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EQUIVARIANT CW COMPLEXES AND SHAPE THEORY
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The aim of this note is to study a discrete group equivariant shape theory
by associating an inverse system in the homotopy category of equivariant CW
complexes.

1. Introduction

Let G be a discrete group and X a G-space. For a subgroup H of G we
denote X¥={xcX; gx=x for every gH}. For a G-map f:X—-Y of X to
another G-space Y, we denote fH¥=f|X¥#: X¥F>YH  Let 4 denote the cate-
gory of G-spaces and G-homotopy classes of G-maps and %W¢ the full subcategory
of 4¢ consisting of G-spaces which have the G-homotopy types of G-CW com-
plexes.

THEOREM 1. There is a functor Ce from YL into the pro-category pro-We
of Wa so that éG(X):(X,z, [p% e, A) has the universal property for the equi-
variant shape theory with a system G-map pxz([pﬁ"]a):XeéG(X), that 1s,
p*: X—Co(X) is a G-CW expansion of X.

When G is a finite group, we know that a G-ANR has the G-homotopy
type of a G-CW complex and vice versa. Also any numerable covering has a
refinement of numerable G-equivariant covering. So, we have

TNEOREM 2. Let G be a finite group and X a G-space.

(1) Any G-ANR expansion of X is equivalent to p*: X—Co(X).

(2) The expansion p*: X—Co(X) is a (non-equivariant) CW expansion of X.
Moreover, if X is a normal G-space, then pX-H=([pF #]): X5 Cy(X)E=
(XH, [p%H], A) is a CW expansion for every subgroup H of G.

(8) Let f: XY be a G-map between normal G-spaces. Then, éa(f): éG(X)
—»CV(;(Y) is an isomorphism in pro-We if and only if f#: X¥—YH is a shape
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equivalence for every subgroup H of G.

The case when G is a finite group is also treated by Pop [10]. But he did
not mention on (2) and (3) of We note also that Antonian-Mardesi¢
[1] defined the equivariant ANR shape for compact groups. Our treatment in
the case when G is not a discrete group will be discussed elsewhere.

2. A quick review of shape theory

The general references are [3], and [8]. Borsuk (1968) defined the
shape for compact metric spaces, Mardesi¢-Segal (1971) for compact Hausdorff
spaces, Fox (1972) for metric spaces, and Mardesi¢ (1973) and K. Morita (1975)

for topological spaces.

Let X=(X,, par, A) and Y=, guu, M) be inverse systems in a category
C. A system map of X to Y consists of §: M—A and morphisms f,: Xocu
—Y , in C satisfying guu fu Do ra=fubouor for p=<p’, 0(p')<4 and O(p)=A.
Two system maps (f,, ) and (f},, 8') are said to be equivalent if each peM
admits a €4, 1=0(p) and A=60'(y), such that fupocwai=rfpbe w2 The pro-
category pro-C of the category C is defined by Obj (pro-C)=all inverse systems
in ¢ and Mor (X, Y)=equivalence classes of system maps of X to Y. Let 9
be a full subcategory of €. A D-expansion p=(p;): X—X of X is a system
map which is characterized by the following universal properties due to Mardesi¢
[4, Ch. I, Th. I]:

(0) X9 for each 2= 4.

(1) For any map f: X—K with K9 there exists a morphism 4;: X;—K
such that f=h;p,.

(2) If f=g.p, then there is a 4’=2 such that h;pirr=gi1para .

We give an exact definition of Cech expansion and Cech system due to
Morita. Let 99 be the homotopy category of spaces which have homotopy type
of CW complexes.

For a space X we associate an inverse system é(X):(X;, [p%1, A) in W
by

{U:}1es4=all numerable coverings of X, A’'=1 iff U, <U;;
X;=N(U,) and pf : N(Uy)— N(U,),

where N(€U,) is the nerve of U,;={U%} and pf is a simplicial map defined by
choosing p=pf so that U CUj%.,,. The homotopy class [pf ] is independent
of the choice of 5. Then the inverse system 5(X ) in pro-9 well-defined and
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is called the Cech system of X. Here a pointwise finite covering U={U,} of
X is called numerable if it admits a locally finite partition of unity {p.} i.e., a
family of continuous functions p,: X—[0, 1] with Zp,=1 and p;'(0, 1JCU,
such that {p3;'(0, 1]} is a locally finite covering of X. By the locally finite
partition of unity {p.} subordinate to U; we have a map pf: X— X, defined
by pF(x)=2p.(x)XU,.> where <U,>=X; is the vertex corresponding to U,. A
different choice of the locally finite partition of unity gives another map con-
tiguous to p¥. So, the homotopy class of pf depends only on U; and p%& p¥
~pZ. Then p¥=([pZ]): X—C(X) is a W-expansion and called the Cech expan-
sion of X.

Any W-expansion X—X is equivalent to the Cech expansion p¥: X—>5(X ).
The equivalence class of 9/-expansion of X is called the shape of X.

3. Equivariant Cech system é’G(X ) (Proof of Theorem 1)

Let G be a discrete group and X a G-space. An open covering U={U,}
of X is called a numerable G-equivariant covering if gU,.=U,,=%U for each
U,=9U and g=G and if U has a locally finite partition of unity {p.} such
that pga(x)=pa(g7'x) for any g=G and the following three sets have finite
differences:

{2€G; ga=a i.e., pa=p.1C{gEC; gUa=UoC{gEC; gUNU#*D}.

The nerves X;=N(U;) of the numerable G-equivariant coverings U; of X
induce an inverse system Co(X)=(X3, [pEJe, A) in We with a system G-map
pX=([p¥le: X—X;) such that p¥=~g; p& pZ. The G-homotopy classes [pf]¢
and [p£ s are also well-defined by the argument using contiguity as in the
non-equivariant case.

For a G-map f:X-Y a system G-map 5G(f)=([fp]g, 0): ég(X)z
(X1, [p% 16, A)—Co(Y)=(Y ,,, [pX, 1o, M) is defined so that pYf=gf.pfm. In
fact, a numerable G-equivariant covering <V,={V4, ps} of Y induces a covering
V= {f""(V%), psf} of X, which is numerable G-equivariant and may be
denoted by Ug¢p, and f,: N(f 'V, )—»N(<V,) defined by the natural inclusion
satisfies the required G-homotopy equality.

Hereafter we will omit [ Js to avoid complexity of notation.

LEMMA 3.1. Let K be a G-CW complex. Then, the system G-map p¥: K—
¢ ¢(K) is an isomorphism in pro-We.

LEMMA 3.2. For a G-space X we take a G-map pf: X—Xi in the system
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G-map p¥=(p¥): X—»C’G(X) and consider a system G-map éG(pl):((p{)#, Q)
C\/‘/G(X)HC"G(XZ). Then, there is a v with v=2 and v=¢@i(p) such that pipi=e¢

(D) b, s, where pi denotes py.

LEMMA 3.3 (Universal property for equivariant shape). Let p*¥=(pf): X—
CVG(X):-(X;, p%, A) be the system G-map defined above. Let K be a G-CW
complex and f: X—K a G-map.

(1) There exist a 2 and a G-map h: X;—K such that f=¢hp¥.

(2) If f=cgpX for any other G-map g: Xi;—K, then there is a v with v=2
such that hpf~¢gpk.

PROOF OF LEMMA 3.3 AND THEOREM 1 FROM LEMMAS 3.1 AND 3.2. [Lemmal
3.3 is a detailed restatement of [Theorem 1. Lemmas[3.1 and 3.2 imply
3.3 in a standard way. In fact, the system G-map éa( f): (‘I/G(X)—@’G(K ) consists
of 8: M—>A and G-maps f,: Xow—K, By we have a g and a
G-map ¢: K,—K such that ¢gp¥~sidx. Now it suffices to define A=6(y) and
h=qf, to prove (1), because ¢f ,pFm=cgpEkf=c f. To prove (2) we note that
98 P4, =c & replacing X, f and @ with X;, g and 6, respectively. By
3.1 there is a G-map ¢’:(X;),—X; with v=80;(¢) such that ¢'pi~sid and
piq’ pii=~¢ pk for some P=v, where pi. denotes prt. So, gq'pl=~cqg.pls. Here
we retake 6:(g)=y. Take the G-map (p¥);: X, —(X1); by putting v =¢(®).
Then, since gpf=¢f, we have a ¥ with §’=y" and §"=60(yg) such that
Gubl(pepEe =6 f upFsr. S0, 8¢’ pi(pFNipFs =6 qf up&ws. On the other hand
by Lemma 3.2 we have pl(pf)ip¥s =¢ pip%,, if necessary retaking a larger ¥’
Hence, gp%, =6 qf upfwe =a hp%,. q.e.d.

PrROOF OF LEMMA 3.1. We consider a natural G-map o¢: |S(K)|—K for the
geometric realization of the singular complex of K. Since |S(K)|¥=|S(K#)],
we see that ¢ is a G-homotopy equivalence. Since a G-homotopy equivalence
induces an isomorphism éa(-) in pro-%g, the proof reduces to the following two
lemmas.

LEMMA 3.4. For a G-space X, |S(X)| admits a G-equivariant triangulation.

LEMMA 3.5. For a G-equivariantly triangulated G-space K, p¥: K—»éa(K)
is an isomorphism in pro-We. Moreover, suppose p is given then there are a
(2 and a G-map q: K;—K such that q is the G-homotopy inverse to p¥.

PROOF OF LEMMA 3.4. We know that there is a G-homeomorphism between
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IS(X)| and |Sd S(X)| where Sd S(X) is a barycentric subdivision of the singular
s.s. complex S(X) of X. Note that the natural quotient map |Sd S(X)|—
|Sd S(X)/G| restricts to a homeomorphism on any cell of |Sd S(X)|. So, a
triangulation of the regular CW complex |Sd S(X)/G]| lifts to a G-equivariant
triangulation of |Sd S(X)]. qg.e.d.

Proor orF LEMMA 3.5. For each vertex v we take an open star neighbor-
hood U,. Then, v, ---, v, are the vertices of the same simplex if and only if
Uy -+ NU,, is not empty. If necessary by taking a barycentric subdivision,
we may assume the following: If gv and v are in the same simplex of K
then gv=v and hence U, ,NU,# @ implies gv=v. We put g, (x)=the coefficient
of x with respect to v. Then the G-map p: K—~N({U,}) defined by {g,} is not
only a bijection but also a G-homeomorphism. Note here that p,(gx)=p.(x) if
gv=v. Now we make the support of g, smaller and get a locally finite G-
equivariant partition of unity p, so that U={U,, p,} is a numerable G-equivari-
ant covering and p: K—N(U), defined by {p,}, is G-homotopic to p: K—N(V).
If we take a subdivision of K fine enough at first, we may assume that U<U,.
Take this U as Uy Then pz: K—K;=N(U;) is a G-homotopy equivalence.
This finishes the proof of and also Lemma 3.1l q.e.d.

Proor orF LEMMA 3.2. Note that X; is equivariantly triangulated. By the
proof of we have a g (=p) and a subdivision X} of X; such that
Uy is the open star covering of X} and p%: Xj—(X1);=N(U;) is G-homotopic
to the natural identification. The G-map p¥ induces a numerable G-equivariant
covering U,=(pF)(Uy) of X and the natural inclusion (pF);: X,=N(U,)—(X2)s
=N(U;). The G-map pf is the composition of the inclusion X,—X} with a
simplicial G-map X;—X; given by choosing a refinement. Hence p'};p{i:a(p{)ﬁ.

This implies and completes a proof of [Theorem 1. q.e.d.

4. The case when G is a finite group

Let G be a finite group and X a G-space. Then (1) of is a
consequence of [Theorem 1 and the fact that a G-ANR has the G-homotopy of
a G-CW complex and vice versa (cf. [9] and [4, Appendix] or [10]). Pop
also defines the equivariant shape theory for a finite group G. In the case that
X is normal, (2) and (3) of enrich the result.

LEMMA 4.1. Let G={gi, -, g»} be a finite group. For any numerable
covering U={U,, pa} of a G-space X we have a numerable G-equivariant cover-
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ing &V of X such that V<U.

ProoF. It suffices to take the covering <V consisting of g7'U.,MN - Ng7'Va,
With 04,(g1%) ** Pa,(g2x). In fact, g(g7'Ua,N - Ng3'Ue,)U,, and the sum
D0, (81%) -+ Pa,y(8ax) is equal to (T pa,(g:1%)) - (X pa,(gnx))=1. Note that we
do not require gVN\Vz+@ implies gVg=V, for the numerable G-equivariant
covering. gq.e.d.

PROOF OF (2) OF THEOREM 2. Lemma 4.1 implies that p¥: X—Ca(X) is
also a (non-equivariant) CW expansion of X [4, Ch. I, §1, Th. 1; §2, Rem. 3].
Assume that X is a normal space. For a subgroup H of G any numerable
covering Uy of the closed subspace X¥ extends to a numerable covering U of
Xie., Ug={UNX";UcsvU}. We may assume that if UNX¥=@ then U is
not H-invariant for Ue4U. So, we see that éG(X YH zéw<H,(X”) for a normal
G-space X where W(H)=N(H)/H and N(H)={geG; gHg'=H}. Now we
have proved (2) of by considering X¥ a W(H)-space. g.e.d.

LEMMA 4.2. Let G be a finite group. Let X and Y be G-CW complexes
and hg: XESYH maps satisfying gxhup=hy g« for every pair of subgroups
H'cCgHg™! where g«(x)=gx. Then there is a G-map f: X—Y such that f|X¥
~hy for every subgroup H of G.

PrROOF. Choose a family of representatives {H,, ---, H,} of conjugacy
classes of subgroups of G. For G-O-cell ¢: 4°XG/H,—X we define f|X° by
fle(d° X gH;/H)=g«hy (0(4° X H;/H,)). Assume that a G-map f| X" is defined
and for H=H; there are given homotopies between f|a(4d*XH/H) and
hylo(d*xH/H) in Y¥ which extend the homotopies on the boundaries as an
induction hypothesis for k<n. Then, for a G-n-cell ¢: A"XG/H—X with
H=H,;, hy|o(@4*xH/H) is homotopic to flo(@4" X H/H). We can now define
fle(4® X H/H) by the homotopy on the collar and by Ay on the interior. Ex-
tending f on ¢(4"XG/H) so that f becomes G-equivariant, f|X™" satisfies also
the induction hypothesis. So, we get a G-map f: X—Y such that f|X¥~hy.

q.e.d.

PROOF OF (3) OF THEOREM 2. If f: X—Y induces an isomorphism Cg(f):
éG(X )—»50(1’) in pro-3g, then all éa( NHE: éG(X)”—>(‘,"G(Y)” are isomorphisms in
pro-9¥. This means that all f¥: X#->Y¥ are shape equivalences by (2) of
Now suppose that all f¥: X¥—Y ¥ are shape equivalences. Then,
also by (2) of Theorem 2, Co(f)¥=(f¥, 2): Ca(X)¥—Ce(Y)¥ are isomorphisms in
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pro-W. Let gu=(qu)i, 1): Co(Y)T—-C o(X)™ be pro-9 inverses of Cs(f). Then
@ fEpEF=pT:¥ for some A=2" and f{,’p;",-{’(g;,);pﬁ;g:pzk” for some g=p'.
Here we abbreviate p=p(), =2A(g) and p’=p(d). By taking g, ', 1, ¢’ and g
equal to or bigger than the ones for each H, we may assume that they do not
depend on H. Note that if H'CgHg™ then guf¥=f1gx, gsdHT=p5"?
and g«ph7 =pL.7 g«. We have in this case the following diagram:

(g Il)1 (q}l)l

YH > yu X" > X¥ " YH Xf
g g g
1},,,* 2 ij, le,* 2 lg* % };I'H:'(q”')z Xl”'

In the diagram we omit to write pY L ;bY D ', p¥# and p¥f'. Not necessarily
g+(qm)a=(qm)agx but we have g*(qy)zpﬁ,{’z(qH')xp”'”'g*, because g«(gm)apy ;"
zg*(q;;)zfﬁﬁf';”(qﬂ)mﬁ:ﬁ Zg*ﬁfj’”@ll)ﬁﬁﬁff ~pis g*((]H)APY H"’(‘]H')fo' il
'g*(qy)ipzig = (qu' ) g*fﬁﬁf’f@ﬁ)i?ﬁ?? = (QH')zg*P,I:,;H =~ (QH')LD;;;H 8x- ThlS
means that we may assume g«(gg)i=(qn )18« for every H, H and g by retak-
ing @ as p(d). By we get a new G-map ¢i: Y 4a—X; such that
g¥=(gy): for every subgroup H of G. Note that ¢f fZapXitmi=p5¥ for
some 1=A(p(A)) and every H. So, applying the same argument of Lemma 4.2,
we can get a G-homotopy between g:f .ci>pipca»z and p%;. Also, we have a
G-homotopy between f.gicmPhcacuns and ph; for some g= p(A(w). g.e.d.
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