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APPR0XIMATIVE SHAPE II

–GENERALIZED ANRs–

By

Tadashi WATANABE

\S $0$ . Introduction.

This paper is a continuation of [38], in which we introduced approximative
shape. In this paper we introduce many approximative shape properties for
spaces. These are approximative shape invariants and unify generalized absolute
neighborhood retracts.

In 1931 Borsuk introduced the notions of an absolute neighborhood retract

and an absolute retract, in notations ANR and AR, for metric spaces, respectively.
There are many generalizations of ANRs and ARs. In 1953 Noguchi [26],

introduced the notions of an $\epsilon$ -ANR and an $\epsilon- AR$ for compact metric spaces.
Gmurczyk $[11, 12]$ studied some shape properties of $\epsilon$ -ANRs and $\epsilon$ -ARs. She
introduced the terms of an approximative absolute neighborhood retract in the
sense of Noguchi and an approximative absolute retract, in notations $AANR_{N}$

and AAR, respectively, to replace Noguchi’s less convenient names $\epsilon$ -ANR and
$\epsilon- AR$ . Clapp [8] introduced an approximative absolute neighborhood retract in
the sense of Clapp, in notation $AANR_{C}$, for compact metric spaces. $Bogaty\check{\iota}[2]$

studied many properties of $AANR_{N},$ $AANR_{C}$ and AAR. Kalini [14] introduced
these notions for compact spaces, and Powers [28] for metric spaces. Marde\v{s}i\v{c}

[22] introduced the notion of approximative polyhedra. Recently Gauthier [9,

10] introduced $AANE_{N},$ $AANE_{C}$ and AAE which are generalizations of an ab-
solute neighborhood extensor and an absolute extensor for metric spaces.

In 1986 Borsuk introduced shape theory, which was then developed by many
mathematicians. Shape theory gives us a method to investigate bad spaces and
bad maps by means of the good homotopy category of polyhedra. We have many
important notions in shape theory; for examples, movability (see [5], [20]),

uniform movability (see [25]), strong movability (see [6], [24]), absolute
neighborhood shape retracts (see [4], [23]) and so on (see [19]). These notions
play fundamental roles in shape theory.

In [38] we introduced approximative shape. It gives us a method to investi-
gate bad spaces and bad maps by means of the good category of polyhedra. In

Received February 4, 1986.



304 Tadashi WATANABE

this paper we introduce approximative movability in \S 1, uniformly approximative
movability in \S 2, approximative condition $M$ in \S 3 and strongly approximative
movability in \S 4. In \S 5 we show that these approximative shape properties
characterize generalized ANRs. In \S 6 we discuss the relationship between these
approximative shape properties and shape properties. We show that approxi-
mative movability and uniformly approximative movability are equivalent for
compact metric spaces, but different for compact spaces.

We assume that the reader is familiar with the theory of ANRs and with
shape theory. Borsuk [3] and Hu [13] are standard textbooks for the theory of
ANRs. Borsuk [4] and Marde\v{s}i\v{c} and Segal [19] are standard textbooks for shape
theory. For undefined notations and terminology see Hu [13] and Marde\v{s}i\v{c} and
Segal [19], which is quoted by MS [19]. We use the same notations and
terminology as in [38]. We quote results from [38] as follows: for example
(I.3.3) denotes theorem (3.3) in [38].

The author thanks Professor Y. Kodama who encouraged him to develop this
theory, and also Dr. K. Sakai and Dr. A. Koyama. They carefully read the
first manuscript [37] and gave valuable advices.

\S 1. Approximative movability.

In this section we introduce the notion of approximative movability and in-
vestigate its properties.

Let (X, $u$) $=\{(x_{a}, u_{a}),p_{a^{\prime},a}, A\}$ be an approximative inverse system in TOP.
We say that (X, $u$) is approximatively movable, in notation AM, provided that
it satisfies the following condition:

(AM) For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ there exists
a map $r_{a^{J}}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ satisfying $(p_{a^{\prime},a}r_{a^{\prime}}, p_{a_{0},a})<u_{a}$ .

(1.1) PROPOSITION. Let $(x, u)$ and $(y, \gamma)$ be approximative inverse
systems. Suppose that $(y, \gamma)$ is dominated by $(x, u)$ in Appro-TOP. If (X, $u$)
$is$ AM, then so is $(y, \gamma)$ .

PROOF. Put $(y, 2^{\gamma})=\{(Y_{b}, V_{b}), q_{b^{\prime},b}, B\}$ . Let $f=\{f,f_{b} : b\in B\}:(x, u)\rightarrow(y$ ,
$V)$ and $g=\{g, g_{a} : a\in A\}:(y, \gamma)\rightarrow(\chi, u)$ be approximative system maps such that
$[t][g]=[1_{(y,\gamma)}]$ . Since [$fl[g]=[q(s)(r_{g)]}$ for a l-refinement function $s$ of
$(y, \gamma)$ , by (I.2.7) there exists an increasing function $t:B\rightarrow B$ such that $t>1_{B}$

and
(1) $q(t)(q(s)(fg))=:q(t)1_{(y,v)}$ .

Let $u:B\rightarrow B$ be a 2-refinement function of $(y, \gamma)$ . Take any $b\in B$ . By (1)
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there exists $b_{1}>tu(b),$ $gfstu(b)$ such that

(2) $(),fstu(b)\prime q_{b_{1},u(b)})<V_{u(b)}$ .

By the assumptions, there exists $a_{0}>fstu(b)$ such that

(3) $a_{0}$ satisfies (AM) for $(x, u)$ and fstu $(b)$ .

By (AM2) there exists $b_{2}>b_{1},$ $g(a_{0})$ such that

(4) $(p_{a_{0},fstu(b)}g_{a_{0}}q_{b_{2},g(ao)}, g)$ .

Claim. $b_{2}$ satisfies (AM) for $(y, V)$ and $b$ .
Take any $b^{\prime}>b$ . By (AM2) there exists $a^{\prime}>fstu(b),fstu(b^{\prime})$ such that

(5) $(f_{stu(b)}p_{a^{\prime},fstu(b)}, q_{stu(b^{\prime}),stu(b)}f_{stu(b^{\prime})}p_{a^{\prime},fstu(b^{\prime})})<V_{stu(b)}$ .

By (3) there exists a map $r_{a^{\prime}}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ such that

(6) $(p_{a^{\prime},fstu(b)}r_{a^{\prime}}, p_{a_{0},fstu(b)})<u_{fstu(b)}$ .
Put $rb^{\prime=qstu(b),b^{\prime f_{stu(b\prime)}r_{a^{\prime}}g_{a_{0}}q_{b_{2},g(a_{0)}}:}}p_{a^{\prime},fstu(b^{\prime})}$ $Y_{b_{2}}\rightarrow Y_{b\prime}$ . We need to show that

(7) $(qb^{\prime},brb^{\prime}, qb_{2},b)<V_{b}$ .
By (5) and (AI2)

(8) (q), $f_{stu(b)}p_{a^{\prime},fstu(b)}r_{a^{\prime}}g_{a_{0}}q_{b_{2},g(a_{0)}}$ ,
$q_{stu(b^{\prime}u(b)}),f_{stu(b)}\prime p_{a^{\prime},fstu(b^{\prime})}r_{a^{\prime}}g_{a_{0}}q_{b_{2},g(a_{0)}})<V_{u(b)}$ .

By (6), (AM1) and (AI2)

(9) $(q_{stu(b),u(b)}f_{stu(b)}p_{a^{\prime},fstu(b)}r_{a};g_{a_{0}}q_{b_{2},g(a_{0)}}$ ,

$q_{stu(bu(b)}),f_{stu(b)}p_{a_{0},fstu(b)}g_{a_{0}}q_{b_{2},g(a_{0)}})<V_{u(b)}$ .

By (4) and (AM1)

(10) $(),$ ,

$q_{stu(bu(b)}),f_{stu(b)}gf)<V_{u(b)}$ .

By (2)

(11) $(),fstu(b)\prime qb_{2},u(b))<V_{u(b)}$ .

By (8) $-(11)$

(12) $(),,$ $q_{b_{2},u(b)}$ ) $<st^{2}V_{u(b)}$ .

Since $u$ is a 2-refinement function, (7) follows from (12). Thus we have the
Claim. Hence $(y, \gamma)$ is AM. $\blacksquare$

(1.2) C0ROLLARY. The notion of approximative movability for approxi-

mative inverse systems is an invariant property in Appro-TOP. $\blacksquare$

Let $p=\{p_{a} : a\in A\};x\rightarrow(x, u)$ be an approximative resolution of a space $X$.
We say that $p$ is approximatively movable, in notation AM, provided that (X, $u$ )
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is approximatively movable.

(1.3) LEMMA. Let $p:x\rightarrow(x, u)$ and $p^{\prime}$ : $x\rightarrow(x, u)^{\prime}$ be approximative
AP-resolutions. If $p$ is AM, then so is $p^{\prime}$ .

(1.3) follows from (I.5.1) and (1.2). $\blacksquare$

Let $X=\{X_{a},p_{a^{\prime},a}, A\}$ be an inverse system in TOP. We say that $\chi$ is
approximatively movable, in notation AM, provided that it satisfies the following
condition:

(AM)* For each $a\in A$ and for each $u\in 6_{0V}(X_{a})$ there exists $a_{0}>a$ such
that for each $a^{\prime}>a$ there exists a map $r_{a^{\prime}}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ satisfying $(p_{a^{\prime},ar_{a^{\prime}}}, p_{a_{0},a})<$

$u$ .

(1.4) PROPOSITION. Let $X$ and $y$ be inverse systems. Suppose that $y$ is
dominated by $\chi$ in pro-TOP. If X $is$ AM, then so is $y$ .

$PR\infty F$ . Put $y=\{Y_{b,qb^{\prime},b}, B\}$ . Let $f=\{f,f_{b} : b\in B\};x\rightarrow y$ and $g=\{g,g_{a}$ :
$a\in A\};y\rightarrow x$ be morphisms of inverse systems such that $fg$ and $1_{y}$ are equi-
valent (see MS [19, pp. 1-9]), that is,

(1) $fg\sim 1_{y}$ .
Take any $b\in B$ and any $V\in 6_{\mathcal{O}V}(Y_{b})$ . By the assumption there exists $a_{0}>f(b)$

such that

(2) $a_{0}$ satisfies (AM)*for $X,$ $f(b)$ and $f_{b}^{-1}V$ .
By (1) and the definition of morphisms of inverse systems there exists $b_{0}>b$ ,
$gf(b),g(a_{0})$ such that

(3) $f_{bgf(b)}q_{b_{0},gf(b)}=q_{b_{0},b}$ and

(4) $gf$ ) , $.$

We show that $b_{0}$ is the required index. Take any $b^{\prime}>b$ . Then there exists
$a^{\prime}>f(b),f(b^{\prime})$ such that

(5) $q_{b^{\prime},b}f_{b^{\prime}p_{a^{\prime},f(b^{\prime})}}=f_{b}p_{a^{\prime},f(b)}$ .
By (2) there exists a map $r_{a^{J}}$ : $X_{a_{0}}\rightarrow X_{a^{J}}$ such that

(6) $(p_{a^{\prime},f(b)}r_{a^{\prime}}, p_{a_{0},f(b)})<f_{b}^{-1}V$ .
Put $rb^{\prime=f_{b^{\prime}}p_{a^{\prime},f)}}(b^{\prime}r_{a^{\prime}}g_{a_{0}}q_{b_{0},g(a_{0)}}$ : $Y_{b_{0}}\rightarrow Y_{b^{\prime}}$ . By (3) $-(6)(qb^{\prime},brb^{\prime}, q_{b_{0},b})<V$ and
then $y$ is AM. $\blacksquare$

(1.5) COROLLARY. The notion of approximative movability for inverse
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systems is an invariant property in pro-TOP.

(1.6) LEMMA. Let (X, $u$ ) be an approximative inverse system. Then (X,

u) satisfies (AM) iff $\chi$ satisfies (AM)*.

PROOF. We assume that (X, $u$ ) satisfies (AM) and show that $X$ satisfies
(AM)*. Take any $a\in A$ and any $u\in 6_{\mathcal{O}V}(X_{a})$ . By (AI3) there exists $a_{1}>a$

such that $p_{\overline{a}_{1}^{1},a}u>u_{a_{1}}$ . By the assumption there exists $a_{0}>a_{1}$ which satisfies(AM)

for (X, $u$ ) and $a_{1}$ Take any $a^{\prime}>a$ and then take $a^{\prime\prime}>a^{\prime},$
$a_{1}$ . By the choice of

$a_{0}$ there exists a map $r_{a^{\prime\prime}}$ : $X_{ao}\rightarrow X_{a^{\prime\prime}}$ such that $(p_{a^{\parallel},a_{1}}r_{a^{lt}}, p_{aoa_{1}})<u_{a_{1}}$ . Thus
$(p_{a^{\nu},a}r_{a^{\prime\prime}}, p_{a_{0},a})<u$ . This means that $a_{0}$ and the map $p_{aa}\prime\prime,\prime r_{a^{\prime\prime}}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ satisfy
(AM)*for X and $a$ . The converse assertion is trivial. $\blacksquare$

Let $p=\{p_{a} : a\in A\}:X\rightarrow X$ be a resolution. We say that $p$ is approximatively
movable, in notation AM, provided that X is approximatively movable.

(1. 7) PROPOSITION. Let $p:X\rightarrow X$ and $q:X\rightarrow y$ be AP-resolutions of a space
X. If $p$ is AM, then so is $q$ .

PROOF. Put $q=\{qb:b\in B\}$ and $y=\{Y_{b,qb^{\prime},b}, B\}$ . We need to show (AM)*

for $y$ . Take any $b\in B$ and any $V\in 6_{\mathcal{O}V}(Y_{b})$ . By (R2) there exists $V_{1}\in 6_{0V}(Y_{b})$ ,

$i=1,2,3,4$ , such that

(1) $stV_{1}<V,$ $V_{2}<V_{1},$ $V_{3}<V_{1},$ $stV_{4}<V_{2}\wedge V_{3}$ ,

(2) $V_{2}$ satisfies (R2) for $q$ and $V_{1}$ , and
(3) $V_{3}$ satisfies (R2) for $p$ and $V_{1}$ .

By (R1) for $p$ there exist $a\in A$ and a map $h:X_{a}\rightarrow Y_{b}$ such that

(4) $(hp_{a}, qb)<V_{4}$ .
Since X is AM, there exists $a_{1}>a$ such that

(5) $a_{1}$ satisfies (AM)*for $a$ and $h^{-1}V_{4}$ .
By (R1) for $q$ their exists $b_{1}>b$ and a map $k:Y_{b_{1}}\rightarrow X_{a_{1}}$ such that $(kq_{b_{1}}, p_{a_{1}})<$

$(hp_{a_{1},a})^{-1}V_{4}$ . Thus $(hp_{a_{1},a}kq_{b_{1}}, hp_{a})<V_{4}$ and then by (1) and (4)

(6) $(hp_{a_{1},a}kq_{b_{1}}, q_{b_{1},b}q_{b_{1}})<V_{2}$ .
By (2) and (6) there exists $b_{2}>b_{1}$ such that

(7) $(hp_{a_{1},a}kqb_{2},b_{1}, qb_{2},b)<V_{1}$ .
Claim. $b_{2}$ satisfies (AM)*for $y,$ $b$ and $V$ .
Take any $b^{\prime}>b$ . By (R1) there exist $a^{\prime}>a$ and a map $m:X_{a^{\prime}}\rightarrow Y_{b^{\prime}}$ such

that $(mp_{a^{\prime}}, q_{b};)<q_{b}^{-1}V_{4}$ . Thus $(q_{b,b}mp_{a}, qb)<V_{4}$ and then by (1) and (4)
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(8) $(qb^{\prime},bmp_{a^{\prime}}, hp_{a^{\prime},a}p_{a^{\prime}})<V_{3}$ .
By (3) and (8) there exists $a^{\parallel}>a^{\prime}$ such that

(9) $(q_{b^{\prime},b}mp_{a^{\prime},a^{\prime}}, hp_{a^{\nu},a})<V_{1}$ .
By (5) there exists a map $\gamma_{a^{\prime\prime}}$ : $ X_{a_{1}}\rightarrow X_{a}\parallel$ such that $(p_{a^{\prime\prime},a}r_{a^{\prime}}, p_{a_{1},a})<h^{-1}V_{4}$ . Thus
$(hp_{a^{\prime\prime},a}r_{a^{\prime\prime}}, hp_{a_{1},a})<V_{4}$ and then

(10) $(hp_{a^{\prime\prime},a}r_{a^{ll}}kq_{b_{2},b_{1}}, hp_{a_{1},a}kq_{b_{2},b_{1}})’<V_{4}$ .

By (9)

(11) $(q_{b^{\prime},b}mp_{a^{\prime\prime},a^{\prime}}r_{a}\parallel kqb_{2},b_{1}, hp_{a^{\chi},a}r_{a^{\prime\prime}}kq_{b_{2},b_{1}})<V_{1}$ .
By (1), (7), (10) and (11) $(q_{b^{\prime},b}mp_{aa}’,\prime r_{a^{\chi}}kq_{b_{2},b_{1}}, q_{b_{2},b})<V$ . This means that
the map $mp_{a^{\chi},a}\prime r_{a^{\prime\prime}}kq_{b_{2},b_{1}}$ : $Y_{b_{2}}\rightarrow Y_{b^{\prime}}$ gives our Claim. Hence $y$ is AM. $\blacksquare$

(1.8) THEOREM. Let $X$ be a space. Then the following conditions are
equivalent:

(i) $Any/some$ approximative AP-resolution of $X$ is AM.
(ii) $Any/some$ AP-resolution of $X$ is AM.

PROOF. By (1.3) any and some in (i) are equivalent. By (1.7) any and
some in (ii) are equivalent. We show that (i) implies (ii). By (i) there exists
an approximative AP-resolution $p:X\rightarrow(x, u)$ such that (X, $u$ ) satisfies (AM).

Then $\chi$ satisfies (AM)*by (1.6). Since $p:X\rightarrow X$ is an AP-resolution by (I.3.3),

we have (ii). We show that (ii) implies (i). By (I.3.15) there exists an ap-
proximative POL-resolution $p:X\rightarrow(x, u)$ . Since $p:X\rightarrow X$ is a POL-resolution
by (I.3.3), $p$ is AM by (ii). Since $X$ is AM, by (1.6) so is (X, $u$ ). Hence
$p:X\rightarrow(x, u)$ is AM. Then we have (i). $\blacksquare$

We say that a space $X$ is approximatively movable, in notation AM, pro-
vided that it satisfies one of the conditions in (1.8).

(1.9) THEOREM. Let $X$ and $Y$ be spaces. Suppose that $Y$ is dominated by
$X$ in ASh. If $X$ is AM, then so is $Y$.

PROOF. By the assumption there exist approximative shapings $m,$ $n$ such
that $mn=AS(1_{Y})$ . Let $p:X\rightarrow(x, u),$ $p^{\prime}$ : $x\rightarrow(x, u)^{\prime}\in E(X)$ and $q:Y\rightarrow(y, V)$ ,
$q^{\prime}$ : $Y\rightarrow(y, V)^{\prime}\in E(Y)$ . Let $f:(x, u)^{\prime}\rightarrow(y, \gamma)^{\prime}$ and $g:(y, \gamma)\rightarrow(x, u)$ be ap-
proximative system maps such that $\langle[f]\rangle=m$ and $\langle[g]\rangle=n$ . Since $mn=AS(1_{Y})$ ,

$[1_{Y}]_{q^{\prime},q}[f][1_{X}]_{p,p^{J}}[g]=[1_{(y\gamma)}]$ . This means that $(y, \gamma)$ is dominated by $(X$ ,

u) in Appro-AP. Since (X, $u$ ) is AM by (1.8), by (1.1) so is $(y, \gamma)$ . Hence
$Y$ is AM. $\blacksquare$
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(1.10) COROLLARY. The notion of $approxi_{7}native$ movability for spaces
is an invariant property in ASh. $\blacksquare$

(1.11) C0ROLLARY. (i) Suppose that a space $Y$ is dominated by a space
$X$ in TOP. If $X$ is AM, then so is $Y$.

(ii) The notion of approximative movability for spaces is a topologically
invariant property.

(1. 12) COROLLARY. (i) A space $X$ is AM iff so is $T(X)$ .
(ii) A Tychonoff space $X$ is AM iff so is $C(X)$ .
$(\ddot{\dot{m}})$ A space $X$ is AM iff so is $CT(X)$ .

(1.11) follows from (I.5.9) and (1.9). (1.12) follows from (I.6.8), (I.6.10)

and (1.8). $\blacksquare$

Let $\mathscr{K}$ be a collection of spaces. We say that (X, $u$ ) is approximatively
M-movable, in notation M-AM, provided that it satisfies the following condition:

(.T-AM) For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ and for
any map $f:K\rightarrow X_{ao}$ , where $K\in \mathscr{K}$ , there exists a map $f^{\prime}$ : $K\rightarrow X_{a^{\prime}}$ satisfying $(p_{a^{\prime},\alpha}$

$f^{\prime},$ $p_{ao\prime a}f$) $<u_{a}$ .

We say that X is approximatively M-movable, in notation .T-AM, provided
that it satisfies the following condition:

( $\mathscr{K}$-AM)* For any $a\in A$ and for any $u\in 6_{0\gamma}(X_{a})$ there exists $a_{0}>a$ such
that for each $a^{\prime}>a$ and for any map $f:K\rightarrow X_{a_{0}}$ , where $K\in \mathscr{K}$ , there exists a map

$f^{\prime}$ : $K\rightarrow X_{a^{\prime}}$ satisfying $(p_{a^{\prime},a}f^{\prime},p_{a_{0},a}f)<u$ .
We say that an approximative resolution $p:X\rightarrow(x, u)$ and a resolution $p:X$

$\rightarrow\chi$ are approximatively M-movable, in notation .if-AM, provided that they
satisfy (X-AM) and $($X-AM $)^{*}$ , respectively. By slight modifications of our
proofs we can show $(1.1)-(1.8)$ for approximative M-movability. We say that a
space $X$ is approximatively $\mathscr{K}$-movable, in notation W-AM, provided that it
satisfies one of the conditions in (1.8) for approximative $\mathscr{K}$-movability. In the
same way we can show the analogues of $(1.9)-(1.12)$ for approximative $X^{-}-$

movability. Thus we summarize as follows:

(1.13) THEOREM. Let $X$ be a collection of spaces. All assertions $(1.1)-$

(1.12) hold for approximative M-movability. $\blacksquare$

Let $D$ be a subcategory of TOP. We say that a space $X$ is approximatively
D-movable, in notation D-AM, provided that it is approximatively ObD-movable.
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Let $P0L^{n}$ be the full subcategory of POL consisting of all polyhedra $P$ such that
$\dim P\leq n$ . We say that a space $X$ is approximatively n-movable, in notation n-
AM, provided that it is approximatively $P0L^{n}$ -movable.

(1.14) C0ROLLARY. All assertions $(1.1)-(1.12)$ hold for approximative n-
movability. $\blacksquare$

Finally we show relations between approximative movability and approxima-
tive X-movability.

(1.15) THEOREM. Let $X$ be a space. (i) If $X$ is AM, then it is M-AM
for any collection $X$ of spaces.

(ii) Let $Kbe$ one of $AP$ , POL and ANR. Then $X$ is AM iff it is K-AM.
$(\ddot{\dot{m}})$ If $X$ is AM, then it is n-AM for each integer $n$ .
(iv) Let $\dim X\leq n$ . Then $X$ is AM iff it is n-AM.

PROOF. Since (AM) implies $(\mathscr{K}- AM)$ for any $X$ , we have (i) and (iii).

Let $C$ be a full subcategory of TOP and $(x, u)$ an approximative inverse system

in $C$. We easily show that if (X, $u$ ) satisfies (ObC-AM), then it satisfies (AM).

This fact and (I.3.15) imply (ii) and (iv). $\blacksquare$

\S 2. Uniformly and internally approxlmative movabilities.

In this section we introduce the notions of uniformly approximative mova-
bility and internally approximative movability. We discuss their properties.

Let (Jilf, $u$ ) $=\{(x_{a}, u_{a}),p_{a^{\prime},a}, A\}$ be an approximative inverse system in TOP.
We say that (X, $u$ ) is uniformly approximatively movable, in notation UAM,

provided that it satisfies the following condition:

(UAM) For each $a\in A$ there exist $a_{0}>a$ and a collection $\{r_{a^{\prime}} : a^{\prime}>a\}$ of
maps $r_{a^{\prime}}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ such that $(p_{a^{\prime},a}r_{a^{\prime}}, p_{aoa})<u_{a}$ and $(r_{a^{\prime}}, p_{a^{\prime\prime},a^{\prime}}, r_{a^{\prime\prime}})<u_{a^{\prime}}$ for
$a^{\prime\prime}>a^{\prime}>a$ .

In a similar ways as in (1.1) and (1.2) we can show (1.1) and (1.2) for
UAM. We say that an approximative resolution $p:X\rightarrow(x, u)$ is uniformly
approximatively movable, in notation UAM, provided that $(x, u)$ is uniformly
approximatively movable. In the same way as in (1.3) we can show (1.3) for
UAM. Thus in the same way as in (1.8) we can show the following:

(2.1) THEOREM. Let $X$ be a space. Then the following conditions are
equivalent:

(i) $X$ admits an approximative AP-resolution which is UAM.
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(ii) Any approximative AP-resolution of $X$ is UAM. $\blacksquare$

We say that a space $X$ is uniformly approximatively movable, in notation
UAM, provided that it satisfies one of the conditions in (2.1). In the same way
as in $(1.9)-(1.12)$ we can show these statements for UAM. Uniformly approxi-
mative movability is an invariant in ASh. We summarize as follows:

(2.2) THEOREM. $(1.1)-(1.3)$ and $(1.9)-(1.12)$ hold for UAM. $\blacksquare$

(2.3) LEMMA. (i) If an approximative inverse system is UAM, then it
$is$ AM.

(ii) If a space is UAM, then it is AM.

(2.3) follows from the definitions. In \S 6 we shall show that, in general, the
converses of (i), (ii) in (2.3) do not hold. However we show their converses
for a special case.

(2. 4) $PROPOSlT10N$ . Let (X, $u$ ) be an approximative inverse sequence. Then
(X, $u$) is AM iff it is UAM.

PROOF. Put $(x, u)=\{(x_{i}, u_{i}),p_{i,j}, N\}$ , where $N$ is the set of all positive
integers. We assume that (X, $u$ ) is AM and show that it is UAM. By the
assumption there exists a subset $A=\{a_{i} : i\in N\}\subset N$ such that $ a_{1}=1<a_{2}<a_{3}<\cdots$ ,

(1) $p_{a_{i+1},a_{i}}^{-1}u_{a\iota}>stu_{ai+1}$ for $i\in N$ and

(2) $at_{+1}$ satisfies (AM) for $(x, u)$ and $ai$ for each $i\in N$.
By (I.2.12) $(x, u)_{A}=\{(x_{ai}, u_{a\iota}),p_{aia}J\prime A\}$ is an approximative inverse sequence
and then by (I.2.1) so is $st(x, u)_{A}$ .

Claim. $st(x, u)_{A}$ is UAM.
By (2) there exist maps $ri:X_{ai}\rightarrow X_{a\iota+1}$ for $i\geq 2$ such that

(3) $(p_{ai+tai-1}ri,p_{a\iota,ai-1})<u_{ai-1}$ for each $i\geq 2$ .
Take any $ak\in A$ and put $f_{i}=p_{a_{i+1},ai}r_{i}r_{i-1}\cdots rk_{+1}$ : $X_{ak+1}\rightarrow X_{ai}$ for $i\geq k+1$ and
$f_{k}=p_{aak}k+1’$ : $X_{ak+1}\rightarrow X_{ak}$ . We show that $\{f_{i} : i\geq k\}$ satisfies

(4) $(p_{a_{\iota},aj}f_{i}, f_{j})<stu_{a_{J}}$ for $i\geq j\geq k$ and

(5) $(p_{aiak}f\iota, p_{aak}k+1’)<stu_{ak}$ for $i\geq k$ .
Since $f_{k}=p_{aak}k+1$

” (5) follows from (4). Inductively we show (4). To do so
we consider the following:

$P(1):(p_{aai}i+1\prime f_{i+1}, f_{i})<u_{a\iota}$ for $i\geq k$ .
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$Q(n)$ : The condition (4) holds for $i\geq j\geq k$ with $i-j=n$ .

First we show $P(1)$ . By (3) $(p_{aak}k+2\prime rk+1, p_{ak+1},ak)<u_{ak}$ , that is, $(p_{aak}k+1\prime f_{k+1}$ ,

$f_{k})<u_{ak}$ . Hence $P(1)$ holds for $i=k$ . Let $i\geq k+1$ . By (3) $(p_{aat}\{+2\prime r\iota_{+1}, p_{a\iota a_{i}}+1’)<$

$u_{a\iota}$ and then $(p_{ai+a_{i}}2\prime r_{i+1}r_{i}\cdots rk_{+1}, p_{aai}i+1\prime r_{i}\cdots rk+1)<u_{a\iota}$ . Thus $(p_{aat}i+1\prime f_{i+1}, f_{i})<$

$u_{a_{i}}$ . Then $P(1)$ holds for $i\geq k+1$ . Hence we have $P(1)$ .
Trivially $Q(1)$ follows from $P(1)$ . We assume that $Q(1),$ $\cdots,$ $Q(n-1)$ hold

and show $Q(n)$ . Take any $i\geq k$ . By the inductive assumption and $P(1)$

(6) $(p_{aai+1}i+n\prime f_{i+n}, f_{i+1})<stu_{ai+1}$ and

(7) $(p_{aa_{i}}i+1\prime f_{i+1}, f_{i})<u_{a_{t}}$ .
By (1) and (6)

(8) $(p_{a\iota+n\prime a\iota}f_{i+n}, p_{at+1},a_{i}f_{i+1})<u_{a_{i}}$ .
By (7) and (8) $(p_{a\iota\prime ai}+nf_{i+n}, f_{i})<stu_{a_{i}}$ . This means $Q(n)$ . Hence $Q(n)$ holds
for all $n$ , that is, we have (4). By (4) and (5) we have the Claim.

By (I.2.12) and (I.2.14) (JZ‘, $u$ ) and $st(x, u)_{A}$ are isomorphic in Appro-TOP.
Hence by (1.10) for UAM (X, $u$ ) is UAM. The converse follows from (2.3). $\blacksquare$

(2.5) THEOREM. Let $X$ be a compact metric space. Then $X$ is UAM iff
it is AM.

(2.5) follows from (I.3.15) and (2.4). $\blacksquare$

In shape theory Spiez [31] showed that movability and uniform movability
are equivalent for metric compacta. (2.5) corresponds to his result.

Let $p=\{p_{a} ; a\in A\}:X\rightarrow(x, u)$ be an approximative resolution of a space $X$.
We say that $p$ is internally approximatively movable, in notation IAM, provided
that it satisfies the following condition:

(IAM) For each $a\in A$ there exist $a^{\prime}>a$ and a map $r:X_{a^{\prime}}\rightarrow X$ such that
$(p_{a}r, p_{a^{\prime},a})<u_{a}$ .

(2. 6) PROPOSITION. Let $p:X\rightarrow(x, u)$ and $q:Y\rightarrow(y, V)$ be approximative

AP-resolutions of spaces $X$ and $Y$, respectively. Suppose that $Y$ is dominated by
$X$ in TOP. If $p$ is IAM, then so is $q$ .

In a way similar to the one used in (1.1) we can show (2.6). Then we
have (1.3) for IAM.

Let $p=\{p_{a} : a\in A\}:X\rightarrow X=\{X_{a},p_{a^{\prime},a}, A\}$ be a resolution of a space $X$. We

say that $p$ is internally approximatively movable, in notation IAM, provided that
it satisfies the following condition:
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(IAM)* For each $a\in A$ and for each $u\in 6_{\mathcal{O}V}(X_{a})$ there exist $a_{0}>a$ and a
map $r:X_{a_{0}}\rightarrow X$ such that $(p_{a}r,p_{a_{0},a})<u$ .

(2.7) LEMMA. Let $p:X\rightarrow(x, u)$ be an approximative resolution. Then
$p:X\rightarrow(x, u)$ satisfies (IAM) iff $p:X\rightarrow X$ satisfies (IAM)*.

(2.7) follows from the definitions. In a way similar to the one used in (1.7)

we can show (1.7) for IAM. In the same way as in (1.8) we can show the
following:

(2.8) THEOREM. Let $X$ be a space. Then the following statements are
equivalent:

(i) $Any/some$ approximative AP-resolution of $X$ is IAM.
(ii) $Any/some$ AP-resolution of $X$ is IAM. $\blacksquare$

We say that a space $X$ is internally approximatively movable, in notation
IAM, provided that it satisfies one of the conditions in (2.8). By (2.6) we have
(1.11) for IAM, i.e., internally approximative movability is a topological in-
variant.

(2.9) PROPOSITI0N. (i) If a space $X$ is IAM, then so is $T(X)$ .
(ii) If a Tychonoff space $X$ is IAM, then so is $C(X)$ .
(iii) If a space $X$ is IAM, then so is $CT(X)$ .

This follows from (I.6.8), (I.6.10) and (2.8). We summarize as follows:

(2.10) PROPOSITION. (1.3), (1.7) and (1.11) hold for IAM. $\blacksquare$

(2. 11) LEMMA. (i) If an approximative resolution $p:X\rightarrow(x, u)$ is IAM,

then it is UAM.
(ii) If a space $X$ is IAM, then $X$ is UAM. $\blacksquare$

(2. 12) THEOREM. A space $X$ is UAM iff $CT(X)$ is IAM.

PROOF. First, we assume that $X$ is UAM and show that $CT(X)$ is IAM.
Since $X$ is UAM, by (1.12) for UAM (see (2.2)) $CT(X)$ is also UAM. Let
$p=\{p_{a} : a\in A\}:CT(X)\rightarrow(x, u)=\{(x_{a}, u_{a}),p_{a^{\prime},a}, A\}$ be an approximative POL-
resolution. Then $p$ satisfies (UAM) and we show that $p$ is IAM. Take any
$a_{1}\in A$ . By (AI3) there exists $a_{2}>a_{1}$ such that $p_{\overline{a}_{2}^{1},a_{1}}u_{a_{1}}>st^{2}u_{a_{2}}$ . Since $(x, u)$ is
UAM, there exist $a_{3}>a_{2}$ and a collection $\{r_{a^{\prime}} : a’\in A^{\prime}\}$ of maps $r_{a^{\prime}}$ : $X_{a_{3}}\rightarrow X_{a^{\prime}}$

such that
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(1) $(p_{a^{\prime},a_{2}}r_{a^{\prime}}, p_{a_{3},a_{2}})<u_{a_{2}}$ for $a^{\prime}>a_{2}$ and

(2) $(p_{a^{\prime\prime},a};r_{a^{\prime\prime}}, r_{a^{\prime}})<u_{a^{\prime}}$ for $a^{\prime\prime}>a^{\prime}>a_{2}$ .
Here $A^{\prime}=\{a^{\prime}\in A:a^{\prime}>a_{2}\}$ . Since $A^{\prime}$ is cofinal in $A$ , by (I.3.10) $p_{A^{\prime}}=\{p_{a^{\prime}}$ : $ a’\in$

$A^{\prime}\}:CT(X)\rightarrow(x, u)_{A^{\prime}}=\{(x_{a^{\prime}}, u_{a^{\prime}})p_{a^{\prime\prime},a^{;,A^{\prime}\}}}$ is an approximative POL-resolution.
By (2) and (I.7.2) there exists a map $r:X_{a_{3}}\rightarrow CT(X)$ such that

(3) $(p_{a^{\prime}}r, r_{a};)<stu_{a^{\prime}}$ for $a^{\prime}\in A^{\prime}$ .
Since $p_{a_{2},a_{2}}$ is the identity, by (1) $(r_{a_{2}},p_{a_{3},a_{2}})<u_{a_{2}}$ . Since $(p_{a_{2}}r, r_{a_{2}})<stu_{a_{2}}$ by
(3), $(p_{a_{2}}r,p_{a_{3},a_{2}})<st^{2}u_{a_{2}}$ and then by the choice of $a_{2}(p_{a_{1}}r, p_{a_{3},a_{1}})<u_{a_{1}}$ . Thus
$p:CT(X)\rightarrow(x, u)$ is IAM and hence $CT(X)$ is IAM. The converse follows
from (2.11). $\blacksquare$

(2.13) COROLLARY. Let $X$ be a topologically complete Tychonoff space.
Then $X$ is UAM iff $X$ is IAM. $\blacksquare$

We consider the following condition for a resolution $p:X\rightarrow X$ :

(C) For each $u\in 6_{\mathcal{O}V}(X)$ there exist $a\in A$ and a map $r:X_{a}\rightarrow X$ such that
$(rp_{a}, 1_{X})<u$ .

(2.14) LEMMA. Let $p:X\rightarrow X$ be an AP-resolution. Then $p$ satisfies (C) iff
it is IAM.

PROOF. First we assume that $p$ satisfies (C) and show that $p$ satisfies
(IAM)*. Take any $a\in A$ and any $u\in 6_{\mathcal{O}\gamma}(X_{a})$ . There exists $V\in 6_{\mathcal{O}V}(X_{a})$ , such
that $V$ satisfies (R2) for $p,$ $X_{a}$ and $u$ . Since $p_{a}^{-1}V\in 6_{0\gamma}(X)$ , by the assumption
there exist $a_{1}\in A$ and a map $r:X_{a_{1}}\rightarrow X$ such that $(rp_{a_{1}},1_{X})<p_{\overline{a}}^{1}V$. Thus
$(p_{a}rp_{a_{2},a_{1}}p_{a_{2}}, p_{a_{2},a}p_{a_{2}})<V$ for some $a_{2}>a,$ $a_{1}$ . By the choice of $V$ there exists
$a_{3}>a_{2}$ such that $(p_{a}rp_{a_{3},a_{1}}, p_{a_{3},a})<u$ . This means that $a_{3}$ and the map $rp_{a_{3},a_{1}}$ :
$X_{a_{3}}\rightarrow X$ satisfies (IAM)*for $a$ . Hence $p$ is IAM.

Next we assume that $p$ satisfies (IAM)* and show (C). Take any $ u\in$

$6_{\mathcal{O}V}(X)$ . By (B1) there exist $a\in A$ and $V\in 6_{\mathcal{O}V}(X_{a})$ such that $p_{a}^{-1}V<u$ . By
the assumption there exist $a_{1}>a$ and a map $r:X_{a_{1}}\rightarrow X$ such that $(p_{a}r, p_{a_{1},a})<V$ .
Thus $(p_{a}rp_{a_{1}},p_{a}1_{X})<V$ and then $(rp_{a_{1}},1_{X})<p_{a}^{-1}V<u$ . This means that $a_{1}$ and
the map $r:X_{a_{1}}\rightarrow X$ satisfies (C) for $u$ . Hence $p$ satisfies (C). $\blacksquare$

(2.15) COROLLARY. Condition (C) does not depend on the choice of the
AP-resolutions.

(2.15) follows from (2.8) and (2.14). We say that a space $X$ satisfies (C)
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provided that $any/some$ AP-resolution of $X$ satisfies condition (C). By (2.14)

we have the following:

(2.16) PROPOSITION. A space $X$ satisfies (C) iff $X$ is IAM. $\blacksquare$

(2.17) THEOREM. A space $X$ is IAM iff $X$ is an AP.

PROOF. Take any POL-resolution $p:X\rightarrow X$ . We assume that $X$ is an IAM.
Then $p$ is IAM by (2.8). By (2.14) $p$ satisfies (C). Thus for each $u\in 6_{\mathcal{O}V}(X)$

there exist $a\in A$ and a map $r:X_{a}\rightarrow X$ such that $(rp_{a}, 1_{X})<u$ . Since $X_{a}$ is a
polyhedron, this means that $X$ is an AP.

Next we assume that $X$ is an AP. By (I.3.3) $p:X\rightarrow X$ satisfies (R1) and
(R2). Take any $u\in 6_{0V}(X)$ and then $stV<u$ for some $V\in 6_{0V}(X)$ . By the
assumption, there exist a polyhedron $P$ and maps $f:X\rightarrow P,$ $g:P\rightarrow X$ such that
$(gf, 1_{X})<V$ . By (R1) there exist $a\in A$ and a map $h:X_{a}\rightarrow P$ such that $(hp_{a},J)<$

$g^{-1}V$ . Thus $(ghp_{a},gf)<V$ , and then $(ghp_{a}, 1_{X})<stV<u$ . This means (C). By
(2.14) $p$ is IAM. Hence $X$ is IAM. $\blacksquare$

(2.18) COROLLARY. Let $X$ be a topologically complete Tychonoff space.
Then the following statements are equivalent:

(i) $X$ is an AP.
(ii) $X$ is UAM.
$(\ddot{\dot{m}})$ $X$ is IAM.
(iv) $X$ satisfies (C). $\blacksquare$

\S 3. Approximative conditions $M$ and N.

In this section we introduce the notions of approximative condition $M$ and

approximative condition $N$ , and investigate their properties.
Let $C$ be a full subcategory of $AP$ . Put $RE(C)=\{X\in 0bT0P:X$ admits a

C-resolution which is rigid for $C$ }. Let TOPc be the full subcategory of TOP
consisting of $RE(C)$ . Let (X, $u$ ) $=\{(x_{a}, u_{a}),p_{a^{\prime},a}, A\}$ be an approximative in-

verse system in $C$ and $p=\{p_{a} : a\in A\}:X\rightarrow(x, u)$ an approximative resolution of

a space $X$.
We say that (X, $u$ ) satisfies the approximative condition $M$ , in notation

ap-M, in $C$ provided that it satisfies the following condition:

(ap-M) There exists $a_{0}\in A$ such that for each $a\in A$ there exists $a_{1}>a,$ $a_{0}$

and a map $r:X_{a_{0}}\rightarrow X_{a}$ in $C$ satisfying $(rp_{a_{1},a_{0}}, p_{a_{1},a})<u_{a}$ .

We say that $p$ satisfies the approximative condition $M$ , in notation ap-M, in $C$
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provided that $(x, u)$ satisfies the approximative condition $M$ in $C$.

(3. 1) LEMMA. $p$ satisfies (ap-M) in $C$ iff it satisfies the following condition:
$(ap- M)_{1}$ There exists $a_{0}\in A$ such that for each $a\in A$ there exists a map

$r:X_{a_{0}}\rightarrow X_{a}$ in $C$ satisfying $(rp_{ao},p_{a})<u_{a}$ .

(3. 2) LEMMA. Let $p:X\rightarrow(x, u)$ and $q:Y\rightarrow(y, \gamma)$ be approximative C-
resolutions of spaces $X$ and $Y$, respectively. Let $p$ and $q$ be rigid for $C$.
Suppose that $Y$ is dominated by $X$ in TOP. If $p$ satisfies (ap-M) in $C$, then so
does $q$ .

(3. 3) COROLLARY. Let $p$ and $p^{\prime}$ be approximative C-resolutions of $X$ rigid

for C. If $p$ satisfies $(ap\cdot M)_{1}$ in $C$, then so does $p^{\prime}$ .

(3.1) follows from the definitions and (R2). We can show (3.2) in a way
similar to the proof of (1.1). (3.3) follows from (3.2). $\blacksquare$

Let $p=\{p_{a} : a\in A\}:X\rightarrow X=\{X_{a},p_{a^{\prime},a}, A\}$ be a C-resolution of a space $X$. We
consider the following conditions:

(ap-M)* There exists $a_{0}\in A$ such that for each $a\in A$ and each $u\in 6_{0V}(X_{a})$

there exist $a_{1}>a,$ $a_{0}$ and a map $r:X_{a_{0}}\rightarrow X_{a}$ in $C$ satisfying $(rp_{a_{1},a_{0}}, p_{a_{1},a})<u$ .
(ap-M)* There exists $a_{0}\in A$ such that for each $a\in A$ and each $u\in 6_{\mathcal{O}V}(X_{a})$

there exists a map $r:X_{a_{0}}\rightarrow X_{a}$ in $C$ satisfying $(rp_{a_{0}},p_{a})<u$ .

(3.4) LEMMA. (i) Let $p:X\rightarrow(x, u)$ be an approximative C-resolution.
Then $p:X\rightarrow(x, u)$ satisfies (ap-M) iff $p:X\rightarrow X$ satisfies (ap-M)*.

(ii) $($ ap-M$)^{*}and$ (ap-M)* are equivalent.

(3.5) LEMMA. Let a space $Y$ be dominated by a space $X$ in TOP. Let
$p:X\rightarrow X$ and $q:Y\rightarrow y$ be C-resolutions rigid for C. If $p$ satisfies $($ ap-M $)^{*}$ , then

so does $q$ .

(3.4) follows from the definitions and (R2). We can show (3.5) in the
same way as in (1.1). Thus in the same way as in (1.8) we have the following:

(3.6) THEOREM. Let $X\in ObTOPc$. Then the following statements are
equivalent:

(i) $Any/some$ approximative C-resolution of $X$, which is rigid for $C$,

satisfies (ap-M).

(ii) $Any/some$ approximative $C\cdot resolution$ of $X$, which is rigid for $C$,
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satisfies $(ap- M)_{1}$ .
$(\ddot{\dot{m}})$ $Any/some$ C-resolution of $X$, which is rigid for $C$, satisfies (ap-M)*.

(iv) $Any/some$ C-resolution of $X$, which is rigid for $C$, satisfies $(ap- M)_{1}^{*}$ . $\blacksquare$

We say that a space $X\in ObTOPc$ satisfies the approximative condition $M$ , in

notation ap-M, in $C$ provided that it satisfies one of the conditions in (3.6).

(3.7) THEOREM. When $C$ is a full subcategory of $AP(CT0P_{3.5})$ , then

$(1.9)-(1.12)$ for ap-M in $C$ hold on ASh(TOPc) and TOPc.

PROOF. (1.11) for ap-M follows from (3.2). (1.12) for ap-M follows from

(I.6.8) and (I.6.10). (1.9) for ap-M follows from (I.6.9), (I.6.11), (I.7.8) and

$(1.11)-(1.12)$ for ap-M. (1.10) for ap-M follows from (1.9) for ap-M. $\blacksquare$

We say that a paracompact M-space $X$ satisfies the approximative condition
$M$ , in notation ap-M, provided that $X$ satisfies ap-M in $ANR(PM)$ . Since

$ANR(PM)$ is a full subcategory of $T0P_{ANR(PM)}$ by (I.3.17), the above definition

is well defined.

(3.8) THEOREM. A paracompact M-space $X$ satisfies the approximative

condition $M$ iff it satisfies the condition $M$ (see [36]).

PROOF. By (I.3.17) there exists an $ANR(PM)$ -resolution $ p=\{p_{a} : a\in A\}:X\rightarrow$

$Au(X, M)=\{U_{a},p_{a^{\prime},a}, A\}$ such that all maps are inclusions and all $U_{a}$ are

$ANR(PM)$ -open neighborhoods of $X$ in an $AR(PM)M$ By (I.5.7) $ H(p):X\rightarrow$

$H(J\ell u(X, M))$ is a HTOP-expansion. Since all $U_{a}$ have the homotopy type of

polyhedra by (iii) of (I.3.17), we may assume that $H(p):X\rightarrow H(Au(X, M))$ is

a HPOL-expansion.

First we assume that $X$ satisfies ap-M. By the assumption Au $(X, M)$ satisfies

(ap-M). For each $a\in A$ there exists $V\in 6_{\mathcal{O}V}(U_{a})$ satisfying $(*)$ for $tU_{a}$ } in

(I.5.5). Thus $H(Au(X, M))$ satisfies the following condition:

$(MC)_{1}$ There exists $a_{0}\in A$ such that for each $a\in A$ there exist $a_{1}>a,$ $a_{0}$ and

a map $r:U_{a0}\rightarrow U_{a}$ satisfying $rp_{a_{1},ao}\simeq p_{a_{1},a}$ .
Claim. $(MC)_{1}$ and (MC) given below are equivalent.

(MC) For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ theae exist
$a^{\prime\prime}>a_{0},$ $a^{\prime}$ and a map $r:U_{a_{0}}\rightarrow U_{a^{\prime}}$ satisfying $rp_{a^{\prime\prime},a_{0}}\simeq p_{a^{\prime\prime},a^{\prime}}$ .

We easily show our Claim. Thus $H(Au(X, M))$ satisfies (MC) and hence
$X$ satisfies the condition M.

Next we assume that $X$ satisfies the condition M. Then $H(Au(X, M))$
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satisfies (MC) and hence satisfies $(MC)_{1}$ by the Claim. There exists $a_{0}\in A$ such
that for each $a\in A$ there exist $a_{1}>a,$ $a_{0}$ and a map $k:U_{a_{0}}\rightarrow U_{a}$ satisfying $kp_{a_{1},a_{0}}$

$\simeq p_{a_{1},a}$ . There exists a homotopy $h:U_{a_{1}}\times I\rightarrow U_{a}$ such that $h(x, O)=kp_{a_{1},a_{0}}(x)=$

$k(x)$ and $h(x, 1)=p_{a_{1},a}(x)=x$ for $x\in U_{a_{1}}$ . Take $a_{2}>a_{1}$ such that $\overline{U}_{a_{2}}\subset U_{a_{1}}$ and
define $H^{\prime}$ : $\overline{U}_{a_{2}}\times I\cup U_{a_{0}}\times\{0\}\rightarrow U_{a}$ by $H^{\prime}(x, t)=h(x, t)$ for $(x, t)\in\overline{U}_{a_{2}}\times I$ and
$H^{\prime}(x, O)=k(x)$ for $x\in U_{ao}$ . Then $H^{\prime}$ is well defined and then by the homotopy
extension property there exists a homotopy $H:U_{a_{0}}\times I\rightarrow U_{a}$ which is an extension
of $H^{\prime}$ . Define $r:U_{a_{0}}\rightarrow U_{a}$ by $r(x)=H(x, 1)$ for $x\in U_{ao}$ . Thus $r$ satisfies that
$rp_{a_{2},a_{0}}=p_{a_{2},a}$ . Hence $p$ satisfies the following condition:

$(ap- M)_{2}$ There exists $a_{0}\in A$ such that for each $a\in A$ there exist $a_{2}>a,$ $a_{0}$

and a map $r:U_{a_{0}}\rightarrow U_{a}$ satisfying $rp_{a_{2},a_{0}}=p_{a_{2},a}$ .
Since $(ap- M)_{2}$ implies $(ap- M)_{1}$ for $p,$ $X$ satisfies ap-M. $\blacksquare$

Let $p:X\rightarrow(x, u)$ be an approximative C-resolution of a space $X$. Then we
say that $p$ satisfies the condition $N$ provided that it satisfies the following con-
dition:

(N) There exists $a_{0}\in A$ such that for each $a\in A$ there exists a map $ f:X_{a_{0}}\rightarrow$

$X$ satisfying $(p_{a}fp_{a_{0}},p_{a})<u_{a}$ .
Let $p:X\rightarrow X$ be a C-resolution. We consider the following conditions:
$(N)^{*}$ There exists $a_{0}\in A$ such that for each $a\in A$ and for each $u\in 6_{0\gamma}(X_{a})$

there exists a map $f:X_{a_{0}}\rightarrow X$ satisfying $(p_{a}fp_{ao},p_{a})<u$ .
(N) There exists $a_{0}\in A$ such that for each $u\in 6_{0V}(X)$ there exists a map

[: $X_{a_{0}}\rightarrow X$ satisfying $(fp_{a_{0}},1_{X})<u$ .
(N) There exist $K\in ObC$ and a map $f:X\rightarrow K$ such that for each $ u\in$

$6_{0V}(X)$ there exists a map $g:K\rightarrow X$ satisfying $(gf, 1_{X})<u$ .

(3.9) LEMMA. Let $p$ be a C-resolution and rigid for C. Then $p$ satisfies
(N) iff it satisfies $(N)_{2}$ .

PROOF. Trivially $(N)_{1}^{*}$ implies $(N)_{2}$ . We now assume $(N)_{2}$ . Then there
exist $K\in ObC$ and a map $f:X\rightarrow K$ satisfying $(N)_{2}$ . Since $p$ is rigid for $C$,
there exists $a_{0}\in A$ and a map $h:X_{a_{0}}\rightarrow K$ such that $f=hp_{a_{0}}$ . Take any $u\in 6_{0\gamma}(X)$ .
By the assumption there exists a map $g:K\rightarrow X$ such that $(gf, 1x)<u$ . Thus
($ghp_{a_{0}}$ , lx) $<u$ . This means $(N)_{1}^{*}$ . $\blacksquare$

Using rigidness as in the proof of (3.9) in a way similar to the one used in
$(3.1)-(3.3)$ and (3.5) we can easily show the following:
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(3. 10) LEMMA. (i) (3.1) holds for (N) and $(N)^{*}$ .
(ii) (3.2) and (3.3) holds for (N).

(iii) (N) and $(N)_{1}^{*}$ are equivalent.
(iv) (3.5) holds for $(N)^{*}$ . $\blacksquare$

By (3.9) and (3.10) we have the following:

(3.11) THEOREM. Let $X\in ObTOPc$. Then the $f_{0l}lowing$ statements are

equivalent:
(i) $Any/some$ approximative C-resolution of $X$, which is rigid for $C$,

satisfies (N).

(ii) $Any/some$ approximative C-resolution of $X$, which is rigid for $C$,

satisfies $(N)^{*}$ .
(iii) $Any/some$ C-resolution of $X$, which is rigid for $C$, satisfies $(N)_{1}^{*}$ .
(iv) $X$ satisfies $(N)_{2}$ . $\blacksquare$

We say that a space $X\in ObTOPc$ satisfies the condition $N$ in $C$ provided

that $X$ satisfies one of the conditions in (3.11). In the same way as in (3.7)

using (3.10) we have the following:

(3.12) THEOREM. When $C$ is a full subcategory of $AP(CTOP_{3.5}),$ $(1.10)$ ,

(1.11) and (2.9) hold for the condition $N$ in C. $\blacksquare$

(3. 13) LEMMA. An approximative resolution $p:X\rightarrow(x, u)$ satisfies $(ap- M)_{1}$

and (IAM) iff it satisfies (N).

PROOF. We assume that $p$ satisfies (N). Then there exists $a_{0}\in A$ satisfying

(N). Take any $a\in A$ . Then there exists a map $f:X_{a_{0}}\rightarrow X$ such that $(p_{a}fp_{ao}$ ,

$p_{a})<u_{a}$ . Put $r=p_{a}f:X_{a_{0}}\rightarrow X_{a}$ and then $(rp_{a_{0}},p_{a})<u_{a}$ . This means $(ap- M)_{1}$ .
Since $pX\rightarrow X$ is a resolution by (I.3.3), there exists $V\in 6_{\mathcal{O}V}(X_{a})$ satisfying

(R2) for $u_{a}$ . By (AI3) there exists $a^{\prime}>a$ such that $p_{\overline{a}^{1},a}V>u_{a^{\prime}}$ . By the choice

of $a_{0}$ there exists a map $g:X_{a_{0}}\rightarrow X$ such that $(p_{a^{\prime}}gp_{a_{0}},p_{a^{\prime}})<u_{a^{\prime}}$ . Then by the

choice of $a^{\prime}(p_{a}gp_{a_{1},a_{0}},p_{a_{1}}, p_{a_{1},a}p_{a_{1}})<V$ for $a_{1}>a,$ $a_{0}$ . By the choice of $V$ there

exists $a_{2}>a_{1}$ such that $(p_{a}gp_{a_{2},a_{0}}, p_{a_{2},a})<u_{a}$ . This means (IAM).

Next we assume that $p$ satisfies $(ap- M)_{1}$ and (IAM). Then there exists $ a_{0}\in$

$A$ satisfying $(ap- M)_{1}$ . Take any $a\in A$ . By (AI3) there exists $a_{1}>a$ such that

$p_{\overline{a}_{1}^{1},a}u_{a}>stu_{a_{1}}$ . Since $p$ satisfies (IAM), there exist $a_{2}>a_{1}$ and a map $f:X_{a_{2}}\rightarrow X$

such that

(1) $(p_{a_{1}}f, p_{a_{2},a_{1}})<u_{a_{1}}$ .
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By the choice of $a_{0}$ there exists a map $r:X_{ao}\rightarrow X_{a_{2}}$ such that $(rp_{a_{0}},p_{a_{2}})<u_{a_{2}}$

and then

(2) $(p_{a_{2},a_{1}}rp_{a_{0}}, p_{a_{1}})<u_{a_{1}}$ .
By (1) $(p_{a_{1}}frp_{a_{0}}, p_{a_{2},a_{1}}rp_{a_{0}})<u_{a_{1}}$ and then by (2) $(p_{a_{1}}frp_{a_{0}},p_{a_{1}})<stu_{a_{1}}$ . By the
choice of $a_{1}(p_{a}frp_{a_{0}},p_{a})<u_{a}$ . This means (N). $\blacksquare$

(3.14) THEOREM. Let $X\in 0bT0P_{C}$. Then $X$ satisfies the condition $N$ in
$C$ iff $X$ is IAM and satisfies ap-M in C. $\blacksquare$

We say that a paracompact M-space $X$ satisfies the condition $N$ provided
that it satisfies the condition $N$ in ANR(PM). By (2.18) and (3.14) we have

(3. 15) C0ROLLARY. Let $X$ be a paracompact M-space. Then the following
statements are equivalent:

(i) $X$ satisfies the condition N.
(ii) $X$ is IAM and satisfies ap-M.
(iii) $X$ is UAM and satisfies ap-M.
(iv) $X$ is an AP and satisfies ap-M.
(v) $X$ satifies (C) and ap-M. $\blacksquare$

\S 4. Strongly approximative movability and approximative contractibility.

In this section we introduce strongly approximative movability and approxi $\cdot$

mative contractibility. We investigate their properties.
Let $C$ be a full subcategory of $AP$ . Let $(x, u)=\{(x_{a}, u_{a}),p_{a^{\prime},a}, A\}$ be an

approximative C-resolution. We say that (X, $u$ ) is strongly approximatively
movable, in notation SAM, in $C$ provided that it satisfies the following condition:

(SAM) For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ there
exist $a^{\prime\prime}>a^{\prime},$

$a_{0}$ and a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ in $C$ satisfying $(p_{a^{\prime},a}r, p_{a_{0},a})<u_{a}$ and
$(rp_{a^{\prime\prime},a_{0}}, p_{a^{\prime\prime},a^{\prime}})<u_{a^{\prime}}$ .

Let $p=\{p_{a} ; a\in A\}:X\rightarrow(x, u)$ be an approximative C-resolution of a space
X. We say that $p:X\rightarrow(x, u)$ is strongly approximatively movable, in notation
SAM, in $C$ provided that (X, $u$ ) is SAM in $C$.

(4. 1) LEMMA. $p:X\rightarrow(x, u)$ is SAM in $C$ iff it satisfies the following
condition:

$(SAM)_{1}$ For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ there
exists a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ in $C$ satisfying $(p_{a^{\prime},a}r, p_{a_{0},a})<u_{a}$ and $(rp_{a_{0}},p_{a^{\prime}})<u_{a^{\prime}}$ .
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This lemma follows from the definitions and (R2). In the same way we can

show (3.2) and (3.3) for $(SAM)_{1}$ . Hence (3.2) and (3.3) hold for (SAM) by

(4.1). $\blacksquare$

We consider the following conditions for a C-resolution $p:X\rightarrow X$ :

(SAM)* For each $a\in A$ and for each $u\in 6_{\mathcal{O}\gamma}(X_{a})$ there exists $a_{0}>a$ such

that for each $a^{\prime}>a$ and for each $u^{J}\in 6_{0V}(X_{a^{\prime}})$ there exist $a^{\prime\prime}>a^{\prime},$
$a_{0}$ and a map

$r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ in $C$ satisfying $(p_{a^{\prime},a}r, p_{a_{0},a})<u$ and $(rp_{a^{\prime\prime},a_{0}},$ $p_{a^{\prime\prime},a^{;)}}<u’$ .
$(SAM)_{1}^{*}$ For each $a\in A$ and for each $u\in 6_{\mathcal{O}V}(X_{a})$ there exists $a_{0}>a$ such

that for each $a^{\prime}>a$ and for each $u^{J}\in 6_{o\gamma}(X_{a^{\prime}})$ there exist $a^{\prime\prime}>a^{\prime},$
$a_{0}$ and a map

$r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ satisfying $(p_{a^{\prime},a}r, p_{a_{0},a})<u$ and $(rp_{a_{0}},p_{a^{\prime}})<u’$ .

We easily show that (SAM)*and $(SAM)_{1}^{*}$ are equivalent. In the same way

we show (3.4) for $(SAM)_{1}$ and $(SAM)_{1}^{*}$ , and (3.5) for $(SAM)_{1}^{*}$ . Thus we may

summarize as in (4.2) and then in the same way as in (3.6) we have (4.3):

(4.2) LEMMA. (i) (3.2) and (3.3) hold for $(SAM)_{1}$ .
(ii) (3.4) holds for $(SAM)_{1}$ and $(SAM)_{1}^{*}$ .
$(\ddot{\dot{m}})$ (3.5) holds for $(SAM)_{1}$ .
(iv) $($SAM$)^{*}and(SAM)_{1}^{*}$ are equivalent. $\blacksquare$

(4.3) THEOREM. Let $X\in ObTOPc$. Then the following statements are

equivalent:
(i) $Any/some$ approximative C-resolution of $X$, which is rigid for $C$,

satisfies (SAM).

(ii) $Any/some$ approximative C-resolution of $X$, which is rigid for $C$,

satisfies $(SAM)_{1}$ .
$(\ddot{\dot{m}})$ $Any/some$ C-resolution of $X$, which is rigid for $C$, satisfies (SAM)*.

(iv) $Any/some$ C-resolution of $X$, which is rigid for $C$, satisfies $(SAM)_{1}^{*}$ . $\blacksquare$

We say that $X\in ObTOPc$ is strongly approximatively movable, in notation

SAM, in $C$, provided that it satisfies one of the conditions in (4.3). In the same

way as in (3.7) we have

(4.4) THEOREM. When $C$ is a full subcategory of $AP(CT0P_{3.5})$ , $(1.9)-$

(1.12) for SAM in $C$ hold on ASh(TOPc) and TOPc, respectively. $\blacksquare$

(4.5) PROPOSIT10N. (i) If (Af‘, $u$ ) is SAM in $C$, then it is AM and

satisfies (ap-M).

(ii) Let $X\in ObTOPc$. If $X$ is SAM in $C$, then it is AM and satisfies
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ap-M in $C$.

PROOF. We show (i). From the difinitions $(x, u)$ satisfies (AM) and the
following condition:

$(ap- M)_{3}$ For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ there
exist $a^{\parallel}>a^{\prime},$

$a_{0}$ and a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ in $C$ satisfying $(rp_{a^{\prime\prime},a_{0}}, p_{a^{\prime\prime},a^{\prime}})<u_{a^{\prime}}$ .
In a way similar to the one used in the Claim in the proof of (3.8) we can

easily show that (ap-M) and $(ap- M)_{3}$ are equivalent. Hence we have (i). (ii)
follows from (i). $\blacksquare$

We say that a paracompact M-space $X$ is strongly approximatively movable,
in notation SAM, provided that $X$ is SAM in $ANR(PM)$ .

(4.6) COROLLARY. Let $X$ be a paracompact M-space. If $X$ is SAM, then
it is AM and satisfies ap-M. $\blacksquare$

(4.7) THEOREM. A complete metric space $X$ is SAM iff $X$ is an ANR.

$PR\infty F$ . Let (X, $d$) be a metric space. We assume that $X$ is complete with
respect to the metric $d$. It is well known that $X$ is isometric to a closed subset
of a Banach space $B(X)$ (see Borsuk [3], Hu [13] and Besaga-Pelczynski [1]).
Here $B(X)$ consists of all real bounded functions with $\sup$ norm. Since embed-
ding is isometric, we may assume that $X$ is a closed subset of $B(X)$ and $d$ is
the metric on $B(X)$ . $B(X)$ is complete with respect to $d$ and $B(X)\in AR$ . By
(I.3.17) we have an approximative resolution $p=\{p_{a} : a\in A\}:X\rightarrow Gu(X, B(X))=$

$\{X_{a},p_{a^{\prime},a}, A\}$ such that all $p_{a},p_{a^{\prime},a}$ are inclusion maps and all $X_{a}$ are open
neighborhoods of $X$ in $B(X)$ and $p$ is rigid for ANR.

Claim. $p$ satisfies (SAM)*iff it satisfies the following condition:
$(SAM)_{2}^{*}$ For each $a\in A$ and each $u\in 6_{\mathcal{O}V}(X_{a})$ there exists $a_{0}>a$ such that

for each $a^{\prime}>a$ there exist $a^{\prime\prime}>a^{\prime},$
$a_{0}$ and a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ satisfying $rp_{a^{\prime\prime},a_{0}}=$

$p_{a^{\prime\prime},a^{\prime}}$ and $(p_{a^{;},a}r, p_{a_{0},a})<u$ .
We assume that $p$ satisfies (SAM)*. Take any $a\in A$ and any $u\in 6_{0V}(X_{a})$

then there exists $a_{0}>a$ satisfying the condition in (SAM)*for $a$ and $u$ . Take
any $a^{\prime}>a$ and then there exists $V\in 6_{0V}(X_{a^{\prime}})$ satisfying $(*)$ for $p_{\overline{a}}\}_{a}u$ in (I.5.7).

By the choice of $a_{0}$ there exist $a^{\prime\prime}>a_{0},$ $a^{\prime}$ and a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ such that

(1) $(\rho_{a^{\prime},a}r, p_{a_{0},a})<u$ and
(2) $(rp_{a^{\prime\prime},a_{0}}, p_{a^{\prime\prime},a^{\prime}})<V$ .

By (2) and the choice of $V$ there exists a $p_{\overline{a}^{1},a}u$-homotopy $H:X_{a^{\prime\prime}}\times I\rightarrow X_{a^{\prime}}$ such
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that $H(x, O)=p_{a^{\prime\prime},a^{\prime}}(x)=x$ and $H(x, 1)=rp_{a^{\prime\prime},a_{0}}(x)=r(x)$ for $x\in X_{a^{\prime\prime}}$ . Take
$a_{2}>a_{1}>a^{\prime\prime}$ such that $\overline{x}_{a_{2}}\subset x_{a_{1}}\subset\overline{x}_{a_{1}}\subset x_{a^{\prime\prime}}$ . Then there exists a map $t:B(X)\rightarrow I$

such that $t(\overline{X}_{a_{2}})=0$ and $t(B(X)-X_{a_{1}})=1$ . We define a map $r^{\prime}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ as
follows: $r^{\prime}(x)=H(x, t(x))$ for $x\in X_{a^{\prime\prime}}$ and $r^{\prime}(x)=r(x)$ for $x\in X_{a_{0}}-\overline{X}_{a_{1}}$ .
Clearly $r^{\prime}$ is well defined and $r^{\prime}p_{a_{2},a_{0}}=p_{a_{2},a^{\prime}}$ . Since $H$ is a $p_{\overline{a}^{1},a}u$ -homotopy and
(1), $(p_{a^{\prime},a}r^{\prime}, p_{a_{0},a})<u$ . Hence we have $(SAM)_{2}^{*}$ . The converse is trivial.
Hence we have our Claim.

We assume that $X$ is SAM. Then $p$ satisfies (SAM)*. By the Claim we
can choose a subsequence $A^{\prime}=\{a_{i} : i\in N\}\subset A$ and maps $r_{i}$ : $X_{a_{i}}\rightarrow X_{a\ell+1}$ for $i\geq 2$

such that $ a_{1}=1<a_{2}<a_{3}<\cdots$ ,

(3) $X_{i}\subset U(X, (1/2)^{i})$ for $i\geq 1$ ,

(4) $d(p_{a_{t+1},a\iota-1}ri, p_{a_{i},ai-1})<(1/2)^{i}$ for $i\geq 2$ and

(5) $rip_{a\iota ai+1}+2’=p_{aai+1}t+2$’ for $i\geq 2$ .

Here $U(x, \epsilon)=\{z\in B(X):d(X, z)<\epsilon\}$ for $\epsilon>0$ . We define maps $f_{i}$ : $ X_{a_{2}}\rightarrow X_{a_{i}}\subset$

$B(X)$ for $i\geq 1$ as follows: $f_{i}=r\cdots r$ for $i\geq 3$ and $f_{i}=p_{a_{2},a_{i}}$ for $i=1,2$ . By (4)

$d(f_{i-1},f_{i})<(1/2)^{i}$ for $i\geq 2$ and then $\{f_{i} : i\geq 1\}$ forms a Cauchy sequence with
respect to $d$. Since $B(X)$ is complete with respect to $d$, we have a (continuous)

map $f:X_{a_{2}}\rightarrow B(X)$ . Since $f_{i}$ : $X_{a_{2}}\rightarrow X_{ai}$ , by (3) $f(X_{a_{2}})\subseteq X$, that is, $f:X_{a_{2}}\rightarrow X$.
By (5) $f_{i}(x)=x$ for $x\in X$ for $i\geq 1$ , and hence $f(x)=x$ for $x\in X$. Thus $X$ is a
retract of an ANR $X_{a_{2}}$ and hence $X$ is an ANR.

Next we assume that $X$ is an ANR. Then trivially the rudimentary resolu-
tion $\{1x\};X\rightarrow\{X\}$ satisfies $(SAM)_{1}^{*}$ . Then $X$ is SAM. $\blacksquare$

(4.8) PROBLEM. Does (4.7) hold for paracompact M-spaces or for metric
spaces? Our Claim in the proof of (4.7) holds for paracompact M-spaces.

Let (X, $u$ ) be an approximative inverse system in TOP. We say that (X, $u$ )

is approximatively contractible, in notation AC, provided that it satisfies the
following condition:

(AC) For each $a\in A$ there exist $a^{\prime}>a$ and a map $f:X_{a^{\prime}}\rightarrow X_{a}$ such that
$(f, p_{a^{\prime},a})<u_{a}$ and $f$ is homotopic to a constant map.

We say that $p:X\rightarrow(x, u)$ is approximatively contractible, in notation AC,

provided that $(x, u)$ is AC. In a similar way we can show $(1.1)-(1.3)$ for AC.
Let 51; be an inverse system in TOP. We say that $X$ is approximatively

contractible, in notation AC, provided that it satisfies the following condition:

(AC)* For each $a\in A$ and for each $u\in 6_{\mathcal{O}V}(X_{a})$ there exist $a^{\prime}>a$ and a
map $f:X_{a^{\prime}}\rightarrow X_{a}$ such that $(p_{a^{\prime},a}, f)<u$ and $f$ is homotopic to a constant map.
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We say that $p:X\rightarrow X$ is approximatively contractible, in notation AC,
provided that $X$ is AC. In a similar way we can show $(1.4)-(1.7)$ for AC.
Thus in the same way as in (1.8) we have the following:

(4.9) THEOREM. Let $X$ be a space. $Th_{t}n$ the following statements are
equivalent:

(i) $Any/some$ approximative AP-resolution of $X$ is AC.
(ii) $Any/some$ AP-resolution of $X$ is AC. $\blacksquare$

We say that a space $X$ is approximatively contractible, in notation AC, pro-
vided that it satisfies one of the conditions in (4.9). In the same way we can
show $(1.9)-(1.12)$ for AC. We summarize as follows:

(4.10) THEOREM. $(1.9)-(1.12)$ hold for AC. $\blacksquare$

A space $X$ has trivial shape iff $X$ has the shape of the one point space.

(4.11) THEOREM. A space is AC iff it has the trivial shape.

PROOF. Let $X$ be a space. Then there exists an approximative POL-
resolution $p:X\rightarrow(x, u)$ of $X$ satisfying $(**)$ in (I.5.6). By (I.3.3) and (I.5.7)
$H(p):X\rightarrow H(X)$ is a HPOL-expansion. It is well known that $X$ has trivial
shape iff $H(X)$ satisfies the following condition:

(TS) For each $a\in A$ there exists $a^{\prime}>a$ such that $p_{a^{\prime},a}$ is homotopic to a
constant map.

We assume that $X$ is AC. Then (X, $u$ ) satisfies (AC). Clearly $(**)$ of
(I.5.6) and (AC) imply (TS). Hence $X$ has trivial shape. Since (TS) implies
(AC), the converse also holds. $\blacksquare$

(4.12) COROLLARY. An approximative polyhedron $X$ has trivial shape iff
it satisfies the following condition:

(APT) For each $u\in 6_{0\gamma}(X)$ there exists a map $f:X\rightarrow X$ such that $(f$,
$1_{X})<u$ and $f$ is homotopic to a constant map.

Since (AC) and (APT) for the rudimentary resolution $\{1x\};X\rightarrow\{X\}$ are
equivalent, (4.12) follows from (4.9) and (4.11). $\blacksquare$

(4.13) THEOREM. Let $M$ be an $AR(PM)$ and $X$ a closed subset of $M$

Then $X$ is an AP with trivial shape iff it satisfies following condition:
$(APT)_{1}$ For each $u\in 6_{0V}(X)$ there exists a map $h:M\rightarrow X$ such that $(h|X$,

$1_{X})<u$ .
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PROOF. First we assume that $X$ is an AP with trivial shape. Take any
$u\in 6_{\mathcal{O}V}(X)$ and then we have $V\in 6_{\mathcal{O}V}(X)$ such that $stV<u$ . By (4.12) there
exists a map $f:X\rightarrow X$ such that

(1) $(f, 1_{X})<V$ and $f$ is homotopic to a constant map.

Since $X$ is an AP, there exist an ANR $K$ and maps $g:X\rightarrow K,$ $h:K\rightarrow X$ satisfying

( $hg$, lx) $<V$ . Thus $(hgf, 1_{X})<stV<u$ . Since $M$ is an $AR(PM),$ $M$ is contrac-

tible. By (1) $gf:X\rightarrow K$ is homotopic to a constant, and hence by the homotopy

extension property there exists a map $H:M\rightarrow K$ such that $H|X=gf$. Then $r=$

$hH:M\rightarrow X$ has the required properties.
By (iv) in (I.3.17) and $(APT)_{1}X$ is an AP. Then $(APT)_{1}$ implies (APT)

and by (4.12) $X$ is an AP with trivial shape. $\blacksquare$

\S 5. Generalized absolute neighborhood retracts.

In this section we discuss generalized absolute neighborhood retracts. See \S 0

for their historical development.
Let $C$ be a subcategory of TOP such that $ObC$ is a weakly hereditary topo-

logical class (see Hu [13, p. 33]). Sometimes $X\in C$ means $X\in ObC$. $ANR(C)$ .
$AR(C),$ $ANE(C)$ and $AE(C)$ denote the full subcategories of TOP consisting of
all absolute neighborhood retracts, all absolute retracts, all absolute neighborhood

extensors and all absolute extensors for $ObC$. Let $PM$ and $M$ be the sub-
categories of TOP consisting of all paracompact M-spaces (see (I.3.17)) and all
metric spaces, respectively. ANR and $AR$ denote ANR(M) and AR(M), re-
spectively. Lisica [18] and Marde\v{s}i\v{c} and \v{S}ostak [21] showed the following:

(5. 1) LEMMA. $ANR(PM)=PM\cap ANE(PM),$ $AR(PM)=PM\cap AE(PM)$ and
$ANR\subset ANR(PM)$ . $\blacksquare$

Let $Y$ be a space. We say that $Y$ is an approximative absolute extensor for
$PM$ , in notation AAE for $PM$ , provided that it satisfies the following condition:

(AAE) For any map $f:X_{0}\rightarrow Y$, where $X_{0}$ is any closed subspace of any

paracompact M-space $X$, and for any $u\in 6_{\mathcal{O}V}(Y)$ there exists a map $g:X\rightarrow Y$

such that $(g|X_{0},f)<u$ .
We say that $Y$ is an approximative absolute neighborhood extensor in the

sense of Noguchi for $PM$ , in notation $AANE_{N}$ for $PM$ , provided that it satisfies
the following condition:

$(AANE_{N})$ For any map $f:X_{0}\rightarrow Y$, where $X_{0}$ is any closed subspace of any

paracompact M-space $X$, there exists a neighborhood $N$ of $X_{0}$ in $X$ such that for
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any $u\in 6_{\mathcal{O}V}(Y)$ there exists a map $g:N\rightarrow Y$ satisfying $(g|X_{0},f)<u$ .

We say that $Y$ is an approximative absolute neghborhood extensor in the
sense of Clapp for $PM$ , in notation $AANE_{C}$ for $PM$ , provided that it satisfies
the following condition:

$(AANE_{C})$ For any map $f:X_{0}\rightarrow Y$, where $X_{0}$ is a closed subspace of any
paracompact M-space $X$, and for any $u\in 6_{0V}(Y)$ there exist a neighborhood $N$

of $X_{0}$ in $X$ and a map $g:N\rightarrow Y$ satisfying $(g|X_{0},f)<u$ .
Let $X$ be a paracompact M-space. We say that $X$ is an approximative

absolute retract for $PM$ , in notation AAR for $PM$ , provided that it satisfies the
following condition:

(AAR) For any closed embedding $h:X\rightarrow M,$ $M\in ObPM$ , and for each $ u\in$

$6_{\mathcal{O}V}(h(X))$ there exists a map $r:M\rightarrow h(X)$ satisfying $(r|h(X), 1_{h(X)})<u$ .
We say that $X$ is an approximative absolute neighborhood retract in the sense

sense of Noguchi for $PM$ , in notation $AANR_{N}$ for $PM$ , provided that it satisfies
the following condition:

$(AANR_{N})$ For any closed embedding $h:X\rightarrow M,$ $M\in ObPM$ , there exists a
neighborhood $N$ of $h(X)$ in $M$ such that for each $u\in 6_{\mathcal{O}V}(h(X))$ there exists a
map $r:N\rightarrow h(X)$ satisfying $(r|h(X), 1_{h(X)})<u$ .

We say that $X$ is an approximative absolute neighborhood retract in the
sense of Clapp for $PM$ , in notation $AANR_{C}$ for $PM$ , provided that it satisfies the
following condition:

$(AANR_{C})$ For any closed embedding $h:X\rightarrow M,$ $M\in ObPM$ , and for each
$u\in 6_{\mathcal{O}V}(h(X))$ there exist a neighborhood $N$ of $h(X)$ in $M$ and a map $r:N\rightarrow X$

satisfying $(r|h(X), 1_{h(X)})<u$ .
$AANR_{N}(PM)$ and $AANR_{C}(PM)$ denote the full subcategories of TOP con-

sisting of all $AANR_{N}s$ and $AANR_{C}s$ for $PM$ , respectively. Similarly we may
define $AAE(PM),$ $AANE_{N}(PM),$ $AANE_{C}(PM)$ and $AAR(PM)$ .

(5. 2) LEMMA. $AAR(PM)=PM\cap AAE(PM),$ $AANR_{N}(PM)=PM\cap AANE_{N}$

$(PM)$ and $AANR_{C}(PM)=PM\cap AANE_{C}(PM)$ .

$PR\infty F$ . We show the last one. In a similar way we can show the others.
Take any $X\in AANR_{C}(PM)$ . Trivially $X\in PM$ . We need to show that $ X\in$

$AANE_{C}(PM)$ . Take any paracompact M-space $Z$, its closed subspace $Z_{0}$ , any
map $f:Z_{0}\rightarrow X$ and any $u\in 6_{0\gamma}(X)$ . By (I.3.17) there exists a $M\in AR(PM)$

which contains $X$ as a closed subspace. Since $X\in AANR_{C}(PM)$ , there exist a
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neighborhood $N$ of $X$ in $M$ and a map $r:N\rightarrow X$ such that $(r|X, 1_{X})<u$ . By
(5.1) and Prop. 6.1 of Hu [13, p. 42] Int $N\in ANE(PM)$ . Then there exists a
neighborhood $U$ of $Z_{0}$ in $Z$ and a map $g^{\prime}$ : $ U\rightarrow$Int $N$ such that $g^{\prime}|Z_{0}=f$ Thus
$g=rg^{\prime}$ : $U\rightarrow X$ satisfies $(g|Z_{0},f)<u$ . Hence $X\in PM\cap AANE_{C}(PM)$ .

Next we assume that $X\in PM\cap AANE_{C}(PM)$ . Take any $Y\in PM$ and a
closed embedding $h:X\rightarrow Y$. Take any $u\in 6_{CV}(h(X))$ and put $V=h^{-1}u\in 6_{0\gamma}(X)$ .
Since $X\in AANE_{C}(PM)$ there exist a neighborhood $N$ of $h(X)$ in $Y$ and a map
$g:N\rightarrow X$ such that $(g|h(X), h^{-1})<V$ . Thus $r=hg:N\rightarrow h(X)$ satisfies $(r|h(X)$ ,

$1_{h(X)})<u$ . Hence $X\in AANR_{C}(PM)$ . $\blacksquare$

(5.3) LEMMA. Let $M\in AR(PM)$ and $X$ a closed subset of M. Then we
have the following:

(i) $X\in AAR(PM)$ iff it satisfies the following condition:
$(AAR)_{1}$ For each $u\in 6_{\mathcal{O}V}(X)$ there exists a map $r:M\rightarrow X$ such that $(r|X$,

$1_{X})<u$ .
(ii) $X\in AANR_{N}(PM)$ iff it satisfies the following condition:
$(AANR_{N})_{1}$ There exists a neighborhood $N$ of $X$ in $M$ such that for each

$u\in 6_{0V}(X)$ there exists a map $r:N\rightarrow X$ satisfying $(r|X, 1x)<u$ .
$(\ddot{\dot{m}})$ $X\in AANR_{C}(PM)$ iff it satisfies the following condition:
$(AANR_{C})_{1}$ For each $u\in 6_{\mathcal{O}\gamma}(X)$ there exists a neighborhood $N$ of $X$ in $M$

and a map $r:N\rightarrow X$ satisfying $(r|X, 1x)<u$ .

PROOF. We show (ii). In a similar way we can show the other assertions.
We assume $(AANR_{N})_{1}$ and show $(AANR_{N})$ . Take any closed embedding $h:X$

$\rightarrow M^{\prime},$ $M^{\prime}\in PM$ . By $(AANR_{N})_{1}$ there exists a neighborhood $N$ of $X$ in $M$

satisfying condition in $(AANR_{N})_{1}$ . Since $M\in AR(PM)$ , by (5.1) and Prop. 6.1
of Hu [13, p. 42] Int $N\in ANE(PM)$ . Then there exist a neighborhood $N^{\prime}$ of
$h(X)$ in $M^{\prime}$ and a map $g:N^{\prime}\rightarrow IntN$ such that $g|h(X)=h^{-1}$ . Take any $ u\in$

$6_{\mathcal{O}V}(h(X))$ . By the choice of $N$ there exists a map $r:N\rightarrow X$ such that $(r|X$,
$1_{X})<h^{-1}u$ . Put $r^{\prime}=hrg:N^{\prime}\rightarrow h(X)$ and then it satisfies $(r^{\prime}|h(X), 1_{h(X)})<u$ .
Hence $X\in AANR_{N}(PM)$ . The converse holds, because $(AANR_{N})$ implies
$(AANR_{N})_{1}$ . $\blacksquare$

Let $X$ be a subspace of $Y$. We say that $X$ is an approximative retract of $Y$

provided that for each $u\in 6_{\mathcal{O}V}(X)$ there exists a map $r:Y\rightarrow X$ such that $(r|X$ ,

$1_{X})<u$ .

(5.4) LEMMA. Let $X$ be a closed subspace of a paracompact M-space $Y$.
We assume that $X$ is an approximative retract of Y. If $Y$ is an AAR, $an$



328 Tadashi WATANABE

$AANR_{N}$ or an $AANR_{C}$ for $PM$ , then so is $X$, respectively.

PROOF. We only show the case of $AANR_{N}$ . Take any $M\in AR(PM)$ which
contains $Y$ as a closed subset. By (5.3) there exists a neighborhood $N$ of $Y$ in
$M$ satisfying $(AANR_{N})_{1}$ . Take any $u\in 6_{0V}(X)$ and then take $V\in 6_{0V}(X)$ with
$stV<u$ . Since $X$ is approximative retract of $Y$, there exists a map $r_{1}$ : $Y\rightarrow X$

such that $(r_{1}|X, 1_{X})<V$ . By the choice of $N$ there exists a map $r_{2}$ : $N\rightarrow Y$ such
that $(r_{2}|Y, 1_{Y})<r_{1}^{-1}V$ . Thus $r=r_{1}r_{2}$ : $N\rightarrow X$ satisfies ($r|X$, lx) $<stV<u$ . Then $X$

satisfies $(AANR_{N})_{1}$ . Hence $X\in AANR_{N}(PM)$ by (5.3). In a similar way we
can show the other assertions. $\blacksquare$

(5.5) THEOREM. Let $X$ be a paracompact M-space.
(i) $X\in AANR_{N}(PM)$ iff $X$ satisfies the condition N.
(ii) $X\in AANR_{C}(PM)$ iff $X$ satisfies (C).

$(\ddot{\dot{m}})$ $X\in AAR(PM)$ iff $X$ satisfies $(APT)_{1}$ in (4.3).

PROOF. By (I.3.17) there exists an $ANR(PM)$ -resolution $p:X\rightarrow j\ell u(X, M)$ .
Here $M$ is an $AR(PM)$ containing $X$ as a closed subset. $(AANR_{N})_{1}$ and
$(AANR_{C})_{1}$ in (5.3) are equivalent to $(N)_{1}^{*}$ for $p$ and (C) for $p$ , respectively.
Hence by (2.15), (3.11) and (5.3) we have (i) and (ii). Trivially $(AAR)_{1}$ in
(5.3) and $(APT)_{1}$ in (4.3) are same. Thus we have (iii). $\blacksquare$

We define absolute weak neighborhood retracts and absolute weak retracts

for $PM$ . These notions are introduced by Bogatyi [2] for compact metric spaces.
Sakai [29] studied these notions for metric spaces. Let $h:Y\rightarrow M$ be a closed
embedding and $Y,$ $M\in PM$ . Let $X$ be a closed subspace of $Y$. We say that $X$

is a weak retract of $Y$ under $h$ , in notation $X\in WR(PM)(Y)_{h}$ , provided that it
satisfies the following condition:

(WR) For any neighborhood $U$ of $h(X)$ in $M$ there exists a map $r:h(Y)$

$\rightarrow U$ such that $r|h(X)=1_{h(X)}$ .
We say that $X$ is a weak neighborhood retract of $Y$ under $h$ , in notation

$X\in WNR(PM)(Y)_{h}$ , provided that it satisfies the following condition:

(WNR) There exists a neighborhood $V$ of $X$ in $Y$ such that for any
neighborhood $U$ of $h(X)$ in $M$ there exists a map $r:h(V)\rightarrow U$ satisfying
$r|h(X)=1_{h(X)}$ .

We say that $X$ is a weak retract of $Y$, in notation $X\in WR(PM)(Y)$ , pro-

vided that $X\in WR(PM)(Y)_{h}$ for some closed embedding $h:Y\rightarrow M,$ $M\in PM$ . We
say that $X$ is a weak neighborhood retract of $Y$, in notation $WNR(PM)(Y)$ ,
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provided that $X\in WNR(PM)(Y)_{h}$ for some closed embedding $h:Y\rightarrow M,$ $M\in PM$ .
We say that $X\in PM$ is an absolute weak retract, in notation $X\in AWR(PM)$ ,

provided that for any closed embedding $f:X\rightarrow Y$ with $Y\in PM,$ $f(X)\in WR(PM)(Y)$ .
We say that $X\in PM$ is an absolute weak neighborhood retract, in notation $ x\in$

$AWNR(PM)$ , provided that for any closed embedding $f:X\rightarrow Y$ with $Y\in PM$ ,

$f(X)\in WNR(PM)(Y)$ .

(5.6) LEMMA. (i) $X\in WR(PM)(Y)$ , then $X\in WR(PM)(Y)_{t}$ for any

closed embedding $t:Y\rightarrow N,$ $N\in ANR(PM)$ .
(ii) If $X\in WNR(PM)(Y)$ , then $X\in WNR(PM)(Y)_{t}$ for any closed embed $\cdot$

ding $t:Y\rightarrow N,$ $N\in ANR(PM)$ .

PROOF. We only show (ii). In the same way we can show (i). Since $ x\in$

$WNR(PM)(Y)$ , there exists a closed embedding $h:Y\rightarrow M,$ $M\in PM$ such that

$X\in WNR(PM)(Y)_{h}$ . Then there exists a neighborhood $V$ of $X$ in $Y$ satisfying

(WNR) for $h$ . Take any neighborhood $W$ of $t(X)$ in $N$. Since $N$ is an
ANR $(PM)$ , Int $N\in ANE(PM)$ and then there exists a neighborhood $U$ of $h(X)$

in $M$ and a map $F:U\rightarrow IntW$ such that $F|h(X)=th^{-1}$ . By the choice of $V$

there exists a map $r:h(V)\rightarrow U$ such that $r|h(X)=1_{h(X)}$ . Thus $f=Frht^{-1}$ : $t(V)$

$\rightarrow W$ satisfies $f|t(X)=1_{l(X)}$ . Hence $X\in WNR(PM)(Y)_{t}$ . $\blacksquare$

(5.7) LEMMA. Let $X$ be a closed subspace of $M\in AR(PM)$ .
(i) $X\in AWR(PM)$ iff it satisfies the following condition:
(AWR) For any neighborhood $U$ of $X$ in $M$ there exists a map $r:M\rightarrow U$

such that $r|X=1x$ .
(ii) $X\in AWNR(PM)$ iff it satisfies the following condition:
(AWNR) There exists a neighborhood $U_{0}$ of $X$ in $M$ such that for any

neighborhood $U$ of $X$ in $M$ there exists a map $r:U_{0}\rightarrow U$ satisfying $r|X=1x$.

PROOF. We show only (ii). In the same way we can show (i). First we

assume that $X\in AWNR(PM)$ . Then $X\in WNR(PM)(M)_{1M}$ and hence it satisfies

(AWNR).

Next we assume (AWNR). Take any closed embedding $f:X\rightarrow Y$, $Y\in PM$ .
By the assumption there exists a neighborhood $U_{0}$ of $X$ in $M$ satisfying (AWNR).

Since Int $U_{0}\in ANE(PM)$ , there exist a neighborhood $V_{0}$ of $f(X)$ in $Y$ and a

map $ F:V_{0}\rightarrow$Int $U_{0}$ such that $F|f(X)=f^{-1}$ . There exists a closed embedding

$h:Y\rightarrow N,$ $N\in AR(PM)$ . We show that $f(X)\in WNR(PM)(Y)_{h}$ . Take any

neighborhood $W$ of $hf(X)$ in $N$. Since Int $W\in ANE(PM)$ there exist a neighbor-

hood $U$ of $X$ in $M$ and a map $H:U\rightarrow IntW$ such that $H|X=hf$. By the choice
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of $U_{0}$ there exists a map $r:U_{0}\rightarrow U$ such that $r|X=1x$ . Thus $R=HrFh^{-1}$ :
$h(V_{0})\rightarrow W$ satisfies $R|hf(X)=1_{hf(X)}$ . Then $f(X)\in WNR(PM)(Y)_{h}$ and hence
$X\in AWNR(PM)$ . $\blacksquare$

(5.8) THEOREM. Let $X$ be a paracompact M-space. Then $X\in AWR(PM)$

iff $X$ has trivial shape.

PROOF. Let $p:X\rightarrow Au(X, M)$ be the $ANR(PM)$ -resolution in (I.3.17). Here
$M$ is an $AR(PM)$ which contains $X$ as a closed subspace. We assume that $X$ is
an $AWR(PM)$ . Take any $ANR(PM)$ -neighborhood $U$ of $X$ in $M$. By (AWR)

in (5.7) there exists a map $r:M\rightarrow U$ such that $r|X=1x$ . Since $U\in ANR(PM)$ ,

there exists $u\in 6_{0\gamma}(U)$ satisfying $(*)$ in (I.5.5). Since $r|X=1x$ , by (ii) of
(I.3.17) there exists an $ANR(PM)$ -neighborhood $V$ of $X$ in $M$ such that $(r|V$ ,
$j)<u$ . Here $j:V\rightarrow U$ is the inclusion map. By the choice of or $r|V\simeq j$. Since
$M\in AR(PM),$ $M$ is contractible and then $r|V$ is homotopic to a constant map.
Thus $X$ is AC and hence $X$ has trivial shape by (4.11).

Next we assume that $X$ has trivial shape. Then $X$ is AC by (4.11). Take
any $ANR(PM)$ -neighborhood $U$ of $X$ in $M$ There exists $u\in 6_{0V}(U)$ satisfying
$(*)$ in (I.5.5). Since $X$ is AC, there exists an $ANR(PM)$ -neighborhood $V$ of $X$

in $M$ and a map $f:V\rightarrow U$ such that $f$ is homotopic to a constant map and $(f,j)<$

$u$ . By the choice of $uf\simeq j$ and then $j$ is homotopic to a constant map. Since
$U\in ANR(PM)$ , by the homotopy extension theorem there exists a map $r:M\rightarrow U$

such that $r|X=1x$ . Thus $X$ satisfies (AWR) in (5.7) and hence $X$ is an
AWR $(PM)$ . $\blacksquare$

(5. 9) THEOREM. Let $X$ be a paracompact M-space. Then $X\in AWNR(PM)$

iff $X$ satisfies ap-M.

PROOF. Let $p:X\rightarrow Au(X, \Lambda f)$ be the $ANR(PM)$ -resolution in (I.3.17). First
we assume that $X\in AWNR(PM)$ . Then there exists an $ANR(PM)$ -neighborhood
$U_{0}$ of $X$ in $M$ satisfying (AWNR) in (5.7). Take any $ANR(PM)$ -neighborhood
$U$ of $X$ in $M$ and any $u\in 6_{\mathcal{O}V}(U)$ . By the choice of $U_{0}$ there exists a map
$r:U_{0}\rightarrow U$ such that $r|X=1_{X}$ . By (ii) of (I.3.17) there exists an $ANR(PM)-$

neighborhood $V$ of $X$ in $\Lambda f$ such that $(r|V,j)<u$ . Here $j:V\rightarrow U$ is the inclusion
map. Thus $p$ satisfies $(ap- M)_{1}^{*}$ . Hence $X$ satisfies ap-M by (3.6).

Next we assume that $X$ satisfies ap-M. Then $p$ satisfies (ap-M) ’ by (3.6)

and then there exists an ANR(PM)-neiborhood $U_{0}$ of $X$ in $M$ satisfying $(ap- M)_{1}^{*}$

for $p$ . Take any neighborhood $V$ of $X$ in $M$ By (ii) of (I.3.17) there exists
an $ANR(PM)$ -neighborhood $lV$ of $X$ in $M$ such that $W\subset V$ . There exists $u_{\in}$
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$6_{\mathcal{O}V}(W)$ satisfying $(*)$ in (I.5.5). By the choice of $U_{0}$ there exists a map

$s:U_{0}\rightarrow W$ such that $(s|X,j)<u$ . Here $j:X\rightarrow W$ is the inclusion map. Thus

$s|X\simeq j$. Since $W\in ANR(PM)$ , $W\in ANE(PM)$ and hence by the homotopy

extension theorem there exists a map $r:U_{0}\rightarrow W$ such that $r|X=1x$ Then $X$

satisfies (AWNR) and hence $X$ is an AWNR by (5.7). $\blacksquare$

(5.10) COROLLARY. Let $X$ be a paracompact M-space. Then the following

statements are equivalent:
(i) $X$ is an $AANR_{C}$ for $PM$ .
(ii) $X$ is an $AANE_{C}$ for $PM$ .
$(\ddot{\dot{m}})$ $X$ is an AP.
(iv) $X$ is IAM.
(v) $X$ is UAM.
(vi) $X$ satisfies (C).

(5.11) COROLLARY. Let $X$ be a paracompact M-space. Then the following

statements are equivalent:
(i) $X$ is an $AANR_{N}$ for $PM$ .

(ii) $X$ is an $AANE_{N}$ for $PM$ .
$(\ddot{\dot{m}})$ $X$ satisfies ap-M and one of the conditions $(i)-(iv)$ in (5.10).

(iv) $X$ satisfies the condition N.

(v) $X$ satisfies $(N)_{2}$

(5.12) COROLLARY. Let $X$ be a paracompact M-space. Then the following

statements are equivalent:
(i) $X$ is an AAR for $PM$ .
(ii) $X$ is an AAE for $PM$ .
$(\ddot{\dot{m}})$ $X$ has trivial shape and satisfies one of the conditions $(i)-(vi)$ in

(5.10).

(iv) $X$ has trivial shape and satisfies one of the conditions $(i)-(v)$ in

(5.11).

(5. 13) COROLLARY. AAR $(PM)=AANR_{N}(PM)\cap$ AWR $(PM)=AANR_{C}(PM)$

$\cap$ AWR $(PM)$ and $AANR_{N}(PM)=AANR_{C}(PM)\cap$ AWNR(PM).

(5.10) follows from (2.8), (5.2) and (5.5). (5.11) follows from (3.11),

(3.15), (5.5) and (5.10). (5.12) follows (4.13), (5.5), (5.10) and (5.12). (5.13)

follows from $(5.8)-(5.12)$ . $\blacksquare$
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\S 6. Absolute neighborhood shape retracts.

In this section we discuss shape properties of $AANR_{C}(PM),$ $AANR_{N}(PM)$ ,

$AAR(PM)$ and so on.
Let $Y$ be a subspace of a space $X$. We say that a shaping $f:X\rightarrow Y$ is a

shape retraction provided that $fS(j)=S(1_{Y})$ . Here $j:Y\rightarrow X$ is the inclusion map
and $S(j):Y\rightarrow X$ is the shaping induced by $j$ . We say that $Y$ is a shape retract

of $X$ provided that there exists a shape retraction $f:X\rightarrow Y$.
Let $X$ be a paracompact M-space. We say that $X$ is an absolute shape

retract for $PM$ , in notation ASR for $PM$ , provided that it satisfies the following
condition :

(ASR) For any closed embedding $h:X\rightarrow M,$ $M\in PM,$ $h(X)$ is a shape
retract of $M$

We say that $X$ is an absolute neighborhood shape retract for $PM$ , in notation
ANSR for $PM$ , provided that it satisfies the following condition:

(ANSR) For any closed embedding $h:X\rightarrow M$, $M\in PM$ , there exists a
neighborhood $U$ of $h(X)$ in $M$ such that $h(X)$ is a shape retract of $U$.

$ASR(PM)$ and ANSR $(PM)$ denote the full subcategories of TOP consisting
of all ASRs and ANSRs for $PM$ , respectively.

(6.1) THEOREM. Let $X$ be a paracompact M-space.
(i) $X\in ASR(PM)\iota ffX$ has trivial shape.
(ii) $X\in ANSR(PM)$ iff $X$ is strongly movable (see MS [19]).

PROOF. Using the same way of proof as in Theorems 11 and 12 of MS [19,

p. 233] by (I.3.17) and (5.5) we easily show (i) and

(1) $X\in ANSR(PM)$ iff $X$ is shape dominated by a polyhedron.

By (1) and Theorem 4 of Watanabe [35] we have (ii). $\blacksquare$

In Bogatyi [2] introduced the notion of internal movability for compact

metric spaces. This notion is not shape invariant. For arbitrary spaces we
define internal movability as follows: Let $p=\{p_{a} : a\in A\}:X\rightarrow X=\{X_{a},p_{a^{\prime},a}, A\}$ be
a resolution. We consider the following condition:

(IM) For each $a\in A$ there exist $a^{\prime}>a$ and a map $f:X_{a^{\prime}}\rightarrow X$ such that
$p_{a}f\simeq p_{a^{\prime},a}$ .

(6.2) LEMMA. Let $p:X\rightarrow X$ and $q:X\rightarrow y$ be ANR-resolutions of a space
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X If $p$ satisfies (IM), then so does $q$ .

In a way similar to the one used in (1.7) using (I.5.5) we can show (6.2).

We say that a space $X$ is internally movable provided that $X$ admits an ANR-
resolution satisfying (IM). By (6.2) this property does not depend on ANR-
resolutions. Thus for compact metric spaces Bogatyi’s definition coincides with
our definition.

(6.3) THEOREM. Let $X$ be a space, $X$ a collection of spaces and $n$ an

integer.
(i) If $X$ is AM, then $X$ is movable.
(ii) If $X$ is $\mathscr{K}- AM$ , then $X$ is $\mathscr{K}$-movable.
(iii) If $X$ is n-AM, then $X$ is n-movable.
(iv) If $X$ is UAM, then $X$ is uniformly movable.
(v) If $X$ is IAM, then $X$ is internally movable.

PROOF. We only show (i). In a similar way we can easily show the other
assertions. Let $X$ be an approximatively movable space. There exists an ap-

proximative POL-resolution $p:X\rightarrow(x, u)$ with $(**)$ in (I.5.6). Since (X, $u$ ) is

approximatively movable, for each $a\in A$ there exists $a_{0}>a$ with the following

property: For each $a^{\prime}>a$ there exists a map $r_{a^{\prime}}$ : $X_{a_{0}}\rightarrow X_{a^{\prime}}$ such that $(p_{a^{\prime},a}r_{a^{\prime}}$ ,

$p_{a_{0},a})<u_{a}$ . By $(**)$ in (I.5.6) $p_{a^{\prime},a}r_{a^{\prime}}\simeq p_{a_{0},a}$ . This means that $H(X)$ is movable.
Since $H(p):X\rightarrow H(X)$ is a HPOL-expansion of $X$ by (I.3.3) and (I.5.7), $X$ is

movable. $\blacksquare$

(6.4) THEOREM. A space $X$ is strongly movable iff $X$ is movable and

satisfies the condition M.

PROOF. Let $ p:X\rightarrow$ Alr $=\{X_{a},p_{a^{\prime},a}, A\}$ be a POL-resolution of X. By (I.5.7)

$H(p):X\rightarrow H(X)$ is a HPOL-expansion of $X$. We assume that $X$ is strongly

movable. Thus $H(X)$ satisfies the following condition:

(SM) For each $a\in A$ there exists $a_{0}>a$ with the following property; for
each $a^{\prime}>a$ there exist $a^{\prime\prime}>a_{0},$ $a^{\prime}$ and a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ such that $p_{a^{\prime},a}r\simeq p_{a_{0},a}$

and $rp_{a^{\prime\prime},a_{0}}\simeq p_{a^{\prime\prime},a^{\prime}}$ .
(SM) implies (M) in (3.8) and the following:

(MV) For each $a\in A$ there exists $a_{0}>a$ such that for each $a^{\prime}>a$ there exists
a map $r:X_{a_{0}}\rightarrow X_{a^{\prime}}$ satisfying $p_{a^{\prime},a}r\simeq p_{a_{0},a}$ .
Hence $X$ satisfies the condition $M$ and is movable.
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Next we assume that $X$ is movable and satisfies the condition M. Then
$H(X)$ satisfies (M) and (MV). By the Claim in (3.8) $H(X)$ satisfies $(M)_{1}$ . We
show that $H(X)$ satisfies (SM). By $(M)_{1}$ there exists $a_{0}\in A$ satisfying $(M)_{1}$ .
Take any $a\in A$ and then take any $a_{1}>a,$ $a_{0}$ . There exists $a_{2}>a_{1}$ satisfying
(MV) for $a_{1}$ . We show that $a_{2}$ is the required index. To do so take any $a_{3}>a$ .
By the choice of $a_{0}$ there exist $a_{4}>a_{0},$ $a_{3}$ and a map $s:X_{a_{0}}\rightarrow X_{as}$ satisfying

(1) $sp_{a_{4},a_{0}}\simeq p_{a_{4}},a_{3}$ .

Take any $a_{5}>a_{1},$ $a_{4}$ and then by the choice of $a_{2}$ there exists a map $r:X_{a_{2}}\rightarrow X_{a_{5}}$

satisfying

(2) $p_{a_{6},a_{1}}r\simeq p_{a_{2},a_{1}}$ .

We put $k=sp_{a_{5},a_{0}}r:X_{a_{2}}\rightarrow X_{a\epsilon}$ . By (1) and (2) $ p_{asa}k=p_{a_{3},a}(sp_{a_{4},a_{0}})p_{a_{5},a_{4}}r\simeq$

$p_{asa}p_{a_{6},a_{3}}r=p_{a_{1},a}(p_{a_{6},a_{1}}r)\simeq p_{a_{1},a}p_{a_{2},a_{1}}=p_{a_{2},a}$ , that is,

(3) $p_{a_{3},a}k\simeq p_{a_{2},a}$ .

Take any $a_{6}>a_{2},$ $a_{5}$ . By (1) and (2) $kp_{a_{6},a_{2}}=sp_{a_{1},a_{0}}(p_{a_{6},a_{1}}r)p_{a_{0},a_{6}}\simeq sp_{a_{1},a_{0}}p_{a_{2},a_{1}}p_{a_{6},a_{2}}$

$=(sp_{a_{4},a_{0}})p_{a_{6},a_{4}}\simeq p_{a_{4},a_{\theta}}p_{a_{6},a_{4}}=p_{a_{6},a_{3}}$ , that is,

(4) $kp_{a_{6},a_{2}}\simeq p_{a_{6},a_{3}}$ .
(3) and (4) mean that $H(X)$ satisfies (SM) and hence $X$ is strongly movable. $\blacksquare$

(6.5) COROLLARY. Let $X$ be a paracompact M-space.
(i) If $X$ is SAM, then $X$ is strongly movable.
(ii) If $X$ satisfies the condition $N$, then $X$ is strongly movable.

$PR\infty F$ . In tne same way as in (6.3) we can show (i). We show (ii). By
(3.15) $X$ is UAM and satisfies ap-M. By (6.2) $X$ is uniformly movable, and
then movable. By (3.8) $X$ satisfies the condition M. Hence by (6.4) $X$ is strongly
movable. $\blacksquare$

(6.6) COROLLARY. Let $X$ be a paracompact M-space.
(i) $AAR(PM)\subset ASR(PM)$ .
(ii) If $X$ is SAM, then $X\in ANSR(PM)$ .
(m) $AANR_{N}(PM)\subset ANSR(PM)$ .
(iv) If $X\in AANR_{C}(PM)$ , then $X$ is internally movable and uniformly

movable.

(i) follows from (5.12) and (6.1). (ii) follows from (6.1) and (6.5). (iii)

follows from (5.11), (6.1) and (6.5). (iv) follows from (5.10) and (6.2). $\blacksquare$
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Now we will discuss topological groups. We assume that the reader is
familiar with topological groups. Pontryagin [27] is a good textbook for topo-

logical groups.
Let $G$ be a compact connected abelian topological group. $Ch(G)$ denotes

the character group of $G$ . Since $G$ is compact connected, $Ch(G)$ is a discrete
and torsion free abelian group. A continuous homomorphism $h:G\rightarrow H$ induces
a homomorphism $Ch(h):Ch(H)\rightarrow Ch(G)$ . Let $\mathscr{S}=\{G_{a} : a\in A\}$ be the set of all
finitely generated subgroups of $Ch(G)$ . Then we have a directed system $\mathscr{S}=$

$\{G_{a},j_{a^{\prime},a}, A\}$ such that $a^{\prime}>a$ iff $c_{a^{\prime}}\supset c_{a}$ , and $j_{a^{\prime},a}$ : $G_{a}\rightarrow G_{a^{\prime}}$ is the inclusion
homomorphism for $a^{\prime}>a$ . Inclusion homomorphisms $j_{a}$ : $G_{a}\rightarrow Ch(G)$ induce a

direct limit $j=\{j_{a} : a\in A\}:\mathscr{S}\rightarrow Ch(G)$ . Since $Ch(G)$ is torsion free, each $G_{a}$ is
a free group $Z^{n(a)}$ . Here $Z^{n}$ is the direct sum of n-copies of the additive group
$Z$ of all integers. Thus $Ch(G_{a})$ is the $n(a)$ -dimentional torus $T^{n(a)}$ . By taking
the dual we have an inverse system $Ch(\mathscr{S})=\{Ch(G_{a}), Ch(j_{a^{\prime},a}), A\}$ . $Ch(j)=$

$\{Ch(j_{a}):a\in A\}:G\rightarrow Ch(\mathscr{S})$ forms an inverse limit. Since all $Ch(G_{a})$ are poly-
hedra, $Ch(j):G\rightarrow Ch(\mathscr{S})$ is a POL-resolution by (I.3.13).

(6.7) LEMMA (Scheffer [30]). Let $G$ be a compact connected topological
group and $H$ a locally compact abelian topological group. Then every map
$f:G\rightarrow H$ with $f(e_{O})=eH$ is homotopic to exactly one continuous homomorphism
$h:G\rightarrow H.$ Here $e_{G}$ denotes the identity element of G. $\blacksquare$

(6. 8) LEMMA. Let $T^{n}$ and $T^{m}$ be finite dimensional tori. Then every map
$f:T^{n}\rightarrow T^{m}$ is homotopic to exactly one continuous homomorphism $h:T^{n}\rightarrow T_{w}$ .

PROOF. Let $e_{n}$ and $e_{m}$ be the identity elements of $T^{n}$ and $T^{m}$ , respectively.

Since $T^{n}$ is arcwise connected, there exists a path $s:I\rightarrow T^{m}$ such that $s(O)=e_{m}$

and $s(1)=f(e_{n})$ . We define a homotopy $H:T^{n}\times I\rightarrow T^{m}$ by $H(x, t)=f(x)*s(t)^{-1}$ .
Here $w*z$ means the composition of $w$ and $z$ in the group $T^{m}$ . Then $H_{0}=f$ and
$H_{1}$ : $T^{n}\rightarrow T^{m}$ is a map with $H_{1}(e_{n})=e_{m}$ . Therefore by (6.7) $f$ is homotopic to

exactly one continuous homomorphism $h:T^{n}\rightarrow T^{m}$ . $\blacksquare$

(6.9) THEOREM. Let $G$ be a compact connected abelian topological group.
(i) $G$ is UAM iff $G$ is uniformly movable.
(ii) $G$ is AM iff $G$ is movable.

PROOF. We show only (i). In a similar way we can show (ii). We assume

that $G$ is UM. Then for each $a\in A$ there exist $a_{0}>a$ and a collection { $r_{a^{\prime}}$ : $a^{\prime}>$

$a\}$ of maps $r_{a^{\prime}}$ : $Ch(G_{a_{0}})\rightarrow Ch(G_{a^{\prime}})$ satisfying
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(1) $Ch(j_{a^{JJ},a^{\prime}})r_{a^{\prime\prime}}\simeq r_{a^{\prime}}$ and $Ch(’,)r_{a^{\prime}}\simeq Ch(j_{a_{0},a})$ for $a^{\prime\prime}>a^{\prime}>a$ .
By (6.8) there exist continuous homomorphisms $h_{a^{\prime}}$ : $Ch(G_{a_{0}})\rightarrow Ch(G_{a^{\prime}})$ such that
$r_{a^{\prime}}\simeq h_{a^{\prime}}$ for $a^{\prime}>a$ . By the uniquness of (6.8) and (1)

(2) $Ch(j_{a^{\chi},a^{\prime}})h_{a^{\chi}}=h_{a^{\prime}}$ and $Ch(j_{a^{\prime},a})h_{a^{\prime}}=Ch(j_{a_{0},a})$ for $a^{\prime}>a^{\prime}>a$ .
Since $Ch(j):G\rightarrow Ch(l)$ is an inverse limit, by (2) there exists a continuous
homomorphism $h:Ch(G_{a_{0}})\rightarrow G$ such that $Ch(j_{a})h=Ch(j_{a_{0},a})$ . Thus $ Ch(j):G\rightarrow$

$Ch(l)$ satisfies (IAM)*and then $G$ is IAM. Hence by (2.13) $G$ is UAM. The
converse assertion follows from (6.3). $\blacksquare$

(6.10) C0ROLLARY. Let $G$ be a compact connected abelian group.
(i) $G$ is UAM lff $H^{1}(G:Z)$ has strong property $L$ (see Watanabe [34]).

(ii) $G$ is AM iff $H^{1}(G:Z)$ has property $L$ (see Keesling [16]).

Here $H^{n}(X:K)$ denotes the n-dimensional $\check{C}ech$ cohomology group of a space $X$

with coefficients $K$.

(6.11) COROLLARY. Let $G$ be a compact connected abelian group.
(i) If $G$ is locally arcwise connected, then $G$ is UAM.
(ii) $G$ is locally connected $\iota ffG$ is AM.

(6.12) C0ROLLARY. There exists a compact connected abelian group which
$is$ AM, but not UAM.

Movability and uniform movability for compact connected abelian groups are
characterized by Keesling [16] and Watanabe [34]. Since $Ch(G)=H^{1}(G:Z)$ by
Steenrod [32], (6.10) and (6.11) follow from these characterizations and (6.9).

Watanabe [34] showed that Keesling’s example in [17] is movable, but not

uniformly movable. Hence by (6.9) Keesling’s example is also an example for
(6.12). $\blacksquare$

(6.13) LEMMA. If a compact connected abelian group $G$ is strongly
movable, then $G$ is a finite dimensional torus.

PROOF. Since $G$ is strongly movable, by Watanabe [36] $G$ is shape dominated
by a finite polyhedron $P$. Then $H^{1}(G:Z)$ is also dominated by $H^{1}(P:Z)$ .
Thus $H^{1}(G:Z)$ is finitely generated. By Steenrod [32] $H^{1}(G:Z)=Ch(G)$ .
Since $G$ is connected, $Ch(G)$ is torsion free by Pontryagin [27]. Thus $Ch(G)=$

$Z^{n}$ for some integer $n$ . By Pontryagin duality $G$ is homeomorphic to $Ch(Z^{n})=$

$T^{n}$ . $\blacksquare$
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(6.14) PROPOSITION. For compact connected abelian groups the notions of
SAM, $AANR_{N}(PM)$ and $ANR(PM)$ are equivalent.

By (6.2) $ANR(PM)\rightarrow AANR_{N}(PM)\rightarrow SAM$ and by (6.13) $SAM-ANR(PM)$ .
Hence we have (6.14). $\blacksquare$

We established many relations between generalized ANRs and approximative

shape properties. (For NE-sets see the subsequent parts of this paper.) For

paracompact M-spaces we summarize these relations as follows:
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