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APPROXIMATIVE SHAPE I1
—GENERALIZED ANRs—

By

Tadashi WATANABE

§ 0. Introduction.

This paper is a continuation of [38], in which we introduced approximative
shape. In this paper we introduce many approximative shape properties for
spaces. These are approximative shape invariants and unify generalized absolute
neighborhood retracts.

In 1931 Borsuk introduced the notions of an absolute neighborhood retract
and an absolute retract, in notations ANR and AR, for metric spaces, respectively.
There are many generalizations of ANRs and ARs. In 1953 Noguchi [26],
introduced the notions of an e-ANR and an ¢-AR for compact metric spaces.
Gmurczyk [11, 127 studied some shape properties of ¢-ANRs and e-ARs. She
introduced the terms of an approximative absolute neighborhood retract in the
sense of Noguchi and an approximative absolute retract, in notations AANRx
and AAR, respectively, to replace Noguchi’s less convenient names ¢é-ANR and
e-AR. Clapp [8] introduced an approximative absolute neighborhood retract in
the sense of Clapp, in notation AANRg, for compact metric spaces. Bogatyi [2]
studied many properties of AANRy, AANR; and AAR. Kalini [14] introduced
these notions for compact spaces, and Powers for metric spaces. Mardesi¢
[22] introduced the notion of approximative polyhedra. Recently Gauthier [9,
107 introduced AANEyx, AANE; and AAE which are generalizations of an ab-
solute neighborhood extensor and an absolute extensor for metric spaces.

In 1986 Borsuk introduced shape theory, which was then developed by many
mathematicians. Shape theory gives us a method to investigate bad spaces and
bad maps by means of the good homotopy category of polyhedra. We have many
important notions in shape theory; for examples, movability (see [5], [200]),
uniform movability (see [25]), strong movability (see [6], [24]), absolute
neighborhood shape retracts (see [4], [23]) and so on (see [19]). These notions
play fundamental roles in shape theory.

In we introduced approximative shape. It gives us a method to investi-
gate bad spaces and bad maps by means of the good category of polyhedra. In
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this paper we introduce approximative movability in § 1, uniformly approximative
movability in § 2, approximative condition M in §3 and strongly approximative
movability in §4. In §5 we show that these approximative shape properties
characterize generalized ANRs. In § 6 we discuss the relationship between these
approximative shape properties and shape properties. We show that approxi-
mative movability and uniformly approximative movability are equivalent for
compact metric spaces, but different for compact spaces.

We assume that the reader is familiar with the theory of ANRs and with
shape theory. Borsuk [3] and Hu are standard textbooks for the theory of
ANRs. Borsuk [4] and Mardesi¢ and Segal are standard textbooks for shape
theory. For undefined notations and terminology see Hu [13] and Mardesi¢ and
Segal [19], which is quoted by MS [19]. We use the same notations and
terminology as in [38]. We quote results from as follows: for example
(1.3.3) denotes theorem (3.3) in [38].

The author thanks Professor Y. Kodama who encouraged him to develop this
theory, and also Dr. K. Sakai and Dr. A. Koyama. They carefully read the
first manuscript and gave valuable advices.

§ 1. Approximative movability.

In this section we introduce the notion of approximative movability and in-
vestigate its properties.

Let (¥,%)=1{(Xa,Ua), pa’,a, A} be an approximative inverse system in TOP.
We say that (¥, %) is approximatively movable, in notation AM, provided that
it satisfies the following condition :

(AM) For each a= A there exists ay,>a such that for each a’>a there exists
a map ra: Xay—>Xa’ satisfying (pa’,ara’, Paoya) <Ua.

(1.1) PROPOSITION. Let (¥,%U) and (¥Y,V) be approximative inverse
systems. Suppose that (Y,V) is dominated by (¥,%U) in Appro-TOP. If (¥,U)
is AM, then so is (¥,1).

PROOF. Put (¥,V)={(Yes,Vs),qv’,5, B}. Let f={f,fo: beB}: (¥,%)—>(Y,
V) and g={g,ga: a€A}: (¥,V)—>(¥,U) be approximative system maps such that

[fllgl=[1w, »»]. Since [fl[g]l=[q(s)(fg)] for a 1l-refinement function s of
(Y,V), by (1.2.7) there exists an increasing function ¢: B—B such that £>1p

and

1) q@ @) (fg))=": q(t)l, v>-
Let «u: B—»B be a 2-refinement function of (¥%,7"). Take any b&B. By (1)
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there exists b;>tu(b), gfstu(b) such that

(2)  (gstucdy,uyfstudr€rstucdy@oi,gfstucdy, qoiucdy) <V uc-
By the assumptions, there exists ao> fstu(b) such that
(3) a, satisfies (AM) for (¥,%) and fstu(d).
By (AM2) there exists b,>b1, g(a,) such that

(4)  (Pao, fstucdr8acbargcanys Erstucd Jossgrstucyy) < U sstucdy-
Claim. b, satisfies (AM) for (¥,7") and &.
Take any &’ >b. By (AM2) there exists a’> fstu(d), fstu(b’) such that
(5)  (fstudypa’s fstucdy, Qstucd’s,stucdyfstud’sPa’y fstucd’y) <V stucdy.
By (3) there exists a map 7rq’: Xa,—>Xa’ such that
(6)  (Pa’srstudsra’s Paosrstucyy) <Ufstucd)-
Put 757 =qstucsy, v’ fstuonPa’, fstuct’s"a’SaeQos,gcany : Yo,—> Yo.. We need to show that
() (gor,070?s @ayd) <V'p.
By (5) and (AI2)
(8)  (gstucdy,uctrfsturPaly fstudyTa’aedb:,0ca0)s
Gstud’>,ucdrfstuvsPa’s rstuc!s7 ! Gao@bay gcany) < Vucs.
By (6), (AM1) and (AI2)
(9 (gstutr,udrfstumrPa’, studTa’ aobss gcaods
Gstucdy,ucd fstudyPaos rstu®>gaoqbe0can) <V ucd)-
By (4) and (AM1)

(10)  (gstucdy,ucdy fsturPaos fstucd)8aoqbs; gcaoys

‘]stucln,u<b>fstu<b)gfstu(b>qbz, arstucdy) <V uc.

By (2)
(11)  (gstucvy,uch fstu)&rstuctrQbe, g fstucdys Qos,udy) <Vuc-
By (8)-(11)

(12)  (gstucd’y,ucdy fstud’sPa’, fstucd’s7a’Laeqbar¢(a0ds Qbs,ucdy) <SSV upy.

Since u is a 2-refinement function, (7) follows from (12). Thus we have the
Claim. Hence (¥%,7) is AM. H

(1.2) COROLLARY. The notion of approximative movability for approxi-

mative inverse systems is an invariant property in Appro-TOP. W

Let p={pa: acA}: X—(&,%) be an approximative resolution of a space X.
We say that p is approximatively movable, in notation AM, provided that (¥, %)
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is approximatively movable,

(1.3) LEMMA. Let p: X—>(X,U) and p’ : X—>(X,U) be approximative
AP-resolutions. If p is AM, then so is p’.

(1.3) follows from (I.5.1) and (1.2). W

Let ¥ ={Xa, pa’,a, A} be an inverse system in TOP. We say that ¥ is
approximatively movable, in notation AM, provided that it satisfies the following
condition :

(AM)* For each aA and for each %&6,,(X,) there exists a;>a such

that for each a’>a there exists a map ra’: Xa,—>Xu satisfying (pa’,a7a’, Pagya) <
U.

(1.4) PROPOSITION. Let ¥ and Y be inverse systems. Suppose that Y is
dominated by ¥ in pro-TOP. If ¥ is AM, then so is ¥Y.

PrROOF. Put ¥Y={Ys,qv',5,B}. Let f={f,fo: bEB}: ¥>Y and g={g,ga:
acA}: Y—X be morphisms of inverse systems such that fg and 1, are equi-
valent (see MS [19, pp. 1-9]), that is,

1) fg~1,.

Take any bB and any V' €64, (Ys). By the assumption there exists ay>f(b)
such that

(2) a, satisfies (AM)* for ¥, f(b) and f;'V.

By (1) and the definition of morphisms of inverse systems there exists &,>b,

gf(b), g(ay) such that
(3)  fogr®)qbosasdy=qbs,b and

(4)  g11)9b0,070> =Pao, £ ) Za0@b0s9(a0>-

We show that b, is the required index. Take any & >b. Then there exists
a’>f(b), f(&’) such that

() qv',ofvpar, sy =Fopa’, s>
By (2) there exists a map 74’ : Xa,—>Xa’ such that

(6)  (Pa’,rvsra’s Passsdy) <Sfp'V.
Put 7o =fo/pa’, 1" 7a’Gaoqbosgcany : Yo,—> Yor. By (3)-(6) (qv’,e78’, qbe,5) <V and
then ¥ is AM. H

(1.5) COROLLARY. The notion of approximative movability for inverse
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systems is an invariant property in pro-TOP.

(1.6) LEMMA. Let (¥X,%) be an approximative inverse system. Then (¥,
U) satisfies (AM) iff X satisfies (AM)*.

PROOF. We assume that (¥, %) satisfies (AM) and show that ¥ satisfies
(AM)*. Take any a€A and any %UE€6y,(Xs). By (AI3) there exists a;>a
such that pg! ,%>%,,. By the assumption there exists ap>a which satisfies(AM)
for (£,%) and a; Take any a’>a and then take a”>a’,a;. By the choice of
ao there exists a map 7rg7: Xa—>Xar such that (par,a17a”, Passar) <Ua,. Thus
(Pa”,aTa”, Pasya)<U. This means that a, and the map par,e/70” : Xay—>Xa’ satisfy
(AM)* for £ and a. The converse assertion is trivial. W

Let p={po: acA}: X—% be a resolution. We say that p is approximatively

movable, in notation AM, provided that ¥ is approximatively movable.

(1.7) PROPOSITION. Let p: X—% and q: X—¥Y be AP-resolutions of a space
X. If p is AM, then so is q.

PROOF. Put q={qs: b€B} and ¥ ={Ys,qv’,5, Bl. We need to show (AM)*
for ¥. Take any b= B and any V' €6, (Ys). By (R2) there exists 1 1€60,(Ys),
i=1,2,3,4, such that

(D) stV <V, Vo<V, Va<V1, stV <V 2 AV,
(2) V', satisfies (R2) for ¢ and 7/, and
(3) V5 satisfies (R2) for p and 7.

By (R1) for p there exist ac A and a map A: Xa—Ys such that
@ (hpa, @) <V

Since ¥ is AM, there exists a;>a such that
(5) a, satisfies (AM)* for a and A~V

By (R1) for q their exists 5;>b and a map k: Y»—Xs, such that (kqs,, pa,) <
(hpar,a) Vs Thus (hpa,,qkqs,, hpa) <V's and then by (1) and (4)

(6) (hpai,akqo,, qvi,8q0,) <V s
By (2) and (6) there exists &;>b; such that
(7> (hpal,a,kaz,bl, qbz,b) <V1-

Claim. b, satisfies (AM)* for ¥, b and 7.
Take any 5’>b. By (R1) there exist a’>a and a map m: Xus/—Ypr such
that (mpa’, qor)<gp' Vs Thus (gor,smpas, qp) <V, and then by (1) and (4)
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(8) (qb’,bmpa’, hPa’,aPa')<V3-
By (3) and (8) there exists a”>a’ such that

(9 (gvyompar,a’y hpar,a) <V

By (5) there exists a map 747 : Xq,—>Xa” such that (par,a7a”, pPai,a) <h 'V, Thus
(hpar,arar, hpa,,a) <V, and then

(10) (hPa”,ara”kqbz,bn hPal,akqbz,bl)’<V4-
By (9
(11) (qo’,ompar,a’Tarkqss,b,, hpa”,ara”kqo,,b,) <Vi.

By (1), (7), (10) and (11) (qo’,smpa”,a’rTa”kqbs,b,, gb,,0) <V'. This means that
the map mpar,a’ra”kqs,,0, : Yo,—>Yer gives our Claim. Hence ¥ is AM. H

(1.8) THEOREM. Let X be a space. Then the following conditions are
equivalent :

(i) Any/some approximative AP-resolution of X is AM.

(ii) Any/some AP-resolution of X is AM.

PrROOF. By (1.3) any and some in (i) are equivalent. By (1.7) any and
some in (ii) are equivalent. We show that (i) implies (ii). By (i) there exists
an approximative AP-resolution p: X—(¥,%) such that (¥,%) satishes (AM).
Then ¥ satisfies (AM)* by (1.6). Since p: X—X is an AP-resolution by (1.3.3),
we have (ii). We show that (ii) implies (i). By (1.3.15) there exists an ap-
proximative POL-resolution p: X—(%,%). Since p: X—¥ is a POL-resolution
by (1.3.3), p is AM by (ii). Since ¥ is AM, by (1.6) so is (Z¥,%). Hence
p: X—(X,%) is AM. Then we have (i). H

We say that a space X is approximatively movable, in notation AM, pro-

vided that it satisfies one of the conditions in (1.8).

(1.9) THEOREM. Let X and Y be spaces. Suppose that Y is dominated by
X in ASh. If X is AM, then so is Y.

PROOF. By the assumption there exist approximative shapings m,n such
that mn=AS(ly). Let p: X—(%, %), P : X—(¥, %) €EX) and q: Y—>(¥, V),
q:Y—-(Y,V)Ye€E(Y). Let f: (X, U)Y—>(Y,V) and g: (Y, V)—>(X,¥%) be ap-
proximative system maps such that {[f])=m and {[g]>=n. Since mn=AS(1ly),
[1r]¢,q[fI[1x1p,p’[lg1=[1cy, »>]- This means that (¥,7") is dominated by (X,
%) in Appro-AP. Since (¥,%) is AM by (1.8), by (1.1) so is (%¥,7"). Hence
Yis AM. ®m
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(1.10) COROLLARY. The notion of approximative movability for spaces
is an invariant property in ASh. W

(1.11) COROLLARY. (i) Suppose that a space Y is dominated by a space
X in TOP. If X is AM, then so is Y.
(ii) The notion of approximative movability for spaces is a topologically

invariant property.

(1.12) CoROLLARY. (i) A space X is AM iff so is T(X).
(ii) A Tychonoff space X is AM iff so is C(X).
(iii) A space X is AM iff so is CT(X).

(1.11) follows from (1.5.9) and (1.9). (1.12) follows from (I1.6.8), (1.6.10)
and (1.8). H

Let # be a collection of spaces. We say that (¥,%) is approximatively
X4 -movable, in notation #-AM, provided that it satisfies the following condition :

(X -AM) For each ac A there exists ay>a such that for each @’>a and for
any map f: K—X,, where KX, there exists a map f’: K—X, satistying (pa’,a

J's Pavsaf) <Ua.
We say that ¥ is approximatively /% -movable, in notation %-AM, provided

that it satisfies the following condition :

(X -AM)* For any acA and for any %&6,,(Xa) there exists ao>a such
that for each a’>a and for any map f: K—Xq,, where K&X%, there exists a map
f, : K-éXa,’ Satisfying (Pa/,a,f/,Pa,o,af)<u.

We say that an approximative resolution p: X—(¥,%) and a resolution p: X
—% are approximatively % -movable, in notation % -AM, provided that they
satisfy (#-AM) and (X -AM)*, respectively. By slight modifications of our
proofs we can show (1.1)-(1.8) for approximative % -movability. We say that a
space X is approximatively % -movable, in notation X% -AM, provided that it
satisfies one of the conditions in (1.8) for approximative J -movability. In the
same way we can show the analogues of (1.9)-(1.12) for approximative % -

movability. Thus we summarize as follows:

(1.13) THEOREM. Let X be a collection of spaces. All assertions (1.1)—
(1.12) hold for approximative K -movability. M

Let D be a subcategory of TOP. We say that a space X is approximatively
D-movable, in notation D-AM, provided that it is approximatively ObD-movable.
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Let POL» be the full subcategory of POL consisting of all polyhedra P such that
dim P<n. We say that a space X is approximatively n-movable, in notation -

AM, provided that it is approximatively POL"”-movable.

(1.14) COROLLARY. All assertions (1.1)-(1.12) hold for approximative n-
movability. W

Finally we show relations between approximative movability and approxima-
tive % -movability.

(1.15) THEOREM. Let X be a space. (i) If X is AM, then it is ¥ -AM
for amy collection X of spaces.

(ii) Let K be one of AP, POL and ANR. Then X is AM iff it is K-AM.

(i) If X is AM, then it is n-AM for each integer n.

(iv) Let dim X<n. Then X is AM iff it is n-AM.

PrROOF. Since (AM) implies (¥-AM) for any X%, we have (i) and (iii).
Let C be a full subcategory of TOP and (¥, %) an approximative inverse system
in C. We easily show that if (¥, %) satisfies (ObC-AM), then it satisfies (AM).
This fact and (1.3.15) imply (ii) and (iv). H

§ 2. Uniformly and internally approxlmative movabilities.

In this section we introduce the notions of uniformly approximative mova-
bility and internally approximative movability. We discuss their properties.

Let (X, %) ={(Xa, %), pa’,a, A} be an approximative inverse system in TOP.
We say that (¥,%) is uniformly approximatively movable, in notation UAM,
provided that it satisfies the following condition :

(UAM) For each a= A there exist a;,>a and a collection {rg’: a’>a} of
maps 7q’: Xay—>Xa’ such that (pa’,ara’, Pasa) <Ua and (ra’, par,a’srer) <Uqs for
a’>a >a.

In a similar ways as in (1.1) and (1.2) we can show (1.1) and (1.2) for
UAM. We say that an approximative resolution p: X—(Z,%) is uniformly
approximatively movable, in notation UAM, provided that (¥,%) is uniformly
approximatively movable. In the same way as in (1.3) we can show (1.3) for
UAM. Thus in the same way as in (1.8) we can show the following:

(2.1) THEOREM. Let X be a space. Then the following conditions are
equivalent :

(i) X admits an approximative AP-resolution which is UAM.
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(ii) Any approximative AP-resolution of X is UAM. M

We say that a space X is uniformly approximatively movable, in notation
UAM, provided that it satisfies one of the conditions in (2.1). In the same way
as in (1.9)-(1.12) we can show these statements for UAM. Uniformly approxi-

mative movability is an invariant in ASh. We summarize as follows:
(2.2) THEOREM. (1.1)-(1.3) and (1.9)-(1.12) hold for UAM. ®

(2.3) LEMMA. (i) If an approximative inverse system is UAM, then it
is AM.
(ii) If a space is UAM, then it is AM.

(2.3) follows from the definitions. In § 6 we shall show that, in general, the
converses of (i), (ii) in (2.3) do not hold. However we show their converses

for a special case.

(2.4) PROPOSITION. Let (X,U) be an approximative inverse sequence. Then
(X, %) is AM iff it is UAM.

PrOOF. Put (X, %)={(Xi, Us), pi,;s N}, where N is the set of all positive
integers. We assume that (¥,%) is AM and show that it is UAM. By the
assumption there exists a subset A= {a;: i€N}CN such that a;=1<a,<as;<---,

1) pit Uy > stUa;y, for ie N and

Qit1y Q4

(2) a4, satisfies (AM) for (¥,%) and a; for each i N.

By (1.2.12) (&, U)a={(Xai; Uas), Paisa;, A} is an approximative inverse sequence
and then by (1.2.1) so is st(¥,%)a.

Claim. s#(¥,%)4 is UAM.
By (2) there exist maps r;: Xg;—>Xa,,, for i>2 such that

(3) (Paiﬂ,ai—;ri,Pai,a,i-l)<uat_1 fOI‘ each i_>_2.
Take any ar€A and put fi=_pairaililio1 Tk : Xaw—>Na: for i>k+1 and
Je=7Parirar : Xarr;—=>Xar. We show that {fi: 7>k} satisfies

4)  (Pawsaifi, fi)<stlUe, for i>j>k and

(5) (Pai,akfi, pa,k+‘,a,k) <St’2la,, fOI' ZZk.
Since fr=parii,ar, (5) follows from (4). Inductively we show (4). To do so

we consider the following :

P(1> (Pai+1,a¢f'£+1, fi><%ai fOI' 12k
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Q(n) : The condition (4) holds for {>j>% with i—j=n.

First we show P1). By (8) (Parrzrar’k+1s Pak+1,ak)<%ak, that is, (Pak+1,akfk+1,
f#)<Uqw. Hence P(1) holds for i=k. Let i>k+1. By (3) (Paisrrai?is1s Paisirai) <

U, and then (Pai+2,ai7'i+17‘i“‘rk+1, Pai+1,airi“'7’k+1><ua.i- Thus (Pai+1’aifi+1, f7'><
Ua;. Then P(1) holds for i>%+1. Hence we have P(1).

Trivially Q(1) follows from P(1). We assume that Q(1),---,Q(n—1) hold
and show Q(n). Take any i>%. By the inductive assumption and P(1)

(6)  (Paismaisifivns fisr) <stlaiy, and

(7)) (Pasrnaifiv, [) <Uas.
By (1) and (6)

(8)  (Passmaifian, Pasrnaifiv1) <Uas.
By (7) and (8) (Paiinsaifizn, fi) <st¥a;. This means Q(n). Hence Q(n) holds
for all #n, that is, we have (4). By (4) and (5) we have the Claim.

By (1.2.12) and (1.2.14) (¥,%) and st(¥,%)4 are isomorphic in Appro-TOP.
Hence by (1.10) for UAM (¥, %) is UAM. The converse follows from (2.3). H

(2.5) THEOREM. Let X be a compact metric space. Then X is UAM iff
it is AM.

(2.5) follows from (1.3.15) and (2.4). H

In shape theory Spiez showed that movability and uniform movability
are equivalent for metric compacta. (2.5) corresponds to his result.

Let p={ps: acA): X—>(¥,U) be an approximative resolution of a space X.
We say that p is internally approximatively movable, in notation IAM, provided
that it satisfies the following condition :

(IAM) For each acA there exist a’>a and a map 7r: Xa/—X such that
(Pa,r, Pa,’,a)<%a-

(2.6) PROPOSITION. Let p: X—(X,U) and q: Y—=(Y, V") be approximative
AP-resolutions of spaces X and Y, respectively. Suppose that Y is dominated by
X in TOP. If p is IAM, then so is q.

In a way similar to the one used in (1.1) we can show (2.6). Then we
have (1.3) for IAM.

Let p={po: acA}: X—>% ={Xa, pa’,a, A} be a resolution of a space X. We
say that p is internally approximatively movable, in notation IAM, provided that
it satisfies the following condition :
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(IAM)* For each ac A and for each U€6,,(X,) there exist ap>a and a
map 7 : Xa,—>X such that (par, pas,e) <U.

(2.7) LEMMA. Let p: X—>(X,U) be an approximative resolution. Then
p: X—=>(F,U) satisfies (IAM) iff p: X—>XF satisfies (IAM)*.

(2.7) follows from the definitions. In a way similar to the one used in (1.7)
we can show (1.7) for IAM. In the same way as in (1.8) we can show the
following :

(2.8) THEOREM. Let X be a space. Then the following statements are
equivalent :

(i) Any/some approximative AP-resolution of X is IAM.

(ii) Any/some AP-resolution of X is IAM. N

We say that a space X is internally approximatively movable, in notation
IAM, provided that it satisfies one of the conditions in (2.8). By (2.6) we have
(1.11) for IAM, i.e., internally approximative movability is a topological in-

variant.

(2.9) PROPOSITION. (i) If a space X is IAM, then so is T(X).
(ii) If a Tychonoff space X is IAM, then so is C(X).
(iii) If a space X is 1AM, then so is CT(X).

This follows from (1.6.8), (1.6.10) and (2.8). We summarize as follows:
(2.10) ProrosITION. (1.3), (1.7) and (1.11) hold for IAM. ®

(2.11) LEMMA. (i) If an approximative resolution p: X—(X,U) is IAM,
then it is UAM.
(ii) If a space X is IAM, then X is UAM. N

(2.12) THEOREM. A space X is UAM iff CT(X) is IAM.

PROOF. First, we assume that X is UAM and show that CT(X) is IAM.
Since X is UAM, by (1.12) for UAM (see (2.2)) CT(X) is also UAM. Let
p=1{pa:acA}: CT(X)—(X,U)={(Xa, Ua), Pa’sa, A} be an approximative POL-
resolution. Then p satisfies (UAM) and we show that p is IAM. Take any
aeA. By (AI3) there exists a;>ay such that p} , %q,>st*Uq,. Since (X, %) is
UAM, there exist as;>a, and a collection {ro/: ar€ A’} of maps 7ra’: Xa;—>Xa’
such that
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(1) (Pa’,azra’, Pas,(Iz) <%a2 for a,>a2 and

(2) (Par,arrar, 1rar)<Ua’ for a”>a’'>a,.
Here A’={a’€A:a’>a,). Since A’ is cofinal in A, by (1.3.10) pu’/={pa’: arc
A} CT(X)— (X, U)ar=1{(Xa’, Ua?) par,a’, A’} is an approximative POL-resolution.
By (2) and (1.7.2) there exists a map 7r: Xq,—CT(X) such that

(3)  (parr, rar) <stUgr for a’€A’.
Since pas,a, is the identity, by (1) (7a», Passar) <Ua,. Since (pa,7, 7a,) <s5tUa, by
(3), (Pas?, Pasya.) <st*Ua, and then by the choice of a; (pa,7, Pas,a:1) <Ua,. Thus
p:CT(X)—(X,%) is IAM and hence CT(X) is IAM. The converse follows
from (2.11). m

(2.13) COROLLARY. Let X be a topologically complete Tychonoff space.
Then X is UAM iff X is IAM. ®

We consider the following condition for a resolution p: X—% :

(C) For each 46,/ (X) there exist acA and a map r: X,—X such that
(rPa, 1X><{u-

(2.14) LEMMA. Let p: X—>X be an AP-resolution. Then p satisfies (C) iff
it is IAM.

PrRoOOF. First we assume that p satisfies (C) and show that p satisfies
(IAM)*. Take any acA and any #€64,(Xa). There exists V' €6,,(Xa), such
that 7 satisfies (R2) for p, X, and %. Since p;'V' €6, (X), by the assumption
there exist ay€A and a map 7:X;—X such that (7pa,lx)<p;V. Thus
(ParPas,aiPazs Passapa,) <V for some az>a,a;. By the choice of 7 there exists
as>a, such that (parpas,ai, Passa) <U. This means that a; and the map 7pasy,a,:
Xa;—X satisfies (IAM)* for a. Hence p is IAM.

Next we assume that p satisfies (IAM)* and show (C). Take any %e
Cov(X). By (Bl) there exist ac A and 7V €64, (Xa) such that p;'V <%. By
the assumption there exist a;>a and a map 7r: X;,—X such that (par, pa,,e) <V.
Thus (parpay, pelx) <V and then (7pq,,1x)<p;V <%. This means that a; and
the map r: X,,—X satisfies (C) for %. Hence p satisfies (C). W

(2.15) CoROLLARY. Condition (C) does not depend on the choice of the

AP-resolutions.

(2.15) follows from (2.8) and (2.14). We say that a space X satisfies (C)
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provided that any/some AP-resolution of X satisfies condition (C). By (2.14)
we have the following:

(2.16) PROPOSITION. A space X satisfies (C) iff X is IAM. N

(2.17) THEOREM. A space X is IAM iff X is an AP.

PROOF. Take any POL-resolution p: X—%. We assume that X is an IAM.
Then p is IAM by (2.8). By (2.14) p satisfies (C). Thus for each %6, (X)
there exist a€A and a map 7: X,—>X such that (7pq,1x)<%. Since X, is a
polyhedron, this means that X is an AP.

Next we assume that X is an AP. By (1.3.3) p: X—X% satisfies (R1) and
(R2). Take any %E€G6o(X) and then stV <% for some V€6, (X). By the
assumption, there exist a polyhedron P and maps f: X—P, g: P—X such that
(gf,1x)<V. By (R1) there exist ac A and a map h: Xo—P such that (hpa, f) <
g V. Thus (ghpe,gf)<V, and then (ghpa,1lx)<stV' <%. This means (C). By
(2.14) p is JAM. Hence X is IAM. ®

(2.18) COROLLARY. Let X be a topologically complete Tychonoff space.
Then the following statements are equivalent :

(i) X is an AP.

(ii) X s UAM.

(iii) X is IAM.

(iv) X satisfies (C). W

§ 3. Approximative conditions M and N.

In this section we introduce the notions of approximative condition M and
approximative condition N, and investigate their properties.

Let C be a full subcategory of AP. Put RE(C)={XeObTOP: X admits a
C-resolution which is rigid for C}. Let TOPc¢ be the full subcategory of TOP
consisting of RE(C). Let (¥,%)=1{(Xa, %), pa’sa, A} be an approximative in-
verse system in C and p={p,: ac A} : X—(¥, %) an approximative resolution of
a space X.

We say that (¥,%) satisfies the approximative condition M, in notation
ap-M, in C provided that it satisfies the following condition:

(ap-M) There exists ay€A such that for each a€A there exists ai>a, ao
and a map 7: Xa,—Xe in C satisfying (7Pas,a0 Pana) <Ua-

We say that p satisfies the approximative condition M, in notation ap-M, in C
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provided that (&, %) satisfies the approximative condition M in C.

(3.1) LEMMA. p satisfies (ap-M) in C iff it satisfies the following condition :
(ap-M), There exists as€ A such that for each a€A there exists a map
r: Xay—=>Xa in C satisfying (rpay, pa) <Ua.

(3.2) LEMMA. Let p: X—(X,U) and q: Y—>(Y,V) be approximative C-
resolutions of spaces X and Y, respectively. Let p and q be rigid for C.
Suppose that Y is dominated by X in TOP. If p satisfies (ap-M) in C, then so
does q.

(3.3) COROLLARY. Let p and p’ be approximative C-resolutions of X rigid
for C. If p satisfies (ap-M), in C, then so does p’.

(3.1) follows from the definitions and (R2). We can show (3.2) in a way
similar to the proof of (1.1). (3.3) follows from (3.2). W

Let p={pa:acA}: X>X ={Xq, pa’,a, A} be a C-resolution of a space X. We

consider the following conditions :

(ap-M)* There exists qp= A such that for each a€ A and each %6, (X,)
there exist @;>a,a, and a map r: X,,—X, in C satisfying (rpay,a0 Parre) <.

(ap-M)¥ There exists gqp A such that for each a€ A and each %<8,,(Xa)
there exists a map r: Xa,—Xea in C satisfying (7pa,, pa) <U.

(3.4) LEMMA. (i) Let p: X—>(X,U) be an approximative C-resolution.
Then p: X—(F,U) satisfies (ap-M) iff p: X=X satisfies (ap-M)*.
(ii) (ap-M)* and (ap-M)¥ are equivalent.

(8.5) LEMMA. Let a space Y be dominated by a space X in TOP. Let
p: X=X and q: Y=Y be C-resolutions rigid for C. If p satisfies (ap-M)*, then

so does q.

(3.4) follows from the definitions and (R2). We can show (3.5) in the
same way as in (1.1). Thus in the same way as in (1.8) we have the following :

(3.6) THEOREM. Let X&ObTOPc. Then the following statements are
equivalent :

(i) Any/some approximative C-resolution of X, which is rigid for C,
satisfies (ap-M).

(ii) Any/some approximative C-resolution of X, which is rigid for C,
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satisfies (ap-M);.
(ii) Any/some C-resolution of X, which is rigid for C, satisfies (ap-M)*.
(iv) Any/some C-resolution of X, which is rigid for C, satisfies (ap-M)¥. ®

We say that a space XeObTOP( satisfies the approximative condition M, in

notation ap-M, in C provided that it satisfies one of the conditions in (3.6).

(3.7) THEOREM. When C is a full subcategory of AP(CTOP3;.5), then
(1.9)-(1.12) for ap-M in C hold on ASh(TOPc) and TOPc.

PrROOF. (1.11) for ap-M follows from (3.2). (1.12) for ap-M follows from
(1.6.8) and (1.6.10). (1.9) for ap-M follows from (1.6.9), (1.6.11), (1.7.8) and
(1.11)-(1.12) for ap-M. (1.10) for ap-M follows from (1.9) for ap-M. N

We say that a paracompact M-space X satisfies the approximative condition
M, in notation ap-M, provided that X satisfies ap-M in ANR(PM). Since
ANR(PM) is a full subcategory of TOPANR(PM) by (1.3.17), the above definition

is well defined.

(3.8) THEOREM. A paracompact M-space X satisfies the approximative
condition M iff it satisfies the condition M (see [36]).

PROOF. By (1.3.17) there exists an ANR(PM)-resolution p={pa:ac€A}: X—
AUX, M) =(Ua, pa’,as A} such that all maps are inclusions and all U, are
ANR(PM)-open neighborhoods of X in an AR(PM) M. By (L5.7) H(p): X—
H(AUX, M)) is a HTOP-expansion. Since all U, have the homotopy type of
polyhedra by (iii) of (1.3.17), we may assume that H(p) : X—>H(AUX, M)) is
a HPOL-expansion.

First we assume that X satisfies ap-M. By the assumption #%(X, M) satisfies
(ap-M). For each acA there exists V' €6y (Ua) satisfying (x) for {Us} in
(1.5.5). Thus H(AU(X, M)) satisfies the following condition :

(MC); There exists ap€ A such that for each ac A there exist a;>a, a, and
a map 7 : Ug,—>Ua satisfying 7pa;,a0=pas,a-

Claim. (MC), and (MC) given below are equivalent.

(MC) For each ac A there exists a;>a such that for each a’>a theae exist
a’>ap,a’ and a map r: Us,—>U, satisfying 7pa”,a0=pa”,a’

We easily show our Claim. Thus H(H%(X, M)) satisfies (MC) and hence

X satisfies the condition M.
Next we assume that X satisfies the condition M. Then H(AU(X, M))
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satisfies (MC) and hence satisfies (MC), by the Claim. There exists ao=A such
that for each a€A there exist a;>a, a, and a map #: Ue,— U, satisfying kpa,,a,
~pai,a- There exists a homotopy A: Ua, X I->U, such that h(z, 0) =kpa,,a,(x)=
k(x) and h(x,1)=pa,,o(x)=x for z&U,,. Take a;>a, such that Ua.,c U,, and
define H’: Ug,XIU Uy, X {0}—U, by H'(zx,t)=h(x,t) for (x,t)€Us,xI and
H' (x,0)=k(x) for x&Uy,. Then H’ is well defined and then by the homotopy
extension property there exists a homotopy H: U,, X I—U, which is an extension
of H'. Define r: Ugy—U, by r(x)=H(x,1) for x&U,,. Thus r satisfies that
TPas,a0=7Pas,a. Hence p satisfies the following condition :

(ap-M): There exists a,€A such that for each ac€A there exist a,>a, a,

and a map r: Us,— U, satisfying 7pas,a0=7Pas,a-

Since (ap-M). implies (ap-M),; for p, X satisfies ap-M. W

Let p: X—(X,%) be an approximative C-resolution of a space X. Then we
say that p satisfies the condition N provided that it satisfies the following con-
dition :

(N) There exists a€A such that for each a€ A there exists a map f: Xz,—
X satisfying (pafPao, Pa) <Ua.

Let p: X—X% be a C-resolution. We consider the following conditions :

(N)* There exists apc A such that for each a€ A and for each %E€6,,(Xa)
there exists a map f: X,,—X satisfying (pafPa,, Pa) <%.

(N)¥ There exists go A such that for each %€é,,(X) there exists a map
f: Xa,—X satisfying (fPa,, 1x) <.

(N)2 There exist K&€ObC and a map f:X—K such that for each %e
Gor(X) there exists a map g: K—X satisfying (gf, 1x) <%.

(3.9) LEMMA. Let p be a C-resolution and rigid for C. Then p satisfies
(ND)¥ iff it satisfies (N),.

PrROOF. Trivially (N)¥ implies (N);. We now assume (N),. Then there
exist K€ObC and a map f:X—K satisfying (N);. Since p is rigid for C,
there exists apA and a map i : X4,—K such that f=hp,, Take any %6y, (X).
By the assumption there exists a map g:K—X such that (gf,1x)<%. Thus
(ghpay, 1x) <U. This means (N)¥. H

Using rigidness as in the proof of (3.9) in a way similar to the one used in
(3.1)-(8.3) and (3.5) we can easily show the following:
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(3.10) LEMMA. (i) (8.1) holds for (N) and (N)*.
(ii) (8.2) and (3.3) holds for (N).

(iii) (N) and (N)¥ are equivalent.

(iv) (8.5) holds for (N)*. R

By (3.9) and (3.10) we have the following:

(3.11) THEOREM. Let X&ObTOPc. Then the fojlowing statements are
equivalent :

(i) Any/some approximative C-resolution of X, which is rigid for C,
satisfies (N).

(ii) Any/some approximative C-resolution of X, which is rigid for C,
satisfies (N)*.

(iii) Any/some C-resolution of X, which is rigid for C, satisfies (NDF.

(iv) X satisfies (N),. M

We say that a space XeObTOPc satisfies the condition N in C provided
that X satisfies one of the conditions in (3.11). In the same way as in (3.7)
using (3.10) we have the following:

(3.12) THEOREM. When C is a full subcategory of AP(CTOP;;), (1.10),
(1.11) and (2.9) hold for the condition N in C. W

(3.13) LEMMA. An approximative resolution p: X—(%,U) satisfies (ap-M),
and (IAM) iff it satisfies (N).

PROOF. We assume that p satisfies (N). Then there exists a,E A satistying
(N). Take any acA. Then there exists a map f: Xa,—>X such that (pafpacs
Pa) <Uq. Put r=paf: Xe;—>Xa and then (7pa,, pa) <Ua. This means (ap-M);.

Since p X—% is a resolution by (1.3.3), there exists V €64y (Xea) satisfying
(R2) for %,. By (AI3) there exists a’>a such that p7j V" >%s. By the choice
of a, there exists a map g : Xa,—X such that (pa’€pacs Pa’) <Us’. Then by the
choice of @’ (PagParyavs Pass Panabar) <V for ai>a,a, By the choice of 7" there
exists az>a; such that (PugPas,aes Pazra) <Ua. This means (IAM).

Next we assume that p satisfies (ap-M); and (JAM). Then there exists a&
A satisfying (ap-M);. Take any acA. By (AI3) there exists a;>a such that
PatoUa>stUa,. Since p satisfies (IAM), there exist a;>a; and a map f: Xa,—X
such that

Q) (Parf> Pasrar) <Uai-
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By the choice of a, there exists a map 7r: Xs,—X,, such that (7pa,, Par) <%as
and then

(2) (Paz,alrpao, Pa1)<uav

By (1) (paifrPass PazsaiTPas) <Ua, and then by (2) (Pa,f7Pas; Par) <stla,. By the
choice of a; (Pafrpas, Pa) <U,. This means (N). W

(3.14) THEOREM. Let X€ObTOPc. Then X satisfies the condition N in
C iff X is IAM and satisfies ap-M in C. R

We say that a paracompact M-space X satisfies the condition N provided
that it satisfies the condition N in ANR(PM). By (2.18) and (3.14) we have

(3.15) COROLLARY. Let X be a paracompact M-space. Then the following
statements are equivalent :

(i) X satisfies the condition N.

(ii) X is IAM and satisfies ap-M.

(iii) X is UAM and satisfies ap-M.

(iv) X is an AP and satisfies ap-M.

(v) X satifies (C) and ap-M. B

§ 4. Strongly approximative movability and approximative contractibility.

In this section we introduce strongly approximative movability and approxi-
mative contractibility. We investigate their properties.

Let C be a full subcategory of AP. Let (X,%)={(Xa, %), Pa’,a, A} be an
approximative C-resolution. We say that (¥,%) is strongly approximatively
movable, in notation SAM, in C provided that it satisfies the following condition :

(SAM) For each ac=A there exists ap>a such that for each a’>a there
exist a”>a’,a, and a map r:X,;,—Xa/ in C satisfying (pa’,a7, Pas,a) <%e and
<rpa”’ao’ Pa”,a’)<2&a’.

Let p={pa:acA}: X—(¥,%) be an approximative C-resolution of a space
X. We say that p: X—(&,%) is strongly approximatively movable, in notation
SAM, in C provided that (¥,%) is SAM in C.

(4.1) LEMMA. p:X—>(X, %) is SAM in C iff it satisfies the following
condition :

(SAM), For each acA there exists ay>a such that for each a’>a there
exists a map r: Xoy—>Xa’ in C satisfying (Pa’,ar, Pasya) <Ua and (rpae,pa’) <Ua.
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This lemma follows from the definitions and (R2). In the same way we can
show (3.2) and (3.3) for (SAM);. Hence (3.2) and (3.3) hold for (SAM) by
(4.1). =

We consider the following conditions for a C-resolution p: X—X:

(SAM)* For each ac=A and for each €64, (Xa) there exists ao>a such
that for each a@’>a and for each %’ €8,,(Xa’) there exist a”>a’, a, and a map
r: Xa;—Xa in C satisfying (pa’,ars Pasra) <% and (rpa’,ae par,ar) <U.

(SAM)} For each acA and for each U&€G6y(Xa) there exists ay>a such
that for each a’>a and for each % €6y, (Xar) there exist a’>a’, a, and a map
r: Xa,—Xa satisfying (pa’,a?, Pase)<U and (7pays pa’) <U'.

We easily show that (SAM)* and (SAM)f are equivalent. In the same way
we show (3.4) for (SAM), and (SAM)¥, and (8.5) for (SAMD{. Thus we may

summarize as in (4.2) and then in the same way as in (3.6) we have (4.3):

(4.2) LEMMA. (i) (3.2) and (3.3) hold for (SAM):.
(ii) (8.4) holds for (SAM), and (SAM)F.

(iii) (38.5) holds for (SAM);.

(iv) (SAM)* and (SAM)¥ are equivalent. M

(4.3) THEOREM. Let X=ObTOPc. Then the following statements are
equivalent :

(i) Any/some approximative C-resolution of X, which is rigid for C,
satisfies (SAM).

(ii) Any/some approximative C-resolution of X, which is rigid for C,
satisfies (SAM);.

(iii) Any/some C-resolution of X, which is rigid for C, satisfies (SAM)*.

(iv) Any/some C-resolution of X, which is rigid for C, satisfies (SAM)¥. H

We say that XeObTOPc is strongly approximatively movable, in notation
SAM, in C, provided that it satisfies one of the conditions in (4.3). In the same

way as in (3.7) we have

(4.4) THEOREM. When C is a full subcategory of AP(CTOP;;), (1.9)-
(1.12) for SAM in C hold on ASh(TOP¢) and TOPc, respectively. W

(4.5) PROPOSITION. (i) If (X,%) is SAM in C, then it is AM and
satisfies (ap-M).
(ii) Let X€ObTOPc. If X is SAM in C, then it is AM and satisfies
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ap-M in C.

PROOF. We show (i). From the difinitions (¥, %) satisfies (AM) and the

following condition :

(ap-M); For each a=A there exists ay,>a such that for each a’>a there
exist a”>a’, ay and a map r: Xo,—Xa’ in C satisfying (rpar,a,, Par,at) <Uas.

In a way similar to the one used in the Claim in the proof of (3.8) we can
easily show that (ap-M) and (ap-M); are equivalent. Hence we have (1. G
follows from (i). W

We say that a parécompact M-space X is strongly approximatively movable,
in notation SAM, provided that X is SAM in ANR(PM).

(4.6) COROLLARY. Let X be a paracompact M-space. If X is SAM, then
it is AM and satisfies ap-M. W

(4.7) THEOREM. A complete metric space X is SAM iff X is an ANR.

ProOF. Let (X,d) be a metric space. We assume that X is complete with
respect to the metric d. It is well known that X is isometric to a closed subset
of a Banach space B(X) (see Borsuk [3], Hu and Besaga-Pelczynski [1]).
Here B(X) consists of all real bounded functions with sup norm. Since embed-
ding is isometric, we may assume that X is a closed subset of B(X) and d is
the metric on B(X). B(X) is complete with respect to d and B(X)=AR. By
(L.3.17) we have an approximative resolution p= {ps:acA}: X—-0UX, B(X))=
{Xa, pa’,a, A} such that all pg,pas,a are inclusion maps and all X, are open
neighborhoods of X in B(X) and p is rigid for ANR.

Claim. p satisfies (SAM)* iff it satisfies the following condition :

(SAM)¥ For each ae A and each %4€6,,(Xa) there exists ay>a such that
for each a’>a there exist a”>a’, ay and a map 7 : Xo,—>Xa’ satisfying 7par,a,=
Par,0r and (Pa’,ar, Pagya) <U.

We assume that p satisfies (SAM)*. Take any acA and any %&8Gq (Xa)
then there exists ao>a satisfying the condition in (SAM)* for a and %. Take
any a’>a and then there exists V' €64, (X,) satisfying (%) for Pat, % in (1.5.7).
By the choice of a, there exist a”>ay, @’ and a map r: X,,—>X,’ such that

(1) (Pa’a?s Page) <% and

2) (Tpa”,ao, Pa”,a’)<7/.

By (2) and the choice of 7 there exists a p;; ,%-homotopy H : Xo» X I->Xa’ such
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that H(x,0)=par,o/(x)=2 and H(z,1l)=rpar,a,(x)=1r(x) for x&Xqsr. Take
a>a;>a” such that Xg,CXa,C Xa,CXar. Then there exists a map ¢: B(X)—1
such that #(Xe,)=0 and #(B(X)—Xa,)=1. We define a map 7’ : Xa,—>Xa’ as
follows: 7/(x)=H(x,t(x)) for xz&Xar and r'(z)=r(x) for zx&Xa,—Xa,.
Clearly 7’ is well defined and 7'pas,a0=pas,a’. Since H is a pg; ,%-homotopy and
(1), (pa’yar’, Payge) <U. Hence we have (SAM)¥. The converse is trivial.
Hence we have our Claim.

We assume that X is SAM. Then p satisfies (SAM)*. By the Claim we
can choose a subsequence A’={a;:i&N}CA and maps r¢: Xa;—>Xa:y, for 7>2
such that a;=1<<a,<as< -+,

(3) X:icU(X,(1/2)?) for i>1,

(4)  d(paiss,aisTi, Pasyaiz,) <(1/2)% for i>2 and

(5) 7iPaiisaisi=Pai+zrais, fOr 1>2.

Here U(x, ¢)={z€B(X) :d(X,z)<e¢} for ¢>0. We define maps fi: Xa;—>Xa:C
B(X) for i>1 as follows: fi=ri_y--r; for i>3 and fi=pa,,a; for i=1,2. By (4)
A(fi-1,f1)<(1/2)¢ for i>2 and then {fi:i>1} forms a Cauchy sequence with
respect to d. Since B(X) is complete with respect to d, we have a (continuous)
map f: Xq,—>B(X). Since fi: Xe,—>Xai, by () f(Xa,)TX, that is, f:Xe,—X.
By (5) fi(x)=x for z&X for i>1, and hence f(x)=x for z&€X. Thus X is a
retract of an ANR Xg, and hence X is an ANR.

Next we assume that X is an ANR. Then trivially the rudimentary resolu-
tion {lx}: X—{X} satisfies (SAM)¥. Then X is SAM. ®

(4.8) PROBLEM. Does (4.7) hold for paracompact M-spaces or for metric
spaces? Our Claim in the proof of (4.7) holds for paracompact M-spaces.

Let (¥,%) be an approximative inverse system in TOP. We say that (¥, %)
is approximatively contractible, in notation AC, provided that it satisfies the

following condition :

(AC) For each acA there exist a’>a and a map f:Xe—Xa such that
(f, Pa’sa) <Uq and f is homotopic to a constant map.

We say that p: X—(¥, %) is approximatively contractible, in notation AC,
provided that (¥,%) is AC. In a similar way we can show (1.1)-(1.3) for AC.
Let & be an inverse system in TOP. We say that % is approximatively

contractible, in notation AC, provided that it satisfies the following condition :

(AC)* For each acA and for each %€6,,(Xa) there exist a’>a and a
map f: Xa—X, such that (pa’,a, f) <% and f is homotopic to a constant map.
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We say that p:X—%* is approximatively contractible, in notation AC,
provided that ¥ is AC. In a similar way we can show (1.4)-(1.7) for AC.

Thus in the same way as in (1.8) we have the following:

(4.9) THEOREM. Le¢t X be a space. Then the following statements are
equivalent :

(i) Any/some approximative AP-resolution of X is AC.

(ii) Any/some AP-resolution of X is AC. ®

We say that a space X is approximatively contractible, in notation AC, pro-
vided that it satisfies one of the conditions in (4.9). In the same way we can
show (1.9)-(1.12) for AC. We summarize as follows:

(4.10) THEOREM. (1.9)-(1.12) hold for AC. H

A space X has trivial shape iff X has the shape of the one point space.
(4.11) THEOREM. A space is AC iff it has the trivial shape.

ProOOF. Let X be a space. Then there exists an approximative POL-
resolution p: X—(¥,%) of X satisfying (*x) in (1.5.6). By (1.3.3) and (1.5.7)
H(p): X—H(X) is a HPOL-expansion. It is well known that X has trivial
shape iff H(X) satisfies the following condition :

(TS) For each acA there exists a’>a such that ps’,, is homotopic to a

constant map.

We assume that X is AC. Then (&,%) satisfies (AC). Clearly (xx) of
(1.5.6) and (AC) imply (TS). Hence X has trivial shape. Since (TS) implies
(AC), the converse also holds. W

(4.12) COROLLARY. An approximative polyhedron X has trivial shape iff
it satisfies the following condition :

(APT) For each U6y (X) there exists a map f: X—X such that (f,
1x)<U and f is homotopic to a constant map.

Since (AC) and (APT) for the rudimentary resolution {lx}:X—={X} are
equivalent, (4.12) follows from (4.9) and (4.11). W

(4.13) THEOREM. Let M be an AR(PM) and X a closed subset of M.
Then X is an AP with trivial shape iff it satisfies following condition :

(APT), For each UsCyy(X) there exists a map h: M->X such that (h|X,
1x) <%.
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ProoF. First we assume that X is an AP with trivial shape. Take any
UEBoy(X) and then we have 7 &6, (X) such that stV <%. By (4.12) there
exists a map f: X—X such that

(1) (f,1x)<V and f is homotopic to a constant map.

Since X is an AP, there exist an ANR K and maps g: X—K, h: K—X satisfying
(hg,1x)<V. Thus (hgf,1x)<stV' <¥%. Since M is an AR(PM), M is contrac-
tible. By (1) gf: X—K is homotopic to a constant, and hence by the homotopy
extension property there exists a map H: M—K such that H|X=gf. Then r=
hH : M—X has the required properties.

By (iv) in (1.3.17) and (APT); X is an AP. Then (APT), implies (APT)
and by (4.12) X is an AP with trivial shape. W

§ 5. Generalized absolute neighborhood retracts.

In this section we discuss generalized absolute neighborhood retracts. See § 0
for their historical development.

Let C be a subcategory of TOP such that ObC is a weakly hereditary topo-
logical class (see Hu [13, p. 33]). Sometimes X&C means XeObC. ANR(O),
AR(C), ANE(C) and AE(C) denote the full subcategories of TOP consisting of
all absolute neighborhood retracts, all absolute retracts, all absolute neighborhood
extensors and all absolute extensors for ObC. Let PM and M be the sub-
categories of TOP consisting of all paracompact M-spaces (see (I1.3.17)) and all
metric spaces, respectively. ANR and AR denote ANR(M) and AR(M), re-
spectively. Lisica and Mardesi¢ and Sostak showed the following:

(5.1) LEMMA. ANR(PM)=PMNANE(PM), AR(PM)=PMNAE(PM) and
ANRCANR(PM). =

Let Y be a space. We say that Y is an approximative absolute extensor for
PM, in notation AAE for PM, provided that it satisfies the following condition :

(AAE) For any map f:Xo—Y, where X, is any closed subspace of any
paracompact M-space X, and for any %E6,(Y) there exists a map g: X—Y
such that (g]Xo, ) <¥. '

We say that Y is an approximative absolute neighborhood extensor in the
sense of Noguchi for PM, in notation AANEy for PM, provided that it satisfies

the following condition :

(AANEy) For any map f: Xo—Y, where X, is any closed subspace of any
paracompact M-space X, there exists a neighborhood N of X, in X such that for
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any %E€6,(Y) there exists a map g: N—Y satisfying (g|Xo, f) <%.

We say that Y is an approximative absolute neghborhood extensor in the
sense of Clapp for PM, in notation AANEc; for PM, provided that it satisfies
the following condition :

(AANE;) For any map f: Xo—Y, where X, is a closed subspace of any
paracompact M-space X, and for any ¥ &G4 (Y) there exist a neighborhood N
of X, in X and a map g: N—Y satisfying (g|Xo, f) <%.

Let X be a paracompact M-space. We say that X is an approximative
absolute retract for PM, in notation AAR for PM, provided that it satisfies the

following condition :

(AAR) For any closed embedding % : X—>M, MeObPM, and for each %&
Bor(h(X)) there exists a map r: M—h(X) satisfying (7|h(X), 1rx,) <.

We say that X is an approximative absolute neighborhood retract in the sense
sense of Noguchi for PM, in notation AANRyx for PM, provided that it satisfies

the following condition :

(AANRy) For any closed embedding % : X—M, MeObPM, there exists a
neighborhood N of 2(X) in M such that for each %Y&64, (h(X)) there exists a
map 7 : N—=h(X) satisfying (7|2(X), lrncx,) <%.

We say that X is an approximative absolute neighborhood retract in the
sense of Clapp for PM, in notation AANR¢ for PM, provided that it satisfies the

following condition :

(AANRc) For any closed embedding A : X—M, M<ObPM, and for each
U6y (h(X)) there exist a neighborhood N of A(X) in M and a map r: N—X
satisfying (r|h(X), 1acxy) <%.

AANRyx(PM) and AANRc(PM) denote the full subcategories of TOP con-
sisting of all AANRxs and AANRcs for PM, respectively. Similarly we may
define AAE(PM), AANEx(PM), AANE.(PM) and AAR(PM).

(5.2) LEmMA. AAR(PM)=PMNAAE(PM), AANRy(PM)=PMNAANEy
(PM) and AANRc(PM)=PMNAANE:(PM).

ProoF. We show the last one. In a similar way we can show the others.
Take any XeAANR(PM). Trivially XePM. We need to show that Xe
AANE.(PM). Take any paracompact M-space Z, its closed subspace Z,, any
map f: Zy—>X and any %€, (X). By (1.3.17) there exists a MeAR(PM)
which contains X as a closed subspace. Since XeAANRq(PM), there exist a
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neighborhood N of X in M and a map r: N—-X such that (|1X,1x)<%. By
(5.1) and Prop. 6.1 of Hu [13, p. 42] Int NeANE(PM). Then there exists a
neighborhood U of Z, in Z and a map g’:U—Int N such that g’|Z,=f. Thus
g=rg’ : U—>X satisfies (g|Z, f)<¥%U. Hence XePMNAANE:(PM).

Next we assume that XePMNAANE;(PM). Take any Y&PM and a
closed embedding A : X—Y. Take any %€6,,(h(X)) and put V=~a"UcE,(X).
Since Xe AANE:(PM) there exist a neighborhood N of A(X) in Y and a map
g: N—X such that (g|h(X), A"1)<¥V. Thus r=hg: N-h(X) satisfies (r|h(X),
lnx,)<%. Hence XeAANR(PM). H

(5.3) LEMMA. Let MeARPM) and X a closed subset of M. Then we
have the following :

(i) XeAARPM) iff it satisfies the following condition :

(AAR); For each UEGCy, (X) there exists a map r: M—X such that (r|X,
1x) <.

(ii) XeAANRN(PM) iff it satisfies the following condition:

(AANRx); There exists a neighborhood N of X in M such that for each
UEC oy (X) there exists a map r: N—X satisfying (r|X,1x) <U.

(iii) XeAANRc(PM) iff it satisfies the following condition :

(AANR¢); For each UEC oy (X) there exists a neighborhood N of X in M
and a map r: N—X satisfying (r|X, 1x)<U.

PrROOF. We show (ii). In a similar way we can show the other assertions.
We assume (AANRy); and show (AANRy). Take any closed embedding %2:X
—-M, MePM. By (AANRy); there exists a neighborhood N of X in M
satisfying condition in (AANRy),. Since MeAR(PM), by (5.1) and Prop. 6.1
of Hu [13, p. 42] Int NeANE(PM). Then there exist a neighborhood N’ of
hA(X) in M’ and a map g: N'—Int N such that g|h(X)=h"t. Take any %U<
Goy(h(X)). By the choice of N there exists a map r: N—X such that (X,
1x) <h%U. Put r'=hrg: N—-h(X) and then it satisfies (/|h(X),lnrcx;) <%.
Hence XeAANRx(PM). The converse holds, because (AANRy) implies
(AANRx);. H

Let X be a subspace of Y. We say that X is an approximative retract of Y
provided that for each %&6,,(X) there exists a map r: Y—X such that (r|X,
1x) <%.

(5.4) LEMMA. Let X be a closed subspace of a paracompact M-space Y.
We assume that X is an approximative retract of Y. If Y is an AAR, an
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AANRy or an AANRc for PM, then so is X, respectively.

PROOF. We only show the case of AANRy. Take any Me AR(PM) which
contains Y as a closed subset. By (5.3) there exists a neighborhood N of Y in
M satisfying (AANRy);. Take any ¥ €6, (X) and then take V' €6, (X) with
stV <U. Since X is approximative retract of Y, there exists a map r,: Y—=X
such that (74]X,1x) <?. By the choice of N there exists a map r,: N—Y such
that (75|Y,1y) <r;V. Thus r=rr;: N->X satisfies (|X,1x) <stV' <¥%. Then X
satisfies (AANRy);. Hence XeAANRy(PM) by (5.3). In a similar way we
can show the other assertions. W

(5.5) THEOREM. Let X be a paracompact M-space.
(i) XeAANRx(PM) iff X satisfies the condition N.
(ii) XeAANRc(PM) iff X satisfies (C).

(iii) Xe€AARPM) iff X satisfies (APT), in (4.3).

ProOOF. By (1.3.17) there exists an ANR(PM)-resolution p: X—#U(X, M).
Here M is an AR(PM) containing X as a closed subset. (AANRxy); and
(AANRe); in (5.3) are equivalent to (N)¥ for p and (C) for p, respectively.
Hence by (2.15), (3.11) and (5.3) we have (i) and (ii). Trivially (AAR); in
(5.3) and (APT), in (4.3) are same. Thus we have (iii). W

We define absolute weak neighborhood retracts and absolute weak retracts
for PM. These notions are introduced by Bogatyi [2] for compact metric spaces.
Sakai [29] studied these notions for metric spaces. Let hA: Y—M be a closed
embedding and Y, MePM. Let X be a closed subspace of Y. We say that X
is a weak retract of Y under A, in notation XeWR(PM) (Y )», provided that it

satisfies the following condition :

(WR) For any neighborhood U of hA(X) in M there exists a map r: A(Y)
—U such that r|A(X) =1nrx).

We say that X is a weak neighborhood retract of Y under 4, in notation
XeWNR(PM) (Y)r, provided that it satisfies the following condition :

(WNR) There exists a neighborhood V of X in Y such that for any
neighborhood U of A(X) in M there exists a map r:h(V)—U satisfying
r|h(X) =1ncx,.

We say that X is a weak retract of Y, in notation XeWR@PM)(Y), pro-
vided that XeWR(PM)(Y )~ for some closed embedding ~: Y—-M, MePM. We
say that X is a weak neighborhood retract of Y, in notation WNR(PM)(Y),
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provided that Xe WNR(PM) (Y )~ for some closed embedding %: Y->M, M<PM.
We say that X&PM is an absolute weak retract, in notation X€AWR(PM),
provided that for any closed embedding f: X—Y with YePM, f(X) eWREPM) (Y).
We say that X&PM is an absolute weak neighborhood retract, in notation X&
AWNR(PM), provided that for any closed embedding f:X—-Y with Y&PM,
FXOeWNREPM) (Y).

(5.6) LEMMA. (i) Xe€WREPM)(Y), then XeWREPM)(Y): for any
closed embedding t: Y—>N, NeANRPM).

(ii) If XeWNRPM)(Y), then XeWNRPM) (Y): for any closed embed-
ding t: Y—=N, NeANRPM).

PROOF. We only show (ii). In the same way we can show (i). Since X&
WNR(PM)(Y), there exists a closed embedding %:Y—>M, McPM such that
XeWNR(PM)(Y)n Then there exists a neighborhood V of X in Y satisfying
(WNR) for h. Take any neighborhood W of #(X) in N. Since N is an
ANR(PM), Int Ne ANE(PM) and then there exists a neighborhood U of A(X)
in M and a map F:U-—Int W such that F|A(X)=th™*. By the choice of V
there exists a map r: A(V)—U such that r|A(X)=1ax,. Thus f=Frht™!: (V)
—W satisfies f|t(X)=1;x,. Hence XeWNRPM)(Y):. MW

(5.7) LEMMA. Let X be a closed subspace of MeAR(PM).

(i) XeAWR(PM) iff it satisfies the following condition:

(AWR) For any neighborhood U of X in M there exists a map r: M—U
such that r|X=1x.

(ii) XeAWNR(PM) iff it satisfies the following condition:

(AWNR) There exists a neighborhood U, of X in M such that for any
neighborhood U of X in M there exists a map r: Up—>U satisfying r|X=1x.

PROOF. We show only (ii). In the same way we can show (i). First we
assume that Xe AWNR(PM). Then XeWNR(PM) (M), and hence it satisfies
(AWNR).

Next we assume (AWNR). Take any closed embedding f: X—Y, YePM.
By the assumption there exists a neighborhood U, of X in M satisfying (AWNR).
Since Int Uy ANE(PM), there exist a neighborhood V, of f(X) in Y and a
map F:Vy—Int U, such that F|f(X)=f"1 There exists a closed embedding
h:Y->N, NeAR(PM). We show that f(X)EWNR®PM)(Y)r Take any
neighborhood W of Af(X) in N. Since Int We ANE(PM) there exist a neighbor-
hood U of X in M and a map H:U-Int W such that H|X=~Af. By the choice
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of U, there exists a map r»: Uy,—U such that »|X=1x. Thus R=HrFh:
h(Vy)—W satisfies R|hf(X)=1nsx). Then f(X)eWNRPM)(Y)r and hence
XesAWNRPM). =

(5.8) THEOREM. Let X be a paracompact M-space. Then X AWR(PM)
iff X has trivial shape.

ProoF. Let p: X—>A4U(X, M) be the ANR(PM)-resolution in (1.3.17). Here
M is an AR(PM) which contains X as a closed subspace. We assume that X is
an AWR(PM). Take any ANR(PM)-neighborhood U of X in M. By (AWR)
in (5.7) there exists a map r : M—U such that r|X=1x. Since U ANR(PM),
there exists %€6,,(U) satisfying (x) in (I.5.5). Since r|X=1x, by (i) of
(1.3.17) there exists an ANR(PM)-neighborhood V of X in M such that (r|V,
j)<%. Here j: V—-U is the inclusion map. By the choice of % |V ~j. Since
MeAR(PM), M is contractible and then 7|V is homotopic to a constant map.
Thus X is AC and hence X has trivial shape by (4.11).

Next we assume that X has trivial shape. Then X is AC by (4.11). Take
any ANR(PM)-neighborhood U of X in M. There exists ¥&6,,(U) satisfying
(¥) in (1.5.5). Since X is AC, there exists an ANR(PM)-neighborhood V of X
in M and a map f: V—U such that fis homotopic to a constant map and (f,j) <
%. By the choice of % f~j and then j is homotopic to a constant map. Since
Ue ANR(PM), by the homotopy extension theorem there exists a map r: M—U
such that »|X=1x. Thus X satisfies (AWR) in (56.7) and hence X is an
AWRPM). m

(5.9) THEOREM. Let X be a paracompact M-space. Then X AWNRPM)
iff X satisfies ap-M.

PrOOF. Let p: X—HU(X, M) be the ANR(PM)-resolution in (1.3.17). First
we assume that Xe AWNR(PM). Then there exists an ANR(PM)-neighborhood
U, of X in M satisfying (AWNR) in (5.7). Take any ANR(PM)-neighborhood
U of X in M and any %&6,,(U). By the choice of U, there exists a map
r: Up—U such that | X=1x. By (ii) of (1.3.17) there exists an ANR(PM)-
neighborhood V of X in M such that (|V,j)<%. Here j: V—U is the inclusion
map. Thus p satisfies (ap-M)¥. Hence X satisfies ap-M by (8.6).

Next we assume that X satisfies ap-M. Then p satisfies (ap-M)¥ by (3.6)
and then there exists an ANR(PM)-neiborhood U, of X in M satisfying (ap-M)¥
for p. Take any neighborhood V of X in M. By (ii) of (1.3.17) there exists
an ANR(PM)-neighborhood W of X in M such that WcV. There exists ¥
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Coy (W) satisfying () in (1.5.5). By the choice of U, there exists a map
s: Up—W such that (s|X,7)<%. Here j:X—W is the inclusion map. Thus
s|X~j. Since WeANRPM), WeANEFPM) and hence by the homotopy
extension theorem there exists a map 7 : Us—W such that 7|X=1x. Then X
satisfies (AWNR) and hence X is an AWNR by (5.7). H

(5.10) COROLLARY. Let X be a paracompact M-space. Then the following
statements are equivalent:

(i) X is an AANRc for PM.

(ii) X is an AANEc for PM.

(iii) X is an AP.

(iv) X is IAM.

(v) X is UAM.

(vi) X satisfies (C).

(5.11) COROLLARY. Let X be a paracompact M-space. Then the following
statements are equivalent:

(i) X is an AANRyx for PM.

(ii) X is an AANEy for PM.

(ii) X satisfies ap-M and one of the conditions ()-(@v) in (5.10).

(iv) X satisfies the condition N.

(v) X satisfies (N)2

(5.12) COROLLARY. Let X be a paracompact M-space. Then the following
statements are equivalent:

(i) X is an AAR for PM.

(ii) X is an AAE for PM.

(iii) X has trivial shape and satisfies one of the conditions (i)-(vi) in
(5.10).

(iv) X has trivial shape and satisfies one of the conditions (i)-(v) in

(5.11).

(5.13) COROLLARY. AAR(PM)=AANRx(PM)NAWR (PM) =AANR(PM)
NAWR(PM) and AANRy(PM)=AANRc(PM)NAWNRPM).

(5.10) follows from (2.8), (5.2) and (5.5). (5.11) follows from (3.11),
(3.15), (5.5) and (5.10). (5.12) follows (4.13), (5.5), (5.10) and (5.12). (5.13)
follows from (5.8)-(5.12). ®W
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§ 6. Absolute neighborhood shape retracts.

In this section we discuss shape properties of AANR:(PM), AANRN(PM),

AARPM) and so on.
Let Y be a subspace of a space X. We say that a shaping f:X—>Y is a

shape retraction provided that fS(j)=S(y). Here j: Y—X is the inclusion map
and S(j) : Y—>X is the shaping induced by j. We say that Y is a shape retract
of X provided that there exists a shape retraction f: X—Y.

Let X be a paracompact M-space. We say that X is an absolute shape
retract for PM, in notation ASR for PM, provided that it satisfies the following

condition :

(ASR) For any closed embedding %#: X—M, MePM, h(X) is a shape
retract of M.

We say that X is an absolute neighborhood shape retract for PM, in notation
ANSR for PM, provided that it satisfies the following condition :

(ANSR) For any closed embedding h: X—M, McPM, there exists a
neighborhood U of A(X) in M such that A(X) is a shape retract of U.

ASR(PM) and ANSR(PM) denote the full subcategories of TOP consisting
of all ASRs and ANSRs for PM, respectively.

(6.1) THEOREM. Let X be a paracompact M-space.
(1) XeASR®PM) if X has trivial shape.
(ii) XeANSRPM) iff X is strongly movable (see MS [19]).

PrROOF. Using the same way of proof as in Theorems 11 and 12 of MS [19,
p. 233] by (1.3.17) and (5.5) we easily show (i) and

(1) XeANSR(PM) iff X is shape dominated by a polyhedron.
By (1) and Theorem 4 of Watanabe [35] we have (ii). MW

In Bogatyi [2] introduced the notion of internal movability for compact
metric spaces. This notion is not shape invariant. For arbitrary spaces we
define internal movability as follows: Let p={pa: ac A} : X—>F = {Xq, pa’,a, A} be
a resolution. We consider the following condition:

(IM) For each a=A there exist a’>a and a map f: Xe—X such that
Paf=Pa’sa.

(6.2) LEMMA. Let p: X—>% and q: X—Y be ANR-resolutions of a space
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X. If p satisfies (IM), then so does q.

In a way similar to the one used in (1.7) using (I1.5.5) we can show (6.2).
We say that a space X is internally movable provided that X admits an ANR-
resolution satisfying (IM). By (6.2) this property does not depend on ANR-
resolutions. Thus for compact metric spaces Bogatyi’s definition coincides with

our definition.

(6.3) THEOREM. Let X be a space, ¥ a collection of spaces and n an
integer.

(i) If X is AM, then X is movable.

(ii) If X is X-AM, then X is K -movable.

(i) If X is n-AM, then X is n-movable.

(iv) If X is UAM, then X is uniformly movable.

(v) If X is 1AM, then X is internally movable.

PROOF. We only show (i). In a similar way we can easily show the other
assertions. Let X be an approximatively movable space. There exists an ap-
proximative POL-resolution p: X—(%,%) with (xx) in (1.5.6). Since (¥,%) is
approximatively movable, for each acA there exists ap>a with the following
property : For each a’>a there exists a map 7q/: Xa,—>Xa’ such that (pa’,a7a,
Pansa) <Ua. By (x%) in (15.6) pa’,aTa’ =Pase. This means that H(X) is movable.
Since H(p) : X—H(¥) is a HPOL-expansion of X by (1.3.3) and (1.5.7), X is

movable. H )

(6.4) THEOREM. A space X is strongly movable iff X is movable and
satisfies the condition M.

ProOF. Let p: X—>%=1{Xu, pa’,a, A} be a POL-resolution of X. By (1.5.7)
H(p): X—H(%¥) is a HPOL-expansion of X. We assume that X is strongly
movable. Thus H(¥) satisfies the following condition :

(SM) For each ac=A there exists a;>a with the following property; for
each a’>a there exist a”>ao, @’ and a map 7 : Xa,—X,’ such that pa’,a” = pas,a
and rPa’sa0=Pa’;a’.

(SM) implies (M) in (3.8) and the following:

(MV) For each ac= A there exists a;>a such that for each a’>a there exists
a map 7 : Xq,—>Xqo’ satisfying pa’,a7 =pao,a-

Hence X satisfies the condition M and is movable.
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Next we assume that X is movable and satisfies the condition M. Then
H(X) satisfies (M) and (MV). By the Claim in (3.8) H(¥) satisfies (M);. We
show that H(X) satisfies (SM). By (M), there exists a,€A satisfying (M);.
Take any a€A and then take any a;>a, a,. There exists a;>a, satisfying
MV) for a;. We show that a; is the required index. To do so take any as;>a.

By the choice of a, there exist a;>ao,a; and a map s: X,,—X,, satisfying

1) spavac=Pa.,as-
Take any as>ai, as and then by the choice of a, there exists a map r: Xo,—>Xq,

satisfying
(2) Pas’alr:pahal'

We put k=5Pa5,ao7’2Xa.2‘”’Xa3- By (1) and (2) Pas,ak=Pas’a(5pauao)Pasﬂl4r:
DassaPas,as” = Parsa(Passa17) =Pas,aPass a1 =Pasa, that is,

(3) Pas,akzpaz,a-

Take any as> as, as. By €Y) and 2 kpas,az"'—“Spal,ao(Pas,alr)Pas,as:Spal,aopaz,alpas,a.z
=(Spauao)Paayac:Pauaspas:at=pae,¢l:n that is,

(4) kPae,az:Pas,aso
(3) and (4) mean that H(X) satisfies (SM) and hence X is strongly movable. W

(6.5) COROLLARY. Let X be a paracompact M-space.
(i) If X is SAM, then X is strongly movable.
(ii) If X satisfies the condition N, then X is strongly movable.

PROOF. In tne same way as in (6.3) we can show (i). We show (ii). By
(3.15) X is UAM and satisfies ap-M. By (6.2) X is uniformly movable, and
then movable. By (3.8) X satisfies the condition M. Hence by (6.4) X is strongly

movable. H

(6.6) COROLLARY. Let X be a paracompact M-space.

(i) AAR(PM)cCASRPM).

(ii) If X is SAM, then X ANSR(PM).

(iii) AANRNx(PM)CANSR(PM).

(iv) If XeAANRc(PM), then X is internally movable and wuniformly

movable.

(i) follows from (5.12) and (6.1). (ii) follows from (6.1) and (6.5). (iii)
follows from (5.11), (6.1) and (6.5). (iv) follows from (5.10) and (6.2). W



Approximative shape II 335

Now we will discuss topological groups. We assume that the reader is
familiar with topological groups. Pontryagin is a good textbook for topo-
logical groups.

Let G be a compact connected abelian topological group. Ch(G) denotes
the character group of G. Since G is compact connected, Ch(G) is a discrete
and torsion free abelian group. A continuous homomorphism A: G—H induces
a homomorphism Ch(h) : Ch(H)—Ch(G). Let F={Gq:asA} be the set of all
finitely generated subgroups of Ch(G). Then we have a directed system $#=
{Ga, ja’ya, A} such that a’>a iff GorDGa, and jo’,a: Ga—>Ga’ is the inclusion
homomorphism for a’>a. Inclusion homomorphisms js: Go—Ch(G) induce a
direct limit j={jo: acA}: #>Ch(G). Since Ch(G) is torsion free, each G, is
a free group Z»@, Here Z» is the direct sum of #z-copies of the additive group
Z of all integers. Thus Ch(G,) is the n(a)-dimentional torus 77, By taking
the dual we have an inverse system Ch(¥)={Ch(Ga),Ch(ja’sa),A}). Ch(j)=
{Ch(jo) : ac A} : G—Ch(¥) forms an inverse limit. Since all Ch(G,) are poly-
hedra, Ch(j) : G=Ch(¥) is a POL-resolution by (1.3.13).

(6.7) LEMMA (Scheffer [30]). Let G be a compact connected topological
group and H a locally compact abelian topological group. Then every map
f: G—H with f(eg)=en is homotopic to exactly one continuous homomorphism
h: G—H. Here eg denotes the identity element of G. W

(6.8) LEMMA. Let T™ and T™ be finite dimensional tori. Then every map

f:Tr—Tm is homotopic to exactly one continuous homomorphism h: T"—Tu.

PROOF. Let en and en be the identity elements of 7™ and 7™, respectively.
Since 7™ is arcwise connected, there exists a path s: I—7™ such that s(0)=en
and s(1)=f(en). We define a homotopy H: T?XI->T™ by H(z,t)=f(x)*s()"".
Here w*z means the composition of w and z in the group 7™. Then H,=f and
H,: Tn—>Tm™ is a map with H;(ex) =em. Therefore by (6.7) f is homotopic to

exactly one continuous homomorphism A:7T*—T™ =

(6.9) THEOREM. Let G be a compact connected abelian topological group.
(i) G is UAM iff G is uniformly movable.
(ii) G is AM if G is movable.

PROOF. We show only (i). In a similar way we can show (ii). We assume
that G is UM. Then for each a= A there exist a;>a and a collection {7/ :a’>
a} of maps 74’ : Ch(Ga,)—>Ch(Ga’) satisfying
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(1) Ch(jar,a’)rar=rqer and Ch(ja’,a)7a’ =Ch(jaya) for a”>a’>a.

By (6.8) there exist continuous homomorphisms %4’ : Ch(Ga,)—>Ch(Ga’) such that
ra’=hg’ for a’>a. By the uniquness of (6.8) and (1)

(2) Ch(ja”,a,’)ha”=ha,’ and Ch(ja’,a)ha’=ch(jao,a) fOl‘ a”>a,>a-

Since Ch(j) : G—>Ch(#) is an inverse limit, by (2) there exists a continuous
homomorphism % : Ch(Ge,)—G such that Ch(ja)h=Ch(jas,e). Thus Ch(j) : G—
Ch( %) satisfies (IAM)* and then G is IAM. Hence by (2.13) G is UAM. The

converse assertion follows from (6.3). W

(6.10) COROLLARY. Let G be a compact connected abelian group.
(i) G is UAM iff H (G: Z) has strong property L (see Watanabe [34]).
(ii) G is AM ff H(G:Z) has property L (see Keesling [16]).
Here H*(X: K) denotes the n-dimensional Cech cohomology group of a space X
with coefficients K.

(6.11) COROLLARY. Let G be a compact connected abelian group.
(i) If G is locally arcwise connected, then G is UAM.
(ii) G is locally connected iff G is AM.

(6.12) COROLLARY. There exists a compact connected abelian group which
is AM, but not UAM.

Movability and uniform movability for compact connected abelian groups are
characterized by Keesling and Watanabe [34]. Since Ch(G)=H(G: Z) by
Steenrod [32], (6.10) and (6.11) follow from these characterizations and (6.9).
Watanabe showed that Keesling’s example in is movable, but not
uniformly movable. Hence by (6.9) Keesling’s example is also an example for

(6.12). m

(6.13) LEMMA. If a compact connected abelian group G is strongly

movable, then G is a finite dimensional torus.

PROOF. Since G is strongly movable, by Watanabe [36] G is shape dominated
by a finite polyhedron P. Then H!'(G:Z) is also dominated by H}(P:Z).
Thus H'(G:Z) is finitely generated. By Steenrod [32] H!(G:Z)=Ch(G).
Since G is connected, Ch(G) is torsion free by Pontryagin [27]. Thus Ch(G)=
Zn for some integer n. By Pontryagin duality G is homeomorphic to Ch(Z"?) =

7. N
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(6.14) PROPOSITION. For compact connected abelian groups the notions of
SAM, AANRx(PM) and ANR(PM) are equivalent.

By (6.2) ANR(PM)—->AANRy(PM)—>SAM and by (6.13) SAM—ANR®PM).
Hence we have (6.14). MW

We established many relations between generalized ANRs and approximative
shape properties. (For NE-sets see the subsequent parts of this paper.) For
paracompact M-spaces we summarize these relations as follows:

ANSR ¢ SAM ¢ ANR
Shllll AﬂNRN
UM UAM AANRC
+ € + ¢ >+
condition M ap-M \ AWUNR \

UM < l‘/ UAM > AANRC
M : AM
+ ¢ +
condition M ap-M

\, N \! v N

M « l/ AM ¢ l » NE-sets

condition M e » ap-M « > AWNR
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