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ON CLOSED IMAGES OF PERFECT PREIMAGES OF
ORTHOCOMPACT DEVELOPABLE SPACES

By

Takemi MIZOKAMI

1. Introduction.
We consider the following property of the closed images of topological spaces:

For spaces $X,$ $Y$ and a closed mapping $f:X\rightarrow Y$, the following $(^{*})$ holds:
$(^{*})$ $Y=Y_{0}\cup\cup\{Y_{n} : n\in\omega\}$ , where $f^{-1}(y)$ is compact for each $y\in Y_{0}$ and $Y_{n}$ is
closed and discrete in $Y$ for each $ n\in\omega$ .

0riginally, La\v{s}nev showed in [7] that $(^{*})$ holds for a metric space $X$, and the
other cases are listed in [2, pp. 13 and 14]. A few years ago, Chaber proved that
$(^{*})$ holds for a regular $\sigma$ -space $X$ [ $3$ , Theorem 1.1], and he proposed there the
problem whether $(^{*})$ holds or not for the cases when $X$ is a perfect preimage of
a regular $\sigma$ -space or of a Moore space [3, Problems 1.1 and 3.1]. In this paper,
we give a characterization of orthocompact developable spaces and give a partial
answer to the latter case. We denote the set of all natural numbers by $\omega$ . All
spaces are assumed to be $T_{1}$ . All mappings are assumed to be continuous and
onto.

2. The main results.

In the sequel, we denote by [X, $Y,$ $Z,$ $f,$ $g$] the situation that $X,$ $Y,$ $Z$ are
spaces, $f:X\rightarrow Y$ is a closed mapping and $g:X\rightarrow Z$ is a perfect mapping. Moreover,

we denote by [X, $Y,$ $f$] the situation that $X,$ $Y$ are spaces and $f:X\rightarrow Y$ is a closed
mapping.

Before stating a positive result for some subclass of perfect preimages of Moore
spaces, we give the definition of $iF$-preserving families in both sides, which is used
to characterize the class of stratifiable $\mu$-spaces by Junnila and the author [6].

DEFINITION 2.1. Let $u,$ $y$ be families of a space $X$. We call that $u$ is
$y$-preserving in both sides in $X$ if for each point $p$ of $X$ and for each subfamily
$u_{0}$ of $u$ , the following two conditions are satisfied:
(1) If $p\in nu_{0}$ , then $p\in F\subset nu_{0}$ for some $F\in y$ .
(2) If $p\in X-\cup u_{0}$ , then $p\in F\subset X-\cup u_{0}$ for some $F\in y$ .
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$u$ is called $\sigma-y$-preserving if $u=\cup\{u_{n} : n\in\omega\}$ , where each $u_{n}$ is $y$-preserving
in both sides in $X$.

According to Brandenburg [1], a developable space can be characterized as a
space which has a $\sigma$ -dissectable base, where a family $u=\{U_{\alpha} : \alpha\in A\}$ of subsets of
a space $X$ is called dissectable if for each $\alpha\in A$ there exists a sequence $\{D_{\alpha n} : n\in\omega\}$

of closed subsets of $X$ satisfying the following:
(1) $U_{\alpha}=\cup\{D_{\alpha n} : n\in\omega\}$ for each $\alpha\in A$ .
(2) For each $n,$ $\{D_{\alpha}n;\alpha\in A\}$ is closure-preserving in $X$.
(3) For each $n$ and each point $p\in\cup\{D_{\alpha n} : \alpha\in A\},$ $\cap$ { $U_{a}$ : $\alpha\in A$ and $p\in D_{n}$ } is
a neighborhood of $p$ in $X$.

We give here a similar characterization of orthocompact developable spaces.
To do so, we introduce the notion of O-dissectable families as modified one.

DEFINITION 2.2. Let $X$ be a space and $u$ a family of subsets of $X$. We call
$u$ O-dissectable if there exists a $\sigma$ -discrete family $3^{i}$ of closed subsets of $X$ satisfying
the following:
(1) $u$ is 7-preserving in both sides in $X$.
(2) For each $p_{\in}y$, $\cap\{U\in u:F\subset U\}$ is a neighborhood of $F$ in $X$, if it is not

empty.

LEMMA 2.3. If $u$ is an O-dissectable family of subsets of a space $X$, then
$u$ is dissectable.

PROOF. Let $u=\{U. : \alpha\in A\}$ and $y=\cup\{3^{t_{n}} : n\in\omega\}$ with each $3_{n}^{i}$ discrete be
the same families of the above definition. For each $\alpha\in A$ , set

$D_{\alpha n}=\cup\{F\in y_{n} : F\subset U_{\alpha}\},$ $z\iota\in\omega$ .
Then $\{D_{an} : n\in\omega\},$ $\alpha\in A$ , satisfy the required conditions.

LEMMA 2.4. For a family $u$ of subsets of a space $X,$ $u$ is O-dissectable if
and only if $u$ is interior-preserving and 7-preserving in both sides in $X$for some
$\sigma$ -discrete family $y$ of closed subsets of $X$.

PROOF. Only if part: Assume that $u$ and $y$ satisfy the conditions (1) and
(2) of Definition 2.2. To see that $u$ is interior-preserving in $X$, let $p\in nu_{0}$ for
$u_{0}\subset u$ . There exists $F\in y$ such that $p\in F\subset nu_{0}$ . By (2), $nu_{0}$ is a neighborhood
of $p$ in $X$, implying that $nu_{0}$ is open in $X$. If part is trivial.

LEMMA 2.5. Let $X$ be an orthocompact developable space. Then each open
cover of $X$ has an O-dissectable open refinement.

$PR\infty F$ . It suffices to show that each interior-preserving open cover of a semi-



On closed images of perfect preimages of orthocompact developable spaces 221

stratifiable space is Pt-preserving in both sides in $X$ for some $\sigma$ -discrete family $3^{i}$

of closed subsets of $X$. Then it is O-dissectable by the above lemma. Let $u=$

$\{U_{a} : \alpha\in A\}$ be an interior-preserving open cover of $X$. For each point $p\in X$, let
$\delta(p)=\{\alpha\in A;p\in U_{\alpha}\}$ and let $\Delta=\{\delta(p):p\in X\}$ . For each $\delta\in\Delta$ and $ k\in\omega$ , set

$F(k, \delta)=(\cap\{U_{\alpha} : \alpha\in\delta\})_{k}-\cup\{U_{a} : \alpha\in A-\delta\}$ ,

where $\{(\cap\{U_{\alpha} : \alpha\in\delta\})_{k} : k\in\omega\}$ is the semi-stratifiability of an open subset $\cap\{U_{a}$ :
$\alpha\in\delta\}$ . Set

$y(k)=\{F(k, \delta) : \delta\in\Delta\},$ $ k\in\omega$ .
Then $y=\cup\{y(k):k\in\omega\}$ is a $\sigma$ -discrete family of closed subsets of $X$ and it is
easy to see that $u$ is $y$-preserving in both sides in $X$. This completes the proof.

THEOREM 2.6. For a space $X$, the following are equivalent:
(1) $X$ is an orthocompact developable space.
(2) $X$ has a $\sigma$ -discrete family $y$ of closed subsets and has a base $\cup\{V_{n} : n\in\omega\}$ ,
where each $V_{n}$ is inter.$\iota or$-preserving and $y$-preserving in both sides in $X$.
(3) $X$ has a $\sigma- O$ -dissectable base.

PROOF. (1) $\rightarrow(2)$ : Let $\{u_{n} : n\in\omega\}$ be a development for $X$. By the above
lemma, for each $n$ there exists a $\sigma$ -discrete family $y_{n}$ of closed subsets of $X$ such
that $u_{n}$ has an open refinement $V_{n}^{\prime}$ such that $V_{n}$ is $y_{n}$-preserving in both sides
and interior-preserving in $X$. Letting $y=\cup\{y_{n^{;n\in\omega\}}}$ we have the required base
$\cup\{V_{n} : n\in\omega\}$ .

(2) $\rightarrow(3)$ follows directly from Lemma 2.4.
(3) $\rightarrow(1)$ : By Lemma 2.3, $X$ has a $\sigma$ -dissectable base. Therefore $X$ is develo-

pable by [1]. By Lemma 2.4, every open cover of $X$ has a $\sigma$ -interior-preserving
open refinement. The countable metacompactness of $X$ implies that every open
cover of $X$ has an interior-preserving open refinement, i.e., $X$ is orthocompact.
This completes the proof.

C0ROLLARY 2.7. Every orthocompact developable space has a $\sigma-$ 7-preserving
base for some $\sigma$ -discrete family $y$ of closed subsets of it.

LEMMA 2.8. [11, Lemma 5.4]. Let $y$ be a hereditarily closure-preserving
family of closed subsets of a space Y. For each $ n\in\omega$ , let

$Y_{n}=\cup\{F_{1}\cap\cdots\cap F_{n}$ : $F_{1},\cdots,$ $F_{n}\in \mathscr{S}$ and $F_{1}\cap\cdots\cap F_{n}$ is a non-empty

finite subset of $Y$ }.

Then each $Y_{n}$ is closed and discrete in $Y$.
We state the main result.



222 Takemi MIZOKAMI

THEOREM 2.9. If in [X, $Y,$ $Z,$ $f,$ $g$] $Z$ is an orthocompact $ilfoo?\cdot e$ space,
then $(^{*})$ holds.

PROOF. By virtue of Corollary 2.7, it suffices to show that if in [X, $Y,$ $Z,$ $f,$ $g$]
$Z$ is a regular space which has a a-Y-preserving base for some $\sigma$ -discrete (more

generally, $\sigma$ -locally finite) family $y$ of closed subsets of $Z$, then $(^{*})$ holds.
Let $u=\cup\{u_{n} ; n\in\omega\}$ be a base for $Z$, where each $u_{n}$ is Y-preserving in both

sides in $Z$. Let $y=\cup\{y_{n^{\prime}} : n\in\omega\}$ , where each $y_{n^{\prime}}$ is a locally finite closed cover
of $Z$. For each $n$ , let $y_{n}$ be the totality of finite intersections of members of
$\cup\{y_{i^{\prime}} : i\leqq n\}$ . Then $\{y_{n} : n\in\omega\}$ is a sequence of locally finite and finitely mul-
tiplicative closed covers of $Z$ such that $y_{n}\subset y_{n+1}$ for each $n$ . Obviously, each $u_{n}$

is $\bigcup_{n}y_{n}$-preserving in both sides in $Z$ and $\cup ny_{n}$ is a network for $Z$. Thus, we
can assume $u_{n}\subset u_{n+1}$ for each $n$ . For each $n$ , write

$S_{n}=g^{-1}(y_{n})=\{E_{\lambda} : \lambda\in\Lambda_{n}\}$ .
For each $n,$

$ k\in\omega$ , let $\Delta_{n}(k)$ be the totality of subsets $\delta$ of $\Lambda_{n}$ such $|\delta|=k$ and
$Y(\delta)=\cap\{f(E_{\lambda}) : \lambda\in\delta\}$

is a non-empty finite subset of Y. By Lemma 2.8,

$Y_{n}(k)=\cup\{Y(\delta) : \delta\in\Delta_{n}(k)\}$

is closed and discrete in $Y$. Set

$Y_{0}=Y-\cup\{Y_{n}(k) : n, k\in\omega\}$ .
We shall show that for each $y\in Y_{0},$ $f^{-1}(y)$ is compact in $X$. To do it, we establish
the following claims:

Claim 1: For each $ n\in\omega$ ,

$S_{n}(y)=\{E\in S_{n} : E\cap f^{-1}(y)\neq\phi\}$

is finite.
To see it, assume the contrary, $i.e.$ , that for some $m,$ $6_{m}(y)$ is infinite. Choose

an infinite sequence $\{E_{m}, E_{m+1},\cdots\}\subset S_{m}(y)$ and $x_{0}\in f^{-1}(y)$ . Observe that for each $k$

$E_{k^{\prime}}=\cap\{E\in S_{k} : x_{0}\in E\}\in S_{k}$ .
Since $y\in Y_{O},$ $f(E_{k^{\prime}})\cap f(E_{k})$ is infinite for each $k\geqq m$ , we can choose a sequence
$\{y_{k} : k\geqq m\}$ of distinct points of $Y$ such that

$y_{k}\in f(E_{k^{\prime}})\cap f(E_{k}),$ $k\geqq m$ .

Choose two points $p_{k},$ $pk^{\prime}\in X$ for each $k\geqq m$ such that
$pk\in f^{-1}(yk)\cap E_{k}$ and $pk^{\prime}\in f^{-1}(yk)\cap E_{k^{\prime}}$

for each $k$ . Recall $that\cup\{S_{n} : n\in\omega\}$ is a $\Sigma$ -network for $Y$ in the sense of Nagami
[8]. Therefore, $tpk^{\prime}$ } has a cluster point in $Y$. So, $\{yk:k\geqq m\}$ consequently has
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a cluster point in $Y$ . But this is a contradiction because $\{p_{k} : k.\geqq m\}$ is discrete
in $X$ and $f$ is a closed mapping. Hence $6_{n}(y)$ is finite for each $n$ . (The proof
of this part have been done referring to [12, Theorem 1.3].)

Claim 2: $g(f^{-1}(y))$ is Lindel\"of.

In fact, by Claim 1, for each $n$

$y_{n}(y)=\{F\in y_{n^{;g^{-1}}}(F)\in S_{n}(y)\}$

is finite. It is obvious that

$\cup\{y_{n}(y) ; n\in\omega\}/g(f^{-1}(y))$

is a countable network for the subspace $g(f^{-1}(y))$ . This implies that $g(f^{-1}(y))$

is $Lindel6f$ .
Claim 3: There exists a sequence $\{y_{n} : n\in\omega\}$ of points of $Y$ satisfying the

following:
(1) $ E\cap f^{-1}(y_{n})\neq\phi$ for each $E\in 6_{k(y)}$ and $n\geqq k$ .
(2) If $ N\subset\omega$ is infinite, then $\{y_{n} : n\in N\}$ has a cluster point in $Y$.

In fact, by Claim 1, each $8_{n}(y)$ is finite. Since $y\in Y_{0}$ and

$y\in\cap\{f(E) : E\in S_{n}(y)\}$ ,

$\cap\{f(E):E\in S_{n}(y)\}$ is infinite. Thus, we can choose a sequence $\{y_{n} : n\in\omega\}$ of
points of $Y$ such that for each $n$

$y_{n+1}\in\cap\{f(E) : E\in S_{n+1}(y)\}-\{y_{1},\cdots, y_{n}\}$ .
It is obvious to see that $\{y_{n} : n\in\omega\}$ satisfies (1). Let $N$ be an infinite subset of
$\omega$ . Since for a point $x_{0}\in f^{-1}(y)$ ,

$E_{n^{\prime}}=\cap\{E\in S_{n} : x_{0}\in E\}\in \mathcal{B}_{n}(y),$ $n\in N$,

there exists by Claim 3(1),

$p_{n}\in f^{-1}(y_{n})\cap E_{n^{\prime}},$ $n\in N$.
By the same reason as in the proof of Claim 1, $\{y_{n} : n\in N\}$ has a cluster point
in $Y$ .

Finally we show that $f^{-1}(y)$ is compact in $X$. Assume that $f^{-1}(y)$ is not

compact in $X$. Then $g(f^{-1}(y))$ is not so in $Z$ because $g$ is a perfect mapping.
Recall that by Claim 2 $g(f^{-1}(y))$ is Lindelof. By the argument of [3, Theorem
1] there exists an increasing open cover $\{U_{i} : i\in\omega\}$ of $g(f^{-1}(y))$ such that for
each $i$

$ g(f^{-1}(y))\cap(U_{i+1}-\overline{U}_{i})\neq\phi$ .
Take points $p_{1}\in U_{1}$ and

$p_{i+1}\in g(f^{-1}(y))\cap(U_{i+1}-\overline{U}_{i})$



224 Takemi MIZOKAMI

for each $i$ . Set

$A_{i}=Z-\cup\{U\in u_{i} : U\cap g(f^{-1}(y))=\phi\}$

for each $i$ . Then $\{A_{i} ; i\in\omega\}$ is a decreasing sequence of closed subsets of $Z$ such
that

$g(f^{-1}(y))=\cap\{A_{i} : i\in\omega\}$ .
Since $u_{i}$ is $\cup ky_{k}$-preserving in both sides in $Z$, there exists $F_{i}\in\cup ky_{k}$ such that
$p_{1}\in F_{1}\subset U_{1}$ and

$p_{i+1}\in F_{i+1}\subset(U\iota_{+1}-\overline{U}_{i})\cap A_{i}$ .
By Claim 3 (1), we can choose $ty_{n(i)}$ : $ i\in\omega$ } such that

$ F_{i}\cap g(f^{-1}(y_{n(i)}))\neq\phi$ and $n(i)<n(i+1)$

for each $i$ . If we take for each $i$

$x_{i}\in g^{-1}(F_{i})\cap f^{-1}(y_{n(i)})$ ,

then by Claim 3 (2), $\{g(xt):i\in\omega\}$ has a cluster point $z$ in $Z$. Since $g(x\ell)\in F_{l}$,
$ i\in\omega$ , and $\{F_{i} : i\in\omega\}$ is discrete in the subspace $g(f^{-1}(y)),$ $z$ must belong to $Z-$

$g(f^{-1}(y))$ . Since $g(f^{-1}(y))=\cap\{A_{i} : i\in\omega\}$ , there exists $ m\in\omega$ such that $z\oplus A_{n}$ for
every $n\geqq m$ . But this is a contradiction because $g(x_{n})\in A_{m}$ for every $n\geqq m$ and
$A_{m}$ is closed in $Z$. Hence we have shown that $f^{-1}(y)$ is compact in $X$. This
completes the proof.

From here, we assume that all $p$-spaces are regular. In [4], Filippov showed
that $(^{*})$ holds if $X$ is a paracompact $p$-space in [X, $Y,$ $f$]. We generalize it as
follows:

COROLLARY 2.10. If in [X, $Y,$ $f$] $X$ is an orthocompoct, d-paracompact
p-space, then $(^{*})$ holds.

PROOF. By [9, Theorem 4.4] there exists a perfect mapping of $X$ onto a

Moore space $Z$. By [5, Theorems 3.2 and 3.3] $Z$ is orthocompact. Thus, by the
theorem $(^{*})$ holds.

REMARK. We know that Veli\v{c}ko showed that $(^{*})$ holds if $X$ is a metacompact,

completely regular $p$-space [13], as a generalization of Filippov’s result. But,

Corollary 2.10 is not the corollary of Veli\v{c}ko’s, because there exists an orthocompact
Moore space $X$ which is not metacompact [13, Theorem 2].
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