap U_{\alpha} \neq \emptyset\}.$$

The nerves $X_{\lambda} = N(\mathcal{U}_{\lambda})$ of the numerable G-equivariant coverings \mathcal{U}_{λ} of X induce an inverse system $\check{C}_{G}(X) = (X_{\lambda}, [p_{\lambda\lambda'}^{X}]_{G}, \Lambda)$ in \mathcal{W}_{G} with a system G-map $p^{X} = ([p_{\lambda}^{X}]_{G}: X \rightarrow X_{\lambda})$ such that $p_{\lambda}^{X} \simeq_{G} p_{\lambda\lambda'}^{X} p_{\lambda}^{X}$. The G-homotopy classes $[p_{\lambda}^{X}]_{G}$ and $[p_{\lambda\lambda'}^{X}]_{G}$ are also well-defined by the argument using contiguity as in the non-equivariant case.

For a G-map $f: X \to Y$ a system G-map $\check{C}_G(f) = ([f_{\mu}]_G, \theta) : \check{C}_G(X) = (X_{\lambda}, [p_{\lambda \lambda'}^{X}]_G, \Lambda) \to \check{C}_G(Y) = (Y_{\mu}, [p_{\mu \mu'}^{X}]_G, M)$ is defined so that $p_{\mu}^{Y} f \simeq_G f_{\mu} p_{\theta(\mu)}^{X}$. In fact, a numerable G-equivariant covering $\mathcal{C}_{V_{\mu}} = \{V_{\beta}^{\mu}, \rho_{\beta}\}$ of Y induces a covering $f^{-1}\mathcal{C}_{V_{\mu}} = \{f^{-1}(V_{\beta}^{\mu}), \rho_{\beta}f\}$ of X, which is numerable G-equivariant and may be denoted by $\mathcal{U}_{\theta(\mu)}$, and $f_{\mu}: N(f^{-1}\mathcal{C}_{V_{\mu}}) \to N(\mathcal{C}_{V_{\mu}})$ defined by the natural inclusion satisfies the required G-homotopy equality.

Hereafter we will omit $[\]_g$ to avoid complexity of notation.

LEMMA 3.1. Let K be a G-CW complex. Then, the system G-map $p^K: K \rightarrow \check{C}_G(K)$ is an isomorphism in pro- \mathcal{W}_G .

LEMMA 3.2. For a G-space X we take a G-map $p_{\lambda}^{X}: X \rightarrow X_{\lambda}$ in the system

G-map $p^X = (p_{\lambda}^X): X \to \check{C}_G(X)$ and consider a system G-map $\check{C}_G(p_{\lambda}) = ((p_{\lambda}^X)_{\mu}, \varphi_{\lambda}): \check{C}_G(X) \to \check{C}_G(X_{\lambda})$. Then, there is a ν with $\nu \geq \lambda$ and $\nu \geq \varphi_{\lambda}(\mu)$ such that $p_{\mu}^{\lambda} p_{\lambda \nu}^{X} \simeq G(p_{\lambda}^X)_{\mu} p_{\varphi_{\lambda}(\mu)\nu}^{X}$, where p_{μ}^{λ} denotes $p_{\mu}^{X\lambda}$.

LEMMA 3.3 (Universal property for equivariant shape). Let $p^X = (p_{\lambda}^X): X \to \check{C}_G(X) = (X_{\lambda}, p_{\lambda \lambda'}^X, \Lambda)$ be the system G-map defined above. Let K be a G-CW complex and $f: X \to K$ a G-map.

- (1) There exist a λ and a G-map $h: X_{\lambda} \to K$ such that $f \simeq_G hp_{\lambda}^X$.
- (2) If $f \simeq_G g p_{\lambda}^X$ for any other G-map $g: X_{\lambda} \to K$, then there is a ν with $\nu \geq \lambda$ such that $h p_{\lambda \nu}^X \simeq_G g p_{\lambda \nu}^X$.

PROOF OF LEMMA 3.3 AND THEOREM 1 FROM LEMMAS 3.1 AND 3.2. Lemma 3.3 is a detailed restatement of Theorem 1. Lemmas 3.1 and 3.2 imply Lemma 3.3 in a standard way. In fact, the system G-map $\check{C}_G(f): \check{C}_G(X) \to \check{C}_G(K)$ consists of $\theta: M \to \Lambda$ and G-maps $f_{\mu}: X_{\theta(\mu)} \to K_{\mu}$. By Lemma 3.1 we have a μ and a G-map $q: K_{\mu} \to K$ such that $qp_{\mu}^K \simeq_G id_K$. Now it suffices to define $\lambda = \theta(\mu)$ and $h = qf_{\mu}$ to prove (1), because $qf_{\mu}p_{\theta(\mu)}^K \simeq_G qp_{\mu}^K f \simeq_G f$. To prove (2) we note that $qg_{\mu}p_{\theta(\lambda)}^{\lambda} \simeq_G g$ replacing X, f and g with f and f with f and f such that f by Lemma 3.1 there is a f such that f and f with f and f such that f such that f and f such that f such t

PROOF OF LEMMA 3.1. We consider a natural G-map $\sigma: |S(K)| \to K$ for the geometric realization of the singular complex of K. Since $|S(K)|^H = |S(K^H)|$, we see that σ is a G-homotopy equivalence. Since a G-homotopy equivalence induces an isomorphism $\check{C}_G(\cdot)$ in pro- \mathscr{W}_G , the proof reduces to the following two lemmas.

LEMMA 3.4. For a G-space X, |S(X)| admits a G-equivariant triangulation.

LEMMA 3.5. For a G-equivariantly triangulated G-space K, $p^K: K \rightarrow \check{G}_G(K)$ is an isomorphism in pro- W_G . Moreover, suppose μ is given then there are a $\tilde{\mu}$ $(\geq \mu)$ and a G-map $q: K_{\tilde{\mu}} \rightarrow K$ such that q is the G-homotopy inverse to $p_{\tilde{\mu}}^K$.

PROOF OF LEMMA 3.4. We know that there is a G-homeomorphism between

|S(X)| and $|\operatorname{Sd} S(X)|$ where $\operatorname{Sd} S(X)$ is a barycentric subdivision of the singular s.s. complex S(X) of X. Note that the natural quotient map $|\operatorname{Sd} S(X)| \to |\operatorname{Sd} S(X)/G|$ restricts to a homeomorphism on any cell of $|\operatorname{Sd} S(X)|$. So, a triangulation of the regular CW complex $|\operatorname{Sd} S(X)/G|$ lifts to a G-equivariant triangulation of $|\operatorname{Sd} S(X)|$.

PROOF OF LEMMA 3.5. For each vertex v we take an open star neighborhood U_v . Then, v_1, \cdots, v_n are the vertices of the same simplex if and only if $U_{v_1} \cap \cdots \cap U_{v_n}$ is not empty. If necessary by taking a barycentric subdivision, we may assume the following: If gv and v are in the same simplex of K then gv=v and hence $U_{gv} \cap U_v \neq \emptyset$ implies gv=v. We put $\overline{\rho}_v(x)$ =the coefficient of x with respect to v. Then the G-map $\overline{p}: K \rightarrow N(\{U_v\})$ defined by $\{\overline{\rho}_v\}$ is not only a bijection but also a G-homeomorphism. Note here that $\overline{\rho}_v(gx) = \overline{\rho}_v(x)$ if gv=v. Now we make the support of $\overline{\rho}_v$ smaller and get a locally finite G-equivariant partition of unity ρ_v so that $\mathcal{U}=\{U_v, \rho_v\}$ is a numerable G-equivariant covering and $p: K \rightarrow N(\mathcal{U})$, defined by $\{\rho_v\}$, is G-homotopic to $\overline{p}: K \rightarrow N(\mathcal{U})$. If we take a subdivision of K fine enough at first, we may assume that $\mathcal{U} \prec \mathcal{U}_\mu$. Take this \mathcal{U} as \mathcal{U}_μ . Then $p_\mu: K \rightarrow K_\mu = N(\mathcal{U}_\mu)$ is a G-homotopy equivalence. This finishes the proof of Lemma 3.5 and also Lemma 3.1. q. e. d.

PROOF OF LEMMA 3.2. Note that X_{λ} is equivariantly triangulated. By the proof of Lemma 3.5 we have a $\tilde{\mu}$ ($\geq \mu$) and a subdivision X'_{λ} of X_{λ} such that $U_{\tilde{\mu}}$ is the open star covering of X'_{λ} and $p^{\lambda}_{\tilde{\mu}}: X'_{\lambda} \rightarrow (X_{\lambda})_{\tilde{\mu}} = N(U_{\tilde{\mu}})$ is G-homotopic to the natural identification. The G-map p^{X}_{λ} induces a numerable G-equivariant covering $U_{\nu} = (p^{X}_{\lambda})^{-1}(U_{\tilde{\mu}})$ of X and the natural inclusion $(p^{X}_{\lambda})_{\tilde{\mu}}: X_{\nu} = N(U_{\nu}) \rightarrow (X_{\lambda})_{\tilde{\mu}} = N(U_{\tilde{\mu}})$. The G-map $p^{X}_{\lambda\nu}$ is the composition of the inclusion $X_{\nu} \rightarrow X'_{\lambda}$ with a simplicial G-map $X'_{\lambda} \rightarrow X_{\lambda}$ given by choosing a refinement. Hence $p^{\lambda}_{\tilde{\mu}} p^{X}_{\lambda\nu} \simeq_{G} (p^{X}_{\lambda})_{\tilde{\mu}}$. This implies Lemma 3.2 and completes a proof of Theorem 1. q. e. d.

4. The case when G is a finite group

Let G be a finite group and X a G-space. Then (1) of Theorem 2 is a consequence of Theorem 1 and the fact that a G-ANR has the G-homotopy of a G-CW complex and vice versa (cf. [9] and [4, Appendix] or [10]). Pop [10] also defines the equivariant shape theory for a finite group G. In the case that X is normal, (2) and (3) of Theorem 2 enrich the result.

LEMMA 4.1. Let $G = \{g_1, \dots, g_n\}$ be a finite group. For any numerable covering $U = \{U_\alpha, \rho_\alpha\}$ of a G-space X we have a numerable G-equivariant cover-

ing \heartsuit of X such that $\heartsuit \lt \heartsuit$.

PROOF. It suffices to take the covering CV consisting of $g_1^{-1}U_{\alpha_1} \cap \cdots \cap g_n^{-1}U_{\alpha_n}$ with $\rho_{\alpha_1}(g_1x) \cdots \rho_{\alpha_n}(g_nx)$. In fact, $g_i(g_1^{-1}U_{\alpha_1} \cap \cdots \cap g_n^{-1}U_{\alpha_n}) \subset U_{\alpha_i}$ and the sum $\sum \rho_{\alpha_1}(g_1x) \cdots \rho_{\alpha_n}(g_nx)$ is equal to $(\sum \rho_{\alpha_1}(g_1x)) \cdots (\sum \rho_{\alpha_n}(g_nx)) = 1$. Note that we do not require $gV_{\beta} \cap V_{\beta} \neq \emptyset$ implies $gV_{\beta} = V_{\beta}$ for the numerable G-equivariant covering.

PROOF OF (2) OF THEOREM 2. Lemma 4.1 implies that $p^X: X \to \check{C}_G(X)$ is also a (non-equivariant) CW expansion of X [4, Ch. I, § 1, Th. 1; § 2, Rem. 3]. Assume that X is a normal space. For a subgroup H of G any numerable covering U_H of the closed subspace X^H extends to a numerable covering U of X i.e., $U_H = \{U \cap X^H; U \in U\}$. We may assume that if $U \cap X^H = \emptyset$ then U is not H-invariant for $U \in U$. So, we see that $\check{C}_G(X)^H \simeq \check{C}_{W(H)}(X^H)$ for a normal G-space X where W(H) = N(H)/H and $N(H) = \{g \in G; gHg^{-1} = H\}$. Now we have proved (2) of Theorem 2 by considering X^H a W(H)-space. q. e. d.

LEMMA 4.2. Let G be a finite group. Let X and Y be G-CW complexes and $h_H: X^H \to Y^H$ maps satisfying $g_*h_H \simeq h_{H'}g_*$ for every pair of subgroups $H' \subset gHg^{-1}$ where $g_*(x) = gx$. Then there is a G-map $f: X \to Y$ such that $f \mid X^H \simeq h_H$ for every subgroup H of G.

PROOF. Choose a family of representatives $\{H_1, \cdots, H_m\}$ of conjugacy classes of subgroups of G. For G-0-cell $\sigma: \Delta^0 \times G/H_i \to X$ we define $f \mid X^0$ by $f(\sigma(\Delta^0 \times gH_i/H_i)) = g_*h_{H_i}(\sigma(\Delta^0 \times H_i/H_i))$. Assume that a G-map $f \mid X^{n-1}$ is defined and for $H = H_i$ there are given homotopies between $f \mid \sigma(\Delta^k \times H/H)$ and $h_H \mid \sigma(\Delta^k \times H/H)$ in Y^H which extend the homotopies on the boundaries as an induction hypothesis for k < n. Then, for a G-n-cell $\sigma: \Lambda^n \times G/H \to X$ with $H = H_i$, $h_H \mid \sigma(\partial \Delta^n \times H/H)$ is homotopic to $f \mid \sigma(\partial \Delta^n \times H/H)$. We can now define $f \mid \sigma(\Delta^n \times H/H)$ by the homotopy on the collar and by h_H on the interior. Extending f on $\sigma(\Delta^n \times G/H)$ so that f becomes G-equivariant, $f \mid X^n$ satisfies also the induction hypothesis. So, we get a G-map $f: X \to Y$ such that $f \mid X^H \simeq h_H$.

PROOF OF (3) OF THEOREM 2. If $f: X \to Y$ induces an isomorphism $\check{C}_G(f)$: $\check{C}_G(X) \to \check{C}_G(Y)$ in pro- \mathscr{W}_G , then all $\check{C}_G(f)^H : \check{C}_G(X)^H \to \check{C}_G(Y)^H$ are isomorphisms in pro- \mathscr{W} . This means that all $f^H : X^H \to Y^H$ are shape equivalences by (2) of Theorem 2. Now suppose that all $f^H : X^H \to Y^H$ are shape equivalences. Then, also by (2) of Theorem 2, $\check{C}_G(f)^H = (f_\mu^H, \lambda) : \check{C}_G(X)^H \to \check{C}_G(Y)^H$ are isomorphisms in

pro- \mathcal{W} . Let $q_H = ((q_H)_{\lambda}, \mu) : \check{C}_G(Y)^H \to \check{C}_G(X)^H$ be pro- \mathcal{W} inverses of $\check{C}_G(f)^H$. Then $(q_H)_{\lambda} f_{\mu}^H p_{\lambda',\lambda}^{X,H} \simeq p_{\lambda\lambda}^{X,H}$ for some $\tilde{\lambda} \geq \lambda'$ and $f_{\mu}^H p_{\lambda',\lambda}^{X,H} (q_H)_{\tilde{\lambda}} p_{\mu',\mu}^{Y,H} \simeq p_{\mu\mu}^{Y,H}$ for some $\tilde{\mu} \geq \mu'$. Here we abbreviate $\mu = \mu(\lambda)$, $\lambda' = \lambda(\mu)$ and $\mu' = \mu(\tilde{\lambda})$. By taking μ , λ' , $\tilde{\lambda}$, μ' and $\tilde{\mu}$ equal to or bigger than the ones for each H, we may assume that they do not depend on H. Note that if $H' \subset gHg^{-1}$ then $g_* f_{\mu}^H \simeq f_{\mu'}^{H'} g_*$, $g_* p_{\lambda\lambda'}^{X,H} \simeq p_{\lambda\lambda'}^{X,H'} g_*$ and $g_* p_{\mu\mu'}^{Y,H} \simeq p_{\mu\mu'}^{Y,H'} g_*$. We have in this case the following diagram:

In the diagram we omit to write $p_{\mu',\mu}^{Y,H}$, $p_{\mu',\mu}^{Y,H'}$, $p_{\lambda',\lambda}^{X,H}$ and $p_{\lambda',\lambda}^{X,H'}$. Not necessarily $g_*(q_H)_{\lambda} \simeq (q_{H'})_{\lambda} g_*$ but we have $g_*(q_H)_{\lambda} p_{\mu,\mu}^{Y,H} \simeq (q_{H'})_{\lambda} p_{\mu,\mu}^{Y,H'} g_*$, because $g_*(q_H)_{\lambda} p_{\mu,\mu}^{Y,H} \simeq g_*(q_H)_{\lambda} p_{\mu,\mu}^{Y,H} \simeq (q_{H'})_{\lambda} p_{\mu,\mu}^{Y,H} = (q_{H'})_{\lambda} p_{\mu,\mu}^{Y,H} \simeq (q_H)_{\lambda} p_{\mu,\mu}^{Y,$

Reserences

- [1] Antonian, S. A. and Mardešić, S., Equivariant shape, Fund. Math. 127 (1987), 213-223.
- [2] Borsuk, K., Theory of shape, Monografie Matematyczne 59, Polish Scientific Publishers, Warszawa, 1975.
- [3] Dydak, J. and Segal, J., Shape theory, An introduction, Lecture Notes in Math. 688, Springer, Berlin, 1978.
- [4] Mardešić, S. and Segal, J., Shape theory, The inverse system approach, North-Holland Math. Library 26, Amsterdam, 1982.
- [5] Matumoto, T., G-CW complexes and a theorem of J.H.C. Whitehead, J. Fac. Sci. Univ. Tokyo, IA 18 (1971), 109-125.
- [6] ——, A complement to the theory of G-CW complexes, Japan. J. Math. 10 (1984), 353-374.
- [7] Matumoto, T., Minami, N. and Sugawara, M., On the set of free homotopy classes and Brown's construction, Hiroshima Math. J. 14 (1984), 359-369.
- [8] Morita, K., Theory of shape (in Japanese), Sûgaku 28 (1976), 335-347.
- [9] Murayama, M., On G-ANR's and their G-homotopy types, Osaka J. Math. 20 (1983), 479-512.
- [10] Pop, I., An equivariant shape theory, An. Stint. Univ. "A1. I. Cuza" Iaşi s. Ia Mat. 30-2 (1984), 53-67.

- [11] Smirnov, Yu. M., Shape theory of G-pairs, Uspekhi Mat. Nauk 40:2 (1985), 151-165=Russian Math. Surveys 40:2 (1985), 185-203.
- [12] Whitehead, J. H. C., On C^1 -complexes, Ann. Math. 41 (1940), 809-824.

Department of Mathematics Faculty of Science Hiroshima University Hiroshima 730, Japan