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CARDINAL FUNCTIONS OF SPACES WITH ORTHO-BASES
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\S 1. Introduction.

Throughout this paper, “ space” will mean $T_{1}$ -space. Let $\mathscr{D}$ be a base of a
space $X$ $\mathscr{D}$ is said to be an ortho-base if for every $\mathscr{D}^{\prime}\subset \mathscr{D},$ $\cap \mathscr{D}^{\prime}$ is open or $\mathscr{D}^{\prime}$

is a neighborhood base of some point. $\mathscr{D}$ is said to have subinfinite rank if for

every $\mathscr{D}^{\prime}\subset \mathscr{D}$ such that $\cap \mathscr{D}^{\prime}\neq\phi$ and $\mathscr{D}^{\prime}$ is infinite, at least two elements of 9’
are related by set inclusion. Spaces having an ortho-base, and spaces having a
base of subinfinite rank were introduced by Nyikos as natural generalizations of

non-archimedean spaces [4] [5].

Concerning cardinal functions of spaces with special bases, Gruenhage showed
that for each regular space $X$ having a base of subinfinite rank, $d(X)=hd(X)\geq hl(X)$

$=s(X)$ holds [3]. $d(X)$ is the density of $X,$ $hd(X)$ is the hereditary density, $hl(X)$

is the hereditary Lindelof degree, and $s(X)$ is the spread ( $i$ . $e.$ , the supremum of

the discrete subspaces of $X$ ). In this paper we investigate cardinal functions of

spaces having ortho-bases. We shall show that $hd(X)\geq hl(X)=s(X)$ holds for each

space $X$ having an ortho-base.

\S 2. Main result.

We need two lemmas. For convenience, for a cardinal $\tau$ , we say a space $X$

to be $\tau$ -developable if there exist $\tau$ open covers $t\mathcal{H}_{\alpha}\}_{a<\tau}$ such that for each $x\in X$

$\{St (x, \mathcal{H}_{\alpha})\}_{\alpha<\tau}$ is a neighborhood base of $x$ .

LEMMA 1. Let $X$ be a space having an ortho-base $\mathscr{D}$ and $D$ be the set of
isolated points of X If $D$ is dence in $X$, then $X$ is $|D|$ -developable.

PROOF. Set $D=\{d_{\alpha}|\alpha<\tau\}$ , where $\tau$ is a cardinal. For each $x\in X-D$ and $\alpha<\tau$ ,

we take $B_{\alpha}(x)\in 9$ such that $x\in B_{a}(x)$ and $d_{\alpha}\not\in B_{\alpha}(x)$ . Put $\mathcal{H}_{\alpha}=\{\{d_{\alpha}\}|\alpha<\tau\}\cup\{B_{\alpha}(x)|$

$x\in X-D\}$ . $\mathcal{H}_{\alpha}$ is obviously an open cover of $X$. Let $x$ be a point of $X$ and $W$

be a neighborhood of $x$ . If $x\in D$ , then St $(x, \mathcal{H}_{\alpha})=\{x\}\subset W$ for some $\alpha$ . So, we as-
sume $x\in X-D$ . Suppose that St $(x, \mathcal{H}_{\alpha})\not\subset W$ for any $\alpha<\tau$ . Then for each $\alpha$ , we
can take $H_{\alpha}\in \mathcal{H}_{a}$ such that $x\in H_{\alpha}$ and $H_{\alpha}\not\subset W$. Since $\{H_{\alpha}\}_{\alpha<\tau}$ can not be a neigh-
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borhood base of $x,$ $H=\bigcap_{a<\tau}H_{\alpha}$ must be open. But $ H\cap D=\phi$ , because $H_{\alpha}\$ d_{\alpha}$ . Since
$D$ is dense in $X$, this is a contradiction.

The following lemma is well known in the countable case and can be easily
carried over to the general case. So we omit the proof.

LEMMA 2. Let $X$ be $\tau$ -developable. If the cardinality of each closed discrete
subspace is at most $\tau$ , then $X$ is $\tau$-Lindelof (i.e., every open cover has a subcover
of the cardinality $\tau$ ).

THEOREM 3. Let $X$ be a space having an ortho-base $\mathscr{D}$ . Then $hd(X)\geq s(X)=$

$hl(X)$ holds.

PROOF. Since $hd(X)\geq s(X)$ and $hl(X)\geq s(X)$ are obvious, we show $s(X)\geq hl(X)$ .
Let $ s(X)=\tau$ . Since for each subspace $Y$ of $X,$ $ s(Y)\leq\tau$ and $Y$ has an ortho-base,
the proof is complete if we show that $X$ is $\tau$-Lindelof. Suppose that there exists
an open cover $cU$ of $X$ which has not a subcover of the cardinality $\tau$ . Firstly we
take $x_{0}\in X$ and $U_{0}\in cU$ such that $x_{0}\in U_{0}$ . Put $V_{0}=U_{0}$ . Let $\gamma<\tau^{+}$ . We assume that
for each $\beta<\gamma$ we could take $x_{\beta}\in X$ and an open set $V_{\beta}$ such that the following $(*)$

is satisfied.

$(*)$ $\{_{Theexists^{=}U_{\beta}\in^{\beta}U}^{V_{\beta}\cap\{x_{a}|\alpha<\gamma\}\{x\}}ercsuchforeachthat\beta<\gamma V_{\beta}\subset U_{\beta}$

for each $\beta<\gamma$ .

Then, if we set $A=\{x_{\alpha}|\alpha<\gamma\}$ , since $|A|\leq\tau$ , Cl $A$ is $\tau$-Lindelof by Lemma 1 and
Lemma 2. Thus Cl $A\cup(\bigcup_{\beta<\gamma}V_{\beta})$ is covered by $\tau$ elements of $\subset U$ So we can take
$x_{\gamma}\in X-C1A\cup(\bigcup_{\beta<\gamma}V_{\beta})$ . We take $U_{\gamma}\in cU$ and an open set $V_{\gamma}$ such that $x_{\gamma}\in V_{\gamma}\subset U_{\gamma}$ and
$ V_{\gamma}\cap A=\phi$ . Now by the induction we get the discrete space $\{x_{\alpha}|\alpha<\tau^{+}\}$ . This is a
contradiction to $ s(X)=\tau$ .

There exists a space having an ortho-base such that $hd(X)\neq d(X)$ . In fact
the space in $[$6, 3.6. $I]$ is such a space.

Concerning SH (Souslin’s hypothesis), we note the following theorem.

THEOREM 4. The following $(a),$ $(b)$ and $(c)$ are equivalent.
$(a)$ $SH$ is false.
$(b)$ There exists a non-metrizable non-archimedean space such that $s(X)$ is

countable.
$(c)$ There exists a non-metrizable regular space having an ortho-base such that

$s(X)$ is countable.
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PROOF. The equivalence of (a) and (b) is due to [1]. Also, refer [5, Theorem
1.7]. $(b)\rightarrow(c)$ is trivial. We show $(c)\rightarrow(b)$ . Let $X$ be a space of (c). Since by

Theorem 3 $X$ is regular Lindelof, it is paracompact. Therefore $X$ is a proto-

metrizable space ( $i$ . $e.$ , paracompact space having an ortho-base). It follows from

Fuller’s result [2, Theorem 6] that $X$ is the perfect irreducible image of a non-
archimedean space $Y$. Since metrizability is an invariant of perfect maps, $Y$ is

not metrizable. Since the spread of a non-archimedean space is equal to the

cellularity, by the irreducibility of the map, $s(Y)$ must be countable. Thus $Y$ is
the desired space.

COROLLARY 5. The following $(a)$ and $(b)$ are equivalent.
$(a)$ $SH$.
$(b)$ Each regular space having an ortho-base is metrizable if the spread is

countable.
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