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OF HEREDITARY ALGEBRAS
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Introduction.

Recently the relations between tilting theory and trivial extension algebras
are deeply studied. Let $A$ and $B$ be basic connected artin algebras over a com-
mutative artin ring $C$ . In [6] Tachikawa and Wakamatsu showed that the
existence of stably equivalence between categories over the trivial extension
algebras $T(A)=A\ltimes DA$ and $T(B)=B\ltimes DB$ under the assumption that there is a
tilting module $T_{A}$ with $B=End(T_{A})$ . In case $C$ is a field, Hughes and Waschb\"usch
proved that if $T(B)$ is representation-finite of Cartan class $\Delta$ , then there exists
a tilted algebra $A$ of Dynkin type $\Delta$ such that $T(B)\cong T(A)[4]$ . Assem, Happel
and Roldan showed that, for an algebra $B$ over an algebraically closed field,
$T(B)$ is representation-finite iff $B$ is an iterated tilted algebra of Dynkin type
[1]. However in case $T(B)$ is not of finite representation type the condition
$T(B)\cong T(A)$ with $A$ hereditary does not forces $B$ to be an iterated tilted algebra.

Let’s consider the covering $\hat{A}$ of $T(A)[4]$ . The author proved that the
condition $\hat{A}\cong\hat{B}$ implies $T(A)\cong T(B)$ and that the converse holds if $T(A)$ is re-
presentation-finite [5]. In this paper, we prove that the condition $\hat{B}\cong\hat{A}$ with
$A$ hereditary implies that $B$ is an iterated algebra obtained from $A$ . It is to be
noted that in case $A$ is not necessary representation-finite. Moreover, the proof
of our theorem shows that such an algebra $B$ is obtained by at most $3m$ times
processes tilting from $A$ , where $m$ is the number of non-isomorphic primitive
idempotents of $A$ .

1. Preliminaries.

In this section, we recall some definitions and important results. Let $A$ be
an artin algebra. An A-module $T_{A}$ is said to be a tilting module provided the
following three conditions are satisfied,

(1) proj. $\dim T_{A}\leqq 1$
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(2) $Ext_{A}^{1}(T_{A}, T_{A})=0$ .
(3) There is an exact sequence $0\rightarrow A\rightarrow T_{1}\rightarrow T_{2}\rightarrow 0$ with $T_{1},$ $T_{2}$ direct sums

of direct summands of $T_{A}$ .

Bongartz [2] showed that $T_{A}$ is a tilting module if and only if $T_{A}$ satisfied
the three conditions (1), (2) and (4) instead of (3).

(4) $T_{A}$ has $m$ non-isomorphic indecomposable direct summands where $m$ is
the number of non-isomorphic simple modules of $mod A$ .

Moreover let $B=EndT_{A},$ $q(T_{A})=\{X\in mod A|Ext_{A}^{1}(T, X)=0\}=the$ full sub-
category of all modules generated by $T_{A}$ and $\mathcal{F}(T_{A})=\{X\in mod A|Hom_{A}(T, X)=0\}$

$=the$ full subcategory of all modules cogenerated by $\tau_{A}T_{A}$ . Then $(\mathcal{F}(T_{A}), \mathcal{F}(T_{A}))$

forms a torsion theory for $mod A$ , and there are two corresponding full sub-
categories of $mod B$ defined by $X(BT)=\{Y\in mod B|Y\otimes_{B}T=0\}$ and $qj(BT)=$

$\{Y\in mod B|Tor_{1}^{B}(Y, T)=0\}$ . Then we have the following;

THEOREM OF BRENNER-BUTLER.
$BT$ is also a tilting module with End $BT\cong A$ . $\mathcal{F}(T_{A}),$ $qj(BT)$ are equivalent

under the restrictions of $Hom_{A}(T_{A}$ , - $)$ , $-\otimes_{B}T$ which are mutually inverse each

other, and similarly, $\mathcal{F}(T_{A}),$ $X(BT)$ are equivalent under the restrictions of
$Ext_{A}^{1}(T_{A}$ , - $)$ , $Tor_{1}^{B}(-, BT)$ which are mutually inverse to each other.

A series $(A_{i}, T_{i})_{0\leq i\leq s}$ will be called a splitting tilting series if it satisfies

following three conditions;

(1) $A_{i}$ is an artin algebra for $0\leqq i\leqq s$ and $T_{i}$ is an $A_{i}$ -tilting module for
$0\leqq i\leqq s-1$ .

(2) $A_{i+1}=EndT_{i}$ for $0\leqq i\leqq s-1$ .
(3) The induced tortion theories $(X(T_{i}), \eta(T_{i}))$ are all splitting.

An artin algebra $B$ will be called an iterated tilted algebra if there exists a
splitting tilting series $(A_{i}, T_{i})_{0\leq i\leq s}$ such that $A_{0}$ is hereditary and $A_{s}\cong B$ . On

the other hand Hoshino [3] proved that $(X(BT), qj(BT))$ is splitting if and only

if inj. $\dim X\leqq 1$ for all $X\in \mathcal{F}(T_{A})$ .
Again let $T_{A}$ be a tilting module with End $T_{A}=B$ . Tachikawa and Waka-

matsu [7] showed the existence of stable equivalence $S$ between $T(A)$ and $T(B)$ ,

and it satisfies that $S(X)\cong Hom_{A}(T, X)$ for $X\in\xi T(T_{A})$ and $S(Y)\cong\Omega_{T(B)}Ext_{A}^{1}(T, Y)$

for $Y\in \mathcal{F}(T_{A})$ where $\Omega_{T(B)}$ is the loop functor of Heller.

Hughes and Waschb\"usch [4] introduced the following doubly infinite matrix

algebra;
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$\ovalbox{\tt\small REJECT}^{*}$

$**$

$A_{n-1}*$

$M_{n^{n-1}}AM_{n^{n}+1}A$

$*M_{n+1}**$

$*\ovalbox{\tt\small REJECT}$

in which matrices are assumed to have only finitely many entries different from
zero, $A_{n}\cong A$ and $M_{n}\cong DA$ for all integers $n$ , all the remaining entries are zero,

and the multiplication is induced from the canonical maps $A\otimes_{A}DA\rightarrow DA$ ,
$DA\otimes_{A}A\rightarrow DA$ and a zero map $DA\otimes_{A}DA\rightarrow 0$ . The author [5] proved that $\hat{A}\cong\hat{B}$

if and only if $A$ and $B$ has the following $tr^{;}1angular$ matrix decompositions $(*)$ ;

$A=\ovalbox{\tt\small REJECT}^{S_{1}}$

$S_{2}M_{1}$

$M_{2}*$

$**$

$S_{n-1}*$

$SM_{n^{n-1}}\ovalbox{\tt\small REJECT}$

$B=[D(M_{1}^{1})S*S_{2}$ $**$

$D(M_{n-2})*D(M_{n-1}^{S_{n-}})^{1}$

$S_{n}$

where $S_{i}$ is an algebra for all $i,$ $M_{j}$ is an $S_{j}-S_{j+1}$ -bimodule for all $j$ and all the
remaining entries are zero.

2. Construction of tilting modules.

First we will state the main result of this paper.

THEOREM. Let $A$ be a hereditary algebra. If $\hat{B}\cong\hat{A}$ , then $B$ is an iterated
tilted algebra obtained from $A$ .
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This theorem can be proved by using the following proposition repeatedly.

PROPOSITION. Let $A$ and $B$ be the following matrix algebras;

$A=[e_{2}^{1}Ae_{1}^{1}eAe0$ $e_{2}Ae_{2}00$ $e_{3}^{2}Ae_{3}^{3}eAe0$ $B=[e_{2}^{1}Ae_{1}^{1}eAe0$ $e_{3}D^{2}(A)^{2}e_{2}eAe0$ $e_{3}Ae_{3}00$

where $e_{1},$ $e_{2}$ and $e_{3}$ are orthogonal idempotents of $A$ and $e_{2}\neq 0\neq e_{3}$ . Assume
that $(e_{2}+e_{3})A(e_{2}+e_{3})$ is hereditary. Then there exists a splitting tilting series
$(A_{i}, T_{i})_{0\leqq i\xi 3}$ such that $A_{0}\cong A$ and $A_{3}\cong B$ .

REMARK. The assumptions of this proposition immediately imply the fol-
lowing;

(1) $A$ submodule of $e_{3}A$ is an A-projective module and $e_{3}A$ has no non-zero
injective direct summands.

(2) $A$ quotient module of $D(A(e_{2}+e_{3}))$ is an A-injective module.

$PR00F$ OF THE PROPOSITION.

Let $F_{i}=Hom_{A_{i}}$ $(T_{i}$ , - $)$ and $F_{i}^{\prime}=Ext_{A_{i}}^{1}(T_{i}$ , - $)$ for $0\leqq i\leqq 2$

(1) First tilting.
Let

$T_{0}=(e_{1}+e_{2})A\oplus\tau_{A}^{-1}(e_{3}A)$ .

(i) proj. $\dim T_{0}\leqq 1$ .
It is sufficient to show that $Hom_{A}(DA, \tau_{A}(T_{0}))\cong Hom_{A}(DA, e_{3}A)=0$ . If $f$ is

a morphism from $DA$ to $e_{3}A$ , then the image of $f$ is projective and injective,
and then it is zero.

(ii) $Ext_{A}^{1}(T_{0}, T_{0})=0$ .
We have

$Ext_{A}^{1}(T_{0}, T_{0})\cong D\overline{Hom}_{A}(T_{0}, \tau_{A}(T_{0}))$

$\cong D\overline{Hom}_{A}(T_{0}, e_{3}A)$

$\cong D\overline{Hom}_{A}(\tau_{A}^{-1}(e_{3}A), e_{3}A)$

and $Hom_{A}(\tau_{A}^{-1}(e_{3}A), e_{3}A)=0$ because $\tau_{A}^{-I}(e_{3}A)$ has no non-zero projective direct
summands.

(i), (ii) and the number of indecomposable summands of $T_{0}$ show that $T_{0}$ is
a tilting module.
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(iii) $(X(T_{0}), \eta(T_{0}))$ is splitting.
By definition $\mathcal{F}(T_{0})=adde_{3}A$ where add $e_{3}A$ is the full subcategory of all

direct sums of direct summands of $T_{0}$ . From the assumption of $A$ , the injective
envelope of $e_{3}A$ is included in add $D(Ae_{3})$ . Then inj. $\dim e_{3}A\leqq 1$ .

(2) Second tilting.
Let

$T_{1}=F_{0}(e_{1}A)\oplus F_{0}(e_{2}A/e_{2}Ae_{3})\oplus F_{0}^{\prime}(e_{3}A)$ .

(i) proj. $\dim T_{1}\leqq 1$ .
(a) $F_{0}(e_{1}A)$ is projective.
(b) proj. $\dim F_{0}^{\prime}(e_{3}A)\leqq 1$ ,

Since $T_{0}$ is an A-tilting module, there is an exact sequence

$0-e_{3}A-X_{0^{-}}X_{1^{-}}0$

where $X_{1}$ and $X_{2}$ are contained in add $T_{0}$ . Then we have the following resolu-
tion;

$0-F_{0}(X_{0})\rightarrow F_{0}(X_{1})-F_{0}^{\prime}(e_{3}A)-0$

(c) proj. $\dim F_{0}(e_{2}A/e_{2}Ae_{3})\leqq 1$ .
We consider the exact sequence

$0-e_{2}Ae_{3}-e_{2}A-e_{2}A/e_{2}Ae_{3}-0$

By the assumption $e_{2}Ae_{3}$ is contained in add $e_{3}A=\mathcal{F}(T_{0})$ . Then we have an
exact sequence

$0-F_{0}(e_{2}A)\rightarrow F_{0}(e_{2}A/e_{2}Ae_{3})-F_{0}^{\prime}(e_{2}Ae_{3})-0$ .
Projectivity of $F_{0}(e_{2}A)$ and (b) provide that proj. $\dim F_{0}(e_{2}A/e_{2}Ae_{3})\leqq 1$ .

(ii) $Ext_{A_{1}}^{1}(T_{1}, T_{1})=0$ .
(a) $Ext_{A_{1}}^{1}(T_{1}, F_{0}^{\prime}(e_{3}A))=0$ .

Because $F_{0}^{\prime}(e_{3}A)$ is an injective module.
(b) $Ext_{A}^{1}(F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{0}A), F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A))=0$ .

We have the following isomorphisms;

$Ext_{A_{1}}^{1}(F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A), F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A))$

$\cong Ext_{A}^{I}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A, e_{2}A/e_{2}Ae_{3}\oplus e_{1}A)$

$\cong Ext_{(e_{1}+e_{2})A(e_{1}+e_{2})}^{1}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A, e_{2}A/e_{2}Ae_{3}\oplus e_{1}A)$

$=0$ ,

because $e_{2}A/e_{2}Ae_{3}$ and $e_{1}A$ are $(e_{1}+e_{2})A(e_{1}+e_{2})$-projective modules.
(c) $Ext_{A_{1}}^{1}(F_{0}^{\prime}(e_{3}A), F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A))=0$ .



396 Hiroshi OKUNO

Since $\tau_{A_{1}}F_{0}^{\prime}(e_{3}A)\cong F_{0}(D(Ae_{3}))$ , then

$Ext_{A_{1}}^{1}(F_{0}^{\prime}(e_{3}A), F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A))$

$\cong D\overline{H}\overline{om}_{A_{1}}(F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A), F_{0}(D(Ae_{3})))$ .
and

$Hom_{A_{1}}(F_{0}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A), F_{0}(D(Ae_{3})))$

$\cong Hom_{A}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A, D(Ae_{3}))=0$ .
(i) and (ii) shows that $T_{1}$ is an $A_{1}$ -tilting module.

(iii) $(X(T_{1}), qj(T_{1}))$ is splitting.

Let $X$ be contained in $\dot{\lrcorner}^{C}(T_{1})$ and $I_{0}$ the injective hull of $X$. Since $T_{1}$ has

$F_{0}(e_{1}A)$ as a direct summand, $I_{0}$ is contined in add $F_{0}^{\prime}(e_{3}A)\oplus F_{0}(D(Ae_{2}))$ . The

construction of $T_{0}$ provides that a quotient module of $F_{0}^{\prime}(e_{3}A)\oplus F_{0}(D(Ae_{2}))$ is

again contained in add $F_{0}^{\prime}(e_{3}A)\oplus F_{0}(D(Ae_{2}))$ , then inj. $\dim X\leqq 1$ .

(3) Third tilting.

Let $D(Ae_{3})e_{3}=P\oplus M$ where $P$ is a projective A-module and $M$ has no non-
zero projective direct summands. Then $F_{0}(M)$ is contained in $\mathcal{F}(T_{1})$ because

$Hom_{A_{1}}(T_{1}, F_{0}(M))\cong Hom_{A_{1}}(F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}), F_{0}(M))$

$\cong Hom_{A}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}, M)=0$ .
Let

$T_{2}=F_{1}F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3})\oplus F_{1}F_{0}^{\prime}(P)\oplus F_{1}^{\prime}F_{0}(M)$ .

(i) proj. $\dim_{A_{2}}T_{2}\leqq 1$ .
It is sufficient to show that proj. $\dim_{A_{2}}F_{1}^{\prime}F_{0}(M)\leqq 1$ . First we consider the

projective resolution of $M$

$0\rightarrow P_{1}\rightarrow P_{0}-M\rightarrow 0$

where $P_{0}$ and $P_{1}$ is contained in add $e_{3}A$ . And we have

$0-F_{0}(M)-F_{0}^{\prime}(P_{1})-F_{0}^{\prime}(P_{0})-0$

and $F_{0}^{\prime}(P_{0})$ and $F_{0}^{\prime}(P_{1})$ is conteined in add $T_{1}$ . Then

$0\rightarrow F_{1}F_{0}^{\prime}(P_{1})\rightarrow F_{1}F_{0}^{\prime}(P_{0})\rightarrow F_{1}^{\prime}F_{0}(M)\rightarrow 0$

is the projective resolution of $F_{1}^{\prime}F_{0}(M)$ .

(ii) $Eet_{A_{2}}^{1}(T_{2}, T_{2})=0$ .
It is sufficient to show that $Ext_{A_{2}}^{1}(F_{1}^{\prime}F_{0}(M), T_{2})=0$ .
(a) $Ext_{A_{2}}^{1}(F_{1}^{\prime}F_{0}(M), F_{1}^{\prime}F_{0}(M))=0$ .

We have the following isomorphisms
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$Ext_{A_{2}}^{1}(F_{1}^{\prime}F_{0}(M), F_{1}^{\prime}F_{0}(M))\cong Ext_{A}^{1}(M, M)$

$\cong Ext_{e_{3}Ae_{3}}^{1}(M, M)=0$

because $M$ is an injective $e_{3}Ae_{3}$ -module.
(b) $Ext_{A2}^{1}(F_{1}^{\prime}F_{0}(M), F_{1}F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}))=0$ .

By the result of Tachikawa and Wakamatsu, we get

$Ext_{T(A_{2})}^{1}(F_{1}^{\prime}F_{0}(M), F_{1}F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}))$

$\cong D\underline{Hom}_{T(A_{2})}(F_{1}F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}), \tau_{T(A_{2})}F_{1}^{\prime}F_{0}(M))$

$\cong D\underline{Hom}_{T(A_{1})}(F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}), \Omega_{T(A_{1})}F_{0}(M))$

$\cong DHom_{T(A)}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}, \Omega_{T(A)}M)$

And the socle of $\Omega_{T(A)}M$ is contained in add $e_{3}A/rade_{3}A$ , then

$Hom_{T(A)}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}, \Omega_{T(A)}M)=0$ .
(c) $Ext_{A_{2}}^{1}(F_{1}^{\prime}F_{0}(M), F_{1}F_{0}(P))=0$ .

Let $M^{\prime}$ and $P^{\prime}$ be indecomposable non-zero direct summands of $M$ and $P$ respec-
tively. Then there exists a primitive idempotent $e^{\prime}$ of $A$ such that $P^{\prime}\cong D(Ae^{\prime})e_{3}$

Let
$0-F_{1}F_{0}^{\prime}(P^{\prime})-F_{1}(N)\oplus F_{1}^{\prime}(N^{\prime})-F_{1}^{\prime}F_{0}(M^{\prime})-0$

be a non-split exact sequence where $N$ and $N^{\prime}$ is contained in $g(T_{1})$ and $\mathcal{F}(T_{1})$

respectively. Then we have the exact sequence

$0\rightarrow N^{\prime}-F_{0}(M^{\prime})-F_{0}^{\prime}(P^{\prime})-N-0$

and $N$ and $N^{\prime}$ are contained in $X(T_{0})$ and $qj(T_{0})$ respectively. So there exists
a projective A-module $Q$ such that $N\cong F_{0}^{\prime}(Q)$ and non-splitness of the first
sequence shows that $Q$ has no direct summands isomorphic to $P^{\prime}$ . If $Q$ is non-
zero, there is a monomorphism from $P^{\prime}$ to $Q$ , and then the inclusion map from
$P^{\prime}$ to $D(Ae^{\prime})$ is extended to the map from $Q$ to $D(Ae^{\prime})$ . The existence of this
extended map contradicts that $P^{\prime}\cong D(Ae^{\prime})e_{3}$ . Then we assume that $N=0$ . Ap-
plying $\otimes_{A_{1}}T_{0}$ to the second exact sequence, we get the non-split exact sequence

$0-P^{\prime}-N^{\prime}\otimes_{A_{1}}T_{0}-M^{\prime}\rightarrow 0$

But the last exact sequence is considered as an element of $Ext_{e_{3}Ae_{3}}^{1}(M^{\prime}, P^{\prime})$ and
$P^{\prime}$ is an injective $e_{3}Ae_{3}$ -module.

(iii) $(X(T_{2}), \wp(T_{2}))$ is splitting.
The algebra $A_{2}$ can be represented by

$End_{A_{1}}(T_{1})\cong\left\{\begin{array}{ll}End_{A_{1}}(F_{0}^{\prime}(e_{3}A))Hom_{A_{1}}(F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}, & F_{0}^{\prime}(e_{3}A)))\\0 & End_{A_{1}}(F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}))\end{array}\right\}$
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and $End_{A_{1}}(F_{0}^{\prime}(e_{3}A))\cong e_{3}Ae_{3}$ is hereditary. On the other hand $T_{2}$ has
$F_{1}F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3})$ as a direct summand, then a module contained in $\sigma r(T_{2})$ is

considered as $End_{A_{1}}(F_{0}^{\prime}(e_{3}A))$-module and its injective resolution as $End_{A_{1}}(F_{0}^{\prime}(e_{3}A))-$

module coincides with that as $A_{2}$-module.

(4) $End_{A_{2}}(T_{2})\cong B$ .
We have the following isomorphisms;

$End_{\Lambda_{2}}(T_{2})\cong\underline{End}_{T(A_{2})}(T_{2})$

$\cong\underline{End}_{T(A_{1})}(F_{0}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3})\oplus F_{0}^{\prime}(P)\oplus\Omega_{T(A_{1})}^{-1}F_{0}(M))$

$\cong\underline{End}_{T(A)}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}\oplus\Omega_{T}^{-1_{(A)}}(P)\oplus\Omega_{T}^{-1_{(A)}}(M))$

$\cong\underline{End}_{T(A)}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}\oplus\Omega_{T}^{-\iota_{(A)}}(D(Ae_{3})e_{3}))$ .

Let $J$ denote $\Omega_{T(A)}^{-1}(D(Ae_{3})e_{3})$ , and $e_{3}T(A)$ is the projective cover of $J$ in $mod T(A)$

$0-D(Ae_{3})e_{3}-e_{3}T(A)-J-0$ .

Since the socle of $e_{3}T(A)$ and $J/radJ$ are contained in add $e_{3}A_{/}^{\prime}rade_{3}A$ , we get

$Hom_{T(A)}(J, e_{1}A\oplus e_{2}A/e_{2}Ae_{3})=0$ and
$Hom_{T(A)}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A, J)\cong Hom_{T(A)}(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A, J)$ .

If $f$ is a $T(A)$-homomorphism from $J$ to $e_{3}T(A)$ , the A-homomorphism, induced
by $f$ , from $J\cdot DA\cong D(Ae_{3})/D(Ae_{3})e_{3}$ to $e_{3}T(A)\cdot DA\cong e_{3}D(A)$ is zero, and then $f$

factors through $D(Ae_{3})e_{3}$ . We have

$\underline{End}_{T(A)}(J)\cong End_{T(A)}(J)$ .
Then

$End_{A_{2}}(T_{2})\cong End_{T(A)}(e_{1}A\oplus e_{2}A/e_{2}Ae_{3}\oplus J)$ .

(i) $End_{T(A)}(e_{1}A)\cong e_{1}Ae_{1}$ .
Clearly.

(ii) $End_{T(A)}(e_{2}A/e_{2}Ae_{3})\cong e_{2}Ae_{2}$ .
The exact sequence in $mod A$

$0-e_{2}Ae_{3}-e_{2}A-e_{2}A/e_{2}Ae_{3}-0$

induces following two isomorphisms;

$Hom_{A}(e_{2}A, e_{2}A)\cong Hom_{A}(e_{2}A, e_{2}A/e_{2}Ae_{3})$ and
$Hom_{A}(e_{2}A/e_{2}Ae_{3}, e_{2}A/e_{2}Ae_{3})\cong Hom_{A}(e_{2}A,$ $ e_{2}A/e_{2}Ae\circ$

Moreover we have
$End_{T(A)}(e_{2}A/e_{2}Ae_{3})\cong End_{A}(e_{2}A/e_{2}Ae_{3})$ and

$End_{A}(e_{2}A)\cong e_{2}Ae_{2}$ ,
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(iii) $End_{T(A)}(J)\cong e_{3}Ae_{3}$ .
We have $Hom_{T(A)}(e_{3}T(A), J)\cong Je_{3}\cong e_{3}Ae_{3}$ . If $f$ is a $T(A)$ -homomorphism $e_{3}T(A)$

to $J$, the kernel of $f$ contains $e_{3}D(A)$ . Then

$Hom_{T(A)}(J, J)\cong Hom_{T(A)}(e_{3}T(A), J)\cong e_{3}Ae_{3}$ .

(iv) $Hom_{T(A)}(e_{1}A, e_{2}A/e_{2}Ae_{3})\cong e_{2}Ae_{1}$ .
Because $Hom_{T(A)}(e_{1}A, e_{2}A/e_{2}Ae_{3})\cong Hom_{A}(e_{1}A, e_{2}A/e_{2}Ae_{3})\cong e_{2}Ae_{1}$ .

(v) $Hom_{T(A)}(e_{2}A/e_{2}Ae_{3}, e_{1}A)=0$ .
Because $e_{1}Ae_{2}=0$ .

(vi) $Hom_{T(A)}(e_{1}A, J)=0$ .
Because $e_{3}Ae_{1}\cong e_{1}Ae_{3}=0$ .
(vii) $Hom_{T(A)}(e_{2}A/e_{2}Ae_{3}, J)\cong e_{3}D(A)e_{2}$ .
Because $Hom_{T(A)}(e_{2}A, J)\cong Hom_{A}(e_{2}A, e_{3}D(A)/e_{3}D(A)e_{3})\cong e_{3}D(A)e_{2}$ and the

kernel of an element of $Hom_{T(A)}(e_{2}A, J)$ includes $e_{2}Ae_{3}$ .

(viii) $Hom_{T(A)}(J, e_{2}A/e_{2}Ae_{3}\oplus e_{1}A)=0$ .
Because $(e_{2}A/e_{2}Ae_{3}\oplus e_{1}A)e_{3}=0$ .
(ix) Multiplication
By the following commutative diagram we know the existence of an algebra

isomorphism from $B$ to $End_{T(A_{2})}(T_{2})$ .

$e_{1}A\rightarrow e_{1}A\rightarrow e_{2}A-e_{2}A-e_{3}T(A)\rightarrow e_{3}T(A)$

$ e_{1}A|\rightarrow e_{1}A\downarrow\rightarrow e_{2}A/eAe_{3}\downarrow_{2}\rightarrow e_{2}A/e_{2}Ae_{3}\downarrow$ $ J-J\downarrow\downarrow$

.

This completes the proof of the proposition.

PROOF OF THE THEOREM.
Let $A$ and $B$ be the martix algebras $(*)$ , and $R_{i}$ be the following matrix

algebra;
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$\ovalbox{\tt\small REJECT} D(M_{1}^{1})S$

$*S_{2}$

$**$

$D(M_{i})*$

$S_{i+1}M_{i+1}*$

$**$

$S_{n-1}*SM_{n^{n-1}}\ovalbox{\tt\small REJECT}$

then $R_{0}=A$ , $R_{n-1}=B$ and we can apply the proposition to the pair $(R_{i}, R_{i+1})$

for $0\leqq i\leqq n-2$ .

C0ROLLARY. Let $A$ be a hereditary algebra. If $\hat{A}\cong\hat{B}$ , then $B$ is given by
at most 3 $m$ times tilting from A where $m$ is the number of non-isomorphic primi-
tive idempotents of $A$ .

3. Example.

Let $Q_{0}$ and $Q_{6}$ be the following quivers:

$Q_{0}$ : $Q_{6}$ :

Let $A$ be the path algebra $kQ_{0}$ and $B$ the path algebra $kQ_{6}$ with relation $rad^{2}B$

$=0$ , where $k$ is a field. By the theorem we get the following splitting tilting
series $(A_{i}, T_{i})_{0\leq i\leq 6}$ .

$A_{0}=A$ $T_{0}=0$ $0$ 0111
$00\oplus 00\oplus 11\oplus 21\oplus 10\oplus 11$

11 01 0113 0112
$0$ 1 $0$ 1 $0$ 1
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$A_{1}=kQ_{1}$ $Q_{1}$ : $T_{1}=DA_{1}$

$A_{2}=kQ_{1}$

$T_{2}=0$ $0$ 1 $0$ $0$ $0$

00 $\oplus 00\oplus 10\oplus 10\oplus 11\oplus 10$

01 00 00 00 00 11
$0$ 1 $0$ $0$ $0$ 1

$A_{3}=kQ_{3}$ $Q_{3}$ : with relation rad2 $A_{3}=0$ .

$T_{3}=0$ $0$ 1 $0$ $0$ 1
00 $\oplus 00\oplus 11\oplus 00\oplus 11\oplus 10$

01 00 10 11 10 10
$0$ 1 $0$ 1 $0$ $0$

$A_{4}=kQ_{4}$ $Q_{4}$ :

$T_{4}=0$ $0$ 1 $0$ 1 $0$

00 $\oplus 00$ $\oplus 11$ $\oplus 00$ $\oplus 00$ $\otimes 10$

01 00 10 11 00 00
$0$ 1 $0$ 1 $0$ $0$

$A_{\text{\’{o}}},=B$ $T_{5}=A_{5}$

$A_{6}=B$ .
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