ITERATED TILTED ALGEBRAS INDUCED FROM COVERINGS OF TRIVIAL EXTENSIONS OF HEREDITARY ALGEBRAS

By
Hiroshi Okuno

Introduction.

Recently the relations between tilting theory and trivial extension algebras are deeply studied. Let A and B be basic connected artin algebras over a commutative artin ring C. In [6] Tachikawa and Wakamatsu showed that the existence of stably equivalence between categories over the trivial extension algebras $T(A)=A \ltimes D A$ and $T(B)=B \ltimes D B$ under the assumption that there is a tilting module T_{A} with $B=\operatorname{End}\left(T_{A}\right)$. In case C is a field, Hughes and Waschbüsch proved that if $T(B)$ is representation-finite of Cartan class Δ, then there exists a tilted algebra A of Dynkin type Δ such that $T(B) \cong T(A)$ [4]. Assem, Happel and Roldan showed that, for an algebra B over an algebraically closed field, $T(B)$ is representation-finite iff B is an iterated tilted algebra of Dynkin type [1]. However in case $T(B)$ is not of finite representation type the condition $T(B) \cong T(A)$ with A hereditary does not forces B to be an iterated tilted algebra.

Let's consider the covering \hat{A} of $T(A)$ [4]. The author proved that the condition $\hat{A} \cong \widehat{B}$ implies $T(A) \cong T(B)$ and that the converse holds if $T(A)$ is re-presentation-finite [5]. In this paper, we prove that the condition $\hat{B} \cong \hat{A}$ with A hereditary implies that B is an iterated algebra obtained from A. It is to be noted that in case A is not necessary representation-finite. Moreover, the proof of our theorem shows that such an algebra B is obtained by at most 3 m times processes tilting from A, where m is the number of non-isomorphic primitive idempotents of A.

1. Preliminaries.

In this section, we recall some definitions and important results. Let A be an artin algebra. An A-module T_{A} is said to be a tilting module provided the following three conditions are satisfied,
(1) proj. $\operatorname{dim} T_{A} \leqq 1$

Received July 25, 1987.
(2) $\operatorname{Ext}_{A}^{1}\left(T_{A}, T_{A}\right)=0$.
(3) There is an exact sequence $0 \rightarrow A \rightarrow T_{1} \rightarrow T_{2} \rightarrow 0$ with T_{1}, T_{2} direct sums of direct summands of T_{A}.

Bongartz [2] showed that T_{A} is a tilting module if and only if T_{A} satisfied the three conditions (1), (2) and (4) instead of (3).
(4) T_{A} has m non-isomorphic indecomposable direct summands where m is the number of non-isomorphic simple modules of $\bmod A$.

Moreover let $\left.B=\operatorname{End} T_{A}, \mathscr{(} T_{A}\right)=\left\{X \in \bmod A \mid \operatorname{Ext}_{A}^{1}(T, X)=0\right\}=$ the full subcategory of all modules generated by T_{A} and $\mathscr{F}\left(T_{A}\right)=\left\{X \in \bmod A \mid \operatorname{Hom}_{A}(T, X)=0\right\}$ $=$ the full subcategory of all modules cogenerated by $\tau_{A} T_{A}$. Then $\left(\mathscr{G}\left(T_{A}\right), \mathscr{G}\left(T_{A}\right)\right)$ forms a torsion theory for $\bmod A$, and there are two corresponding full subcategories of $\bmod B$ defined by $\mathscr{X}\left({ }_{B} T\right)=\left\{Y \in \bmod B \mid Y \otimes_{B} T=0\right\}$ and $\mathscr{Y}\left({ }_{B} T\right)=$ $\left\{Y \in \bmod B \mid \operatorname{Tor}_{1}^{B}(Y, T)=0\right\}$. Then we have the following;

Theorem of Brenner-Butler.

${ }_{B} T$ is also a tilting module with End ${ }_{B} T \cong A . ~ G\left(T_{A}\right), Q_{J}\left({ }_{B} T\right)$ are equivalent under the restrictions of $\operatorname{Hom}_{A}\left(T_{A},-\right),-\bigotimes_{B} T$ which are mutually inverse each other, and similarly, $\mathscr{F}\left(T_{A}\right), \mathscr{X}\left({ }_{B} T\right)$ are equivalent under the restrictions of $\operatorname{Ext}_{A}^{1}\left(T_{A},-\right), \operatorname{Tor}_{1}^{B}\left(-,{ }_{B} T\right)$ which are mutually inverse to each other.

A series $\left(A_{i}, T_{i}\right)_{0 \leq i \leq s}$ will be called a splitting tilting series if it satisfies following three conditions;
(1) A_{i} is an artin algebra for $0 \leqq i \leqq s$ and T_{i} is an A_{i}-tilting module for $0 \leqq i \leqq s-1$.
(2) $A_{i+1}=\operatorname{End} T_{i}$ for $0 \leqq i \leqq s-1$.
(3) The induced tortion theories $\left(\mathscr{X}\left(T_{i}\right), \mathscr{Y}\left(T_{i}\right)\right)$ are all splitting.

An artin algebra B will be called an iterated tilted algebra if there exists a splitting tilting series $\left(A_{i}, T_{i}\right)_{0 \leq i \leq s}$ such that A_{0} is hereditary and $A_{s} \cong B$. On the other hand Hoshino [3] proved that $\left(\mathscr{X}\left({ }_{B} T\right), \mathscr{Y}\left({ }_{B} T\right)\right)$ is splitting if and only if inj. $\operatorname{dim} X \leqq 1$ for all $X \in \mathscr{F}\left(T_{A}\right)$.

Again let T_{A} be a tilting module with End $T_{A}=B$. Tachikawa and Wakamatsu [7] showed the existence of stable equivalence S between $T(A)$ and $T(B)$, and it satisfies that $S(X) \cong \operatorname{Hom}_{A}(T, X)$ for $X \in \mathscr{G}\left(T_{A}\right)$ and $S(Y) \cong \Omega_{T(B)} \operatorname{Ext}_{A}^{1}(T, Y)$ for $Y \in \mathscr{F}\left(T_{A}\right)$ where $\Omega_{T(B)}$ is the loop functor of Heller.

Hughes and Waschbüsch [4] introduced the following doubly infinite matrix algebra;

$$
\left[\begin{array}{lllllllll}
* & * & & & & & & \\
& * & * & & & & & \\
& & A_{n-1} & M_{n-1} & & & & \\
& & & A_{n} & M_{n} & & & & \\
& & & & A_{n+1} & M_{n+1} & & \\
& & & & & * & * & \\
& & & & & & & * & \\
& & & & & & & * & *
\end{array}\right]
$$

in which matrices are assumed to have only finitely many entries different from zero, $A_{n} \cong A$ and $M_{n} \cong D A$ for all integers n, all the remaining entries are zero, and the multiplication is induced from the canonical maps $A \otimes_{A} D A \rightarrow D A$, $D A \bigotimes_{A} A \rightarrow D A$ and a zero map $D A \bigotimes_{A} D A \rightarrow 0$. The author [5] proved that $\hat{A} \cong \hat{B}$ if and only if A and B has the following triangular matrix decompositions (*);

$$
A=\left[\begin{array}{llllll}
S_{1} & M_{1} & & & & \\
& S_{2} & M_{2} & & & \\
& & * & * & & \\
& & & * & * & \\
& & & & S_{n-1} & M_{n-1} \\
& & & & & S_{n}
\end{array}\right]
$$

where S_{i} is an algebra for all i, M_{j} is an $S_{j}-S_{j+1}$-bimodule for all j and all the remaining entries are zero.

2. Construction of tilting modules.

First we will state the main result of this paper.
Theorem. Let A be a hereditary algebra. If $\hat{B} \cong \hat{A}$, then B is an iterated tilted algebra obtained from A.

This theorem can be proved by using the following proposition repeatedly.
Proposition. Let A and B be the following matrix algebras;

$$
A=\left[\begin{array}{ccc}
e_{1} A e_{1} & 0 & 0 \\
e_{2} A e_{1} & e_{2} A e_{2} & e_{2} A e_{3} \\
0 & 0 & e_{3} A e_{3}
\end{array}\right] \quad B=\left[\begin{array}{ccc}
e_{1} A e_{1} & 0 & 0 \\
e_{2} A e_{1} & e_{2} A e_{2} & 0 \\
0 & e_{3} D(A) e_{2} & e_{3} A e_{3}
\end{array}\right]
$$

where e_{1}, e_{2} and e_{3} are orthogonal idempotents of A and $e_{2} \neq 0 \neq e_{3}$. Assume that $\left(e_{2}+e_{3}\right) A\left(e_{2}+e_{3}\right)$ is hereditary. Then there exists a splitting tilting series $\left(A_{i}, T_{i}\right)_{0 \leq i \leq 3}$ such that $A_{0} \cong A$ and $A_{3} \cong B$.

Remark. The assumptions of this proposition immediately imply the following;
(1) A submodule of $e_{3} A$ is an A-projective module and $e_{3} A$ has no non-zero injective direct summands.
(2) A quotient module of $D\left(A\left(e_{2}+e_{3}\right)\right)$ is an A-injective module.

Proof of the proposition.
Let $F_{i}=\operatorname{Hom}_{A_{i}}\left(T_{i},-\right)$ and $F_{i}^{\prime}=\operatorname{Ext}_{A_{i}}^{1}\left(T_{i},-\right)$ for $0 \leqq i \leqq 2$.
(1) First tilting.

Let

$$
T_{0}=\left(e_{1}+e_{2}\right) A \oplus \tau_{A}^{-1}\left(e_{3} A\right) .
$$

(i) proj. $\operatorname{dim} T_{0} \leqq 1$.

It is sufficient to show that $\operatorname{Hom}_{A}\left(D A, \tau_{A}\left(T_{0}\right)\right) \cong \operatorname{Hom}_{A}\left(D A, e_{3} A\right)=0$. If f is a morphism from $D A$ to $e_{3} A$, then the image of f is projective and injective, and then it is zero.
(ii) $\operatorname{Ext}_{A}^{1}\left(T_{0}, T_{0}\right)=0$.

We have

$$
\begin{aligned}
\operatorname{Ext}_{A}^{1}\left(T_{0}, T_{0}\right) & \cong D \overline{\operatorname{Hom}}_{A}\left(T_{0}, \tau_{A}\left(T_{0}\right)\right) \\
& \cong D \overline{\operatorname{Hom}}_{A}\left(T_{0}, e_{3} A\right) \\
& \cong D \overline{\operatorname{Hom}}_{A}\left(\tau_{A}^{-1}\left(e_{3} A\right), e_{3} A\right)
\end{aligned}
$$

and $\operatorname{Hom}_{A}\left(\tau_{A}^{-1}\left(e_{3} A\right), e_{3} A\right)=0$ because $\tau_{A}^{-1}\left(e_{3} A\right)$ has no non-zero projective direct summands.
(i), (ii) and the number of indecomposable summands of T_{0} show that T_{0} is a tilting module.
(iii) $\left(\mathfrak{X}\left(T_{0}\right), \mathscr{y}\left(T_{0}\right)\right)$ is splitting.

By definition $\mathscr{F}\left(T_{0}\right)=$ add $e_{3} A$ where add $e_{3} A$ is the full subcategory of all direct sums of direct summands of T_{0}. From the assumption of A, the injective envelope of $e_{3} A$ is included in add $D\left(A e_{3}\right)$. Then inj. $\operatorname{dim} e_{3} A \leqq 1$.
(2) Second tilting.

Let

$$
T_{1}=F_{0}\left(e_{1} A\right) \oplus F_{0}\left(e_{2} A / e_{2} A e_{3}\right) \oplus F_{0}^{\prime}\left(e_{3} A\right) .
$$

(i) proj. $\operatorname{dim} T_{1} \leqq 1$.
(a) $F_{0}\left(e_{1} A\right)$ is projective.
(b) proj. $\operatorname{dim} F_{0}^{\prime}\left(e_{3} A\right) \leqq 1$,

Since T_{0} is an A-tilting module, there is an exact sequence

$$
0 \longrightarrow e_{3} A \longrightarrow X_{0} \longrightarrow X_{1} \longrightarrow 0
$$

where X_{1} and X_{2} are contained in add T_{0}. Then we have the following resolution;

$$
0 \longrightarrow F_{0}\left(X_{0}\right) \longrightarrow F_{0}\left(X_{1}\right) \longrightarrow F_{0}^{\prime}\left(e_{3} A\right) \longrightarrow 0
$$

(c) proj. $\operatorname{dim} F_{0}\left(e_{2} A / e_{2} A e_{3}\right) \leqq 1$.

We consider the exact sequence

$$
0 \longrightarrow e_{2} A e_{3} \longrightarrow e_{2} A \longrightarrow e_{2} A / e_{2} A e_{3} \longrightarrow 0
$$

By the assumption $e_{2} A e_{3}$ is contained in add $e_{3} A=\mathscr{F}\left(T_{0}\right)$. Then we have an exact sequence

$$
0 \longrightarrow F_{0}\left(e_{2} A\right) \longrightarrow F_{0}\left(e_{2} A / e_{2} A e_{3}\right) \longrightarrow F_{0}^{\prime}\left(e_{2} A e_{3}\right) \longrightarrow 0
$$

Projectivity of $F_{0}\left(e_{2} A\right)$ and (b) provide that proj. $\operatorname{dim} F_{0}\left(e_{2} A / e_{2} A e_{3}\right) \leqq 1$.
(ii) $\operatorname{Ext}_{A_{1}}^{1}\left(T_{1}, T_{1}\right)=0$.
(a) $\operatorname{Ext}_{A_{1}}^{1}\left(T_{1}, F_{0}^{\prime}\left(e_{3} A\right)\right)=0$.

Because $F_{0}^{\prime}\left(e_{3} A\right)$ is an injective module.
(b) $\operatorname{Ext}_{A}^{1}\left(F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{0} A\right), F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right)\right)=0$.

We have the following isomorphisms;

$$
\begin{aligned}
\operatorname{Ext}_{A_{1}}^{1} & \left(F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right), F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right)\right) \\
& \cong \operatorname{Ext}_{A}^{1}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A, e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right) \\
& \cong \operatorname{Ext}_{\left(e_{1}+e_{2}\right) A\left(e_{1}+e_{2}\right)}^{1}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A, e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right) \\
& =0,
\end{aligned}
$$

because $e_{2} A / e_{2} A e_{3}$ and $e_{1} A$ are $\left(e_{1}+e_{2}\right) A\left(e_{1}+e_{2}\right)$-projective modules.
(c) $\operatorname{Ext}_{A_{1}}^{1}\left(F_{0}^{\prime}\left(e_{3} A\right), F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right)\right)=0$.

Since $\tau_{A_{1}} F_{0}^{\prime}\left(e_{3} A\right) \cong F_{0}\left(D\left(A e_{3}\right)\right)$, then

$$
\begin{aligned}
& \operatorname{Ext}_{A_{1}}^{1}\left(F_{0}^{\prime}\left(e_{3} A\right), F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right)\right) \\
& \quad \cong D \overline{\operatorname{Hom}}_{A_{1}}\left(F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right), F_{0}\left(D\left(A e_{3}\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Hom}_{A_{1}}\left(F_{0}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right), F_{0}\left(D\left(A e_{3}\right)\right)\right) \\
& \quad \cong \operatorname{Hom}_{A}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A, D\left(A e_{3}\right)\right)=0
\end{aligned}
$$

(i) and (ii) shows that T_{1} is an A_{1}-tilting module.
(iii) $\left(\mathfrak{X}\left(T_{1}\right), \mathscr{Y}\left(T_{1}\right)\right)$ is splitting.

Let X be contained in $\Im\left(T_{1}\right)$ and I_{0} the injective hull of X. Since T_{1} has $F_{0}\left(e_{1} A\right)$ as a direct summand, I_{0} is contined in add $F_{0}^{\prime}\left(e_{3} A\right) \oplus F_{0}\left(D\left(A e_{2}\right)\right)$. The construction of T_{0} provides that a quotient module of $F_{0}^{\prime}\left(e_{3} A\right) \oplus F_{0}\left(D\left(A e_{2}\right)\right)$ is again contained in add $F_{0}^{\prime}\left(e_{3} A\right) \oplus F_{0}\left(D\left(A e_{2}\right)\right)$, then inj. dim $X \leqq 1$.
(3) Third tilting.

Let $D\left(A e_{3}\right) e_{3}=P \oplus M$ where P is a projective A-module and M has no nonzero projective direct summands. Then $F_{0}(M)$ is contained in $\mathscr{F}\left(T_{1}\right)$ because

$$
\begin{aligned}
\operatorname{Hom}_{A_{1}}\left(T_{1}, F_{0}(M)\right) & \cong \operatorname{Hom}_{A_{1}}\left(F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right), F_{0}(M)\right) \\
& \cong \operatorname{Hom}_{A}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}, M\right)=0 .
\end{aligned}
$$

Let

$$
T_{2}=F_{1} F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right) \oplus F_{1} F_{0}^{\prime}(P) \oplus F_{1}^{\prime} F_{0}(M)
$$

(i) proj. $\operatorname{dim}_{\mathrm{A}_{2}} T_{2} \leqq 1$.

It is sufficient to show that proj. $\operatorname{dim}_{A_{2}} F_{1}^{\prime} F_{0}(M) \leqq 1$. First we consider the projective resolution of M

$$
0 \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

where P_{0} and P_{1} is contained in add $e_{3} A$. And we have

$$
0 \longrightarrow F_{0}(M) \longrightarrow F_{0}^{\prime}\left(P_{1}\right) \longrightarrow F_{0}^{\prime}\left(P_{0}\right) \longrightarrow 0
$$

and $F_{0}^{\prime}\left(P_{0}\right)$ and $F_{0}^{\prime}\left(P_{1}\right)$ is conteined in add T_{1}. Then

$$
0 \longrightarrow F_{1} F_{0}^{\prime}\left(P_{1}\right) \longrightarrow F_{1} F_{0}^{\prime}\left(P_{0}\right) \longrightarrow F_{1}^{\prime} F_{0}(M) \longrightarrow 0
$$

is the projective resolution of $F_{1}^{\prime} F_{0}(M)$.
(ii) $\operatorname{Eet}_{\boldsymbol{A}_{2}}^{1}\left(T_{2}, T_{2}\right)=0$.

It is sufficient to show that $\operatorname{Ext}_{A_{2}}^{1}\left(F_{1}^{\prime} F_{0}(M), T_{2}\right)=0$.
(a) $\operatorname{Ext}_{A_{2}}^{1}\left(F_{1}^{\prime} F_{0}(M), F_{1}^{\prime} F_{0}(M)\right)=0$.

We have the following isomorphisms

$$
\begin{aligned}
\operatorname{Ext}_{A_{2}}^{1}\left(F_{1}^{\prime} F_{0}(M), F_{1}^{\prime} F_{0}(M)\right) & \cong \operatorname{Ext}_{A}^{1}(M, M) \\
& \cong \operatorname{Ext}_{e_{3} A e_{3}}^{1}(M, M)=0
\end{aligned}
$$

because M is an injective $e_{3} A e_{3}$-module.
(b) $\operatorname{Ext}_{A 2}^{1}\left(F_{1}^{\prime} F_{0}(M), F_{1} F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right)\right)=0$.

By the result of Tachikawa and Wakamatsu, we get

$$
\begin{aligned}
& \left.\operatorname{Ext}_{T\left(A_{2}\right)}\right)\left(F_{1}^{\prime} F_{0}(M), F_{1} F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right)\right) \\
& \quad \cong D \underline{\operatorname{Hom}}_{T\left(A_{2}\right)}\left(F_{1} F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right), \tau_{T\left(A_{2}\right)} F_{1}^{\prime} F_{0}(M)\right) \\
& \quad \cong D \underline{\operatorname{Hom}}_{T\left(A_{1}\right)}\left(F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right), \Omega_{T\left(A_{1}\right)} F_{0}(M)\right) \\
& \quad \cong D \underline{\operatorname{Hom}}_{T(A)}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}, \Omega_{T(A)} M\right)
\end{aligned}
$$

And the socle of $\Omega_{T(A)} M$ is contained in add $e_{3} A / \operatorname{rad} e_{3} A$, then

$$
\operatorname{Hom}_{T(A)}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}, \Omega_{T(A)} M\right)=0 .
$$

(c) $\operatorname{Ext}_{A_{2}}^{1}\left(F_{1}^{\prime} F_{0}(M), F_{1} F_{0}(P)\right)=0$.

Let M^{\prime} and P^{\prime} be indecomposable non-zero direct summands of M and P respectively. Then there exists a primitive idempotent e^{\prime} of A such that $P^{\prime} \cong D\left(A e^{\prime}\right) e_{3}$ Let

$$
0 \longrightarrow F_{1} F_{0}^{\prime}\left(P^{\prime}\right) \longrightarrow F_{1}(N) \oplus F_{1}^{\prime}\left(N^{\prime}\right) \longrightarrow F_{1}^{\prime} F_{0}\left(M^{\prime}\right) \longrightarrow 0
$$

be a non-split exact sequence where N and N^{\prime} is contained in $\mathscr{G}\left(T_{1}\right)$ and $\mathscr{G}\left(T_{1}\right)$ respectively. Then we have the exact sequence

$$
0 \longrightarrow N^{\prime} \longrightarrow F_{0}\left(M^{\prime}\right) \longrightarrow F_{0}^{\prime}\left(P^{\prime}\right) \longrightarrow N \longrightarrow 0
$$

and N and N^{\prime} are contained in $\mathscr{X}\left(T_{0}\right)$ and $\mathscr{Y}\left(T_{0}\right)$ respectively. So there exists a projective A-module Q such that $N \cong F_{0}^{\prime}(Q)$ and non-splitness of the first sequence shows that Q has no direct summands isomorphic to P^{\prime}. If Q is nonzero, there is a monomorphism from P^{\prime} to Q, and then the inclusion map from P^{\prime} to $D\left(A e^{\prime}\right)$ is extended to the map from Q to $D\left(A e^{\prime}\right)$. The existence of this extended map contradicts that $P^{\prime} \cong D\left(A e^{\prime}\right) e_{3}$. Then we assume that $N=0$. Applying $\otimes_{A_{1}} T_{0}$ to the second exact sequence, we get the non-split exact sequence

$$
0 \longrightarrow P^{\prime} \longrightarrow N^{\prime} \otimes_{A_{1}} T_{0} \longrightarrow M^{\prime} \longrightarrow 0
$$

But the last exact sequence is considered as an element of $\operatorname{Ext}^{1}{ }_{e_{3} A e_{3}}\left(M^{\prime}, P^{\prime}\right)$ and P^{\prime} is an injective $e_{3} A e_{3}$-module.
(iii) $\left(\mathscr{X}\left(T_{2}\right), \mathscr{Y}\left(T_{2}\right)\right)$ is splitting.

The algebra A_{2} can be represented by

$$
\operatorname{End}_{A_{1}}\left(T_{1}\right) \cong\left[\begin{array}{c}
\left.\operatorname{End}_{A_{1}}\left(F_{0}^{\prime}\left(e_{3} A\right)\right)\right) \operatorname{Hom}_{A_{1}}\left(F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}, F_{0}^{\prime}\left(e_{3} A\right)\right)\right) \\
0 \\
\operatorname{End}_{A_{1}}\left(F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right)\right)
\end{array}\right]
$$

and $\operatorname{End}_{A_{1}}\left(F_{0}^{\prime}\left(e_{3} A\right)\right) \cong e_{3} A e_{3}$ is hereditary. On the other hand T_{2} has $F_{1} F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right)$ as a direct summand, then a module contained in $\subseteq\left(T_{2}\right)$ is considered as $\operatorname{End}_{A_{1}}\left(F_{0}^{\prime}\left(e_{3} A\right)\right)$-module and its injective resolution as $\operatorname{End}_{A_{1}}\left(F_{0}^{\prime}\left(e_{3} A\right)\right)$ module coincides with that as A_{2}-module.
(4) $\quad \operatorname{End}_{A_{2}}\left(T_{2}\right) \cong B$.

We have the following isomorphisms;

$$
\begin{aligned}
\operatorname{End}_{\Lambda_{2}}\left(T_{2}\right) & \cong \operatorname{End}_{T\left(A_{2}\right)}\left(T_{2}\right) \\
& \cong \underline{\operatorname{End}}_{T\left(A_{1}\right)}\left(F_{0}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right) \oplus F_{0}^{\prime}(P) \oplus \Omega_{\bar{T}_{\left(A_{1}\right)}^{1}} F_{0}(M)\right) \\
& \cong \underline{\operatorname{End}}_{T(A)}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3} \oplus \Omega_{\bar{r}_{(A)}^{\prime}}^{1}(P) \oplus \Omega_{\left.\bar{T}_{(A)}^{1}\right)}(M)\right) \\
& \cong \underline{\operatorname{End}}_{T(A)}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3} \oplus \Omega_{T_{T}^{\prime}(A)}^{-1}\left(D\left(A e_{3}\right) e_{3}\right)\right) .
\end{aligned}
$$

Let J denote $\Omega_{\bar{T}_{(A)}^{1}}^{-1}\left(D\left(A e_{3}\right) e_{3}\right)$, and $e_{3} T(A)$ is the projective cover of J in $\bmod T(A)$

$$
0 \longrightarrow D\left(A e_{3}\right) e_{3} \longrightarrow e_{3} T(A) \longrightarrow J \longrightarrow 0 .
$$

Since the socle of $e_{3} T(A)$ and $J / \mathrm{rad} J$ are contained in add $e_{3} A / \mathrm{rad} e_{3} A$, we get

$$
\begin{aligned}
& \operatorname{Hom}_{T(A)}\left(J, e_{1} A \oplus e_{2} A / e_{2} A e_{3}\right)=0 \quad \text { and } \\
& \underline{\operatorname{Hom}}_{T(A)}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A, J\right) \cong \operatorname{Hom}_{T(A)}\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A, J\right) .
\end{aligned}
$$

If f is a $T(A)$-homomorphism from J to $e_{3} T(A)$, the A-homomorphism, induced by f, from $J \cdot D A \cong D\left(A e_{3}\right) / D\left(A e_{3}\right) e_{3}$ to $e_{3} T(A) \cdot D A \cong e_{3} D(A)$ is zero, and then f factors through $D\left(A e_{3}\right) e_{3}$. We have

$$
\operatorname{End}_{T(A)}(J) \cong \operatorname{End}_{T(A)}(J) .
$$

Then

$$
\operatorname{End}_{A_{2}}\left(T_{2}\right) \cong \operatorname{End}_{T(A)}\left(e_{1} A \oplus e_{2} A / e_{2} A e_{3} \oplus J\right)
$$

(i) $\operatorname{End}_{T(A)}\left(e_{1} A\right) \cong e_{1} A e_{1}$.

Clearly.
(ii) $\operatorname{End}_{T(A)}\left(e_{2} A / e_{2} A e_{3}\right) \cong e_{2} A e_{2}$.

The exact sequence in $\bmod A$

$$
0 \longrightarrow e_{2} A e_{3} \longrightarrow e_{2} A \longrightarrow e_{2} A / e_{2} A e_{3} \longrightarrow 0
$$

induces following two isomorphisms;

$$
\begin{aligned}
& \operatorname{Hom}_{A}\left(e_{2} A, e_{2} A\right) \cong \operatorname{Hom}_{A}\left(e_{2} A, e_{2} A / e_{2} A e_{3}\right) \quad \text { and } \\
& \operatorname{Hom}_{A}\left(e_{2} A / e_{2} A e_{3}, e_{2} A / e_{2} A e_{3}\right) \cong \operatorname{Hom}_{A}\left(e_{2} A, e_{2} A / e_{2} A e_{?} .\right.
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& \operatorname{End}_{T(A)}\left(e_{2} A / e_{2} A e_{3}\right) \cong \operatorname{End}_{A}\left(e_{2} A / e_{2} A e_{3}\right) \quad \text { and } \\
& \operatorname{End}_{A}\left(e_{2} A\right) \cong e_{2} A e_{2},
\end{aligned}
$$

(iii) $\operatorname{End}_{T(A)}(J) \cong e_{3} A e_{3}$.

We have $\operatorname{Hom}_{T(A)}\left(e_{3} T(A), J\right) \cong J e_{3} \cong e_{3} A e_{3}$. If f is a $T(A)$-homomorphism $e_{3} T(A)$ to J, the kernel of f contains $e_{3} D(A)$. Then

$$
\operatorname{Hom}_{T(A)}(J, J) \cong \operatorname{Hom}_{T(A)}\left(e_{3} T(A), J\right) \cong e_{3} A e_{3} .
$$

(iv) $\operatorname{Hom}_{T(A)}\left(e_{1} A, e_{2} A / e_{2} A e_{3}\right) \cong e_{2} A e_{1}$.

Because $\operatorname{Hom}_{T(A)}\left(e_{1} A, e_{2} A / e_{2} A e_{3}\right) \cong \operatorname{Hom}_{A}\left(e_{1} A, e_{2} A / e_{2} A e_{3}\right) \cong e_{2} A e_{1}$.
(v) $\operatorname{Hom}_{T(A)}\left(e_{2} A / e_{2} A e_{3}, e_{1} A\right)=0$.

Because $e_{1} A e_{2}=0$.
(vi) $\operatorname{Hom}_{T(A)}\left(e_{1} A, J\right)=0$.

Because $e_{3} A e_{1} \cong e_{1} A e_{3}=0$.
(vii) $\operatorname{Hom}_{T(A)}\left(e_{2} A / e_{2} A e_{3}, J\right) \cong e_{3} D(A) e_{2}$.

Because $\operatorname{Hom}_{T(A)}\left(e_{2} A, J\right) \cong \operatorname{Hom}_{A}\left(e_{2} A, e_{3} D(A) / e_{3} D(A) e_{3}\right) \cong e_{3} D(A) e_{2}$ and the kernel of an element of $\operatorname{Hom}_{T(A)}\left(e_{2} A, J\right)$ includes $e_{2} A e_{3}$.
(viii) $\operatorname{Hom}_{T(A)}\left(J, e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right)=0$.

Because $\left(e_{2} A / e_{2} A e_{3} \oplus e_{1} A\right) e_{3}=0$.
(ix) Multiplication

By the following commutative diagram we know the existence of an algebra isomorphism from B to $\operatorname{End}_{T\left(A_{2}\right)}\left(T_{2}\right)$.

This completes the proof of the proposition.

Proof of the Theorem.

Let A and B be the martix algebras (*), and R_{i} be the following matrix algebra;

then $R_{0}=A, R_{n-1}=B$ and we can apply the proposition to the pair (R_{i}, R_{i+1}) for $0 \leqq i \leqq n-2$.

Corollary. Let A be a hereditary algebra. If $\hat{A} \cong \hat{B}$, then B is given by at most 3 m times tilting from A where m is the number of non-isomorphic primitive idempotents of A.

3. Example.

Let Q_{0} and Q_{6} be the following quivers:

Let A be the path algebra $k Q_{0}$ and B the path algebra $k Q_{6}$ with relation $\operatorname{rad}^{2} B$ $=0$, where k is a field. By the theorem we get the following splitting tilting series $\left(A_{i}, T_{i}\right)_{0 \leq i \leq 6}$.

$$
\begin{aligned}
& A_{0}=A \\
& T_{0}=0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \\
& 00 \oplus 00 \oplus 11 \oplus 21 \oplus 10 \oplus 11 \\
& \begin{array}{llllll}
11 & 01 & 01 & 13 & 01 & 12
\end{array} \\
& \begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 1
\end{array}
\end{aligned}
$$

$A_{2}=k Q_{1}$
$T_{2}=0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0$
$00 \oplus 00 \oplus 10 \oplus 10 \oplus 11 \oplus 10$
$\begin{array}{llllll}01 & 00 & 00 & 00 & 00 & 11\end{array}$
$A_{3}=k Q_{3} \quad Q_{3}: \quad \nearrow \quad$ with relation $\operatorname{rad}^{2} A_{3}=0$.
$T_{3}=0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$
$00 \oplus 00 \oplus 11 \oplus 00 \oplus 11 \oplus 10$
$\begin{array}{llllll}01 & 00 & 10 & 11 & 10 & 10\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$
$A_{4}=k Q_{4} \quad Q_{4}: \quad$ with relation $\alpha \beta=\alpha \gamma=0$.

$T_{4}=0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$
$\begin{array}{cccccccc}00 & \oplus 00 & \oplus 11 & \oplus 00 & \oplus 00 \quad \otimes 10 \\ 01 & 00 & 10 & 11 & 00 & 00\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$
$A_{5}=B$
$T_{5}=A_{5}$
$A_{6}=B$.

References

[1] Assem, I., Happel, D. and Roldan, O., Representation-finite trivial extension algebras, J. Pure. Appl. Algebra 33 (1984), 235-242.
[2] Bongartz, K., Tilted algebras, Springer LNM 903 (1981), 16-38.
[3] Hoshino, M., On splitting torsion theories induced by tilting modules, Comm. Algebras 11 (1983), 427-440.
[4] Hughes, D. and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
[5] Okuno, H., Isomorphisms between the coverings of trivial extension algebras, Comm. Algebras 15 (1987), 791-812.
[6] Tachikawa, H. and Wakamatsu, T., Tilting functors and stable equivalences for selfinjective algebras, to appear in J. Algebra.
[7] Tachikawa, H. and Wakamatsu, T., Applications of refrection functors for selfinjective algebras, Springer LNM 1177 (1986), 308-327.

Depertment of Mathematics
Juntendou University
Hiragagakuendai
Inba-mura Inba-gun
Cniba, Japan

