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ON THE GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS
OF SECOND ORDER FULLY NONLINEAR HYPERBOLIC
EQUATIONS WITH FIRST ORDER DISSIPATION
IN THE EXTERIOR DOMAIN

By

Yoshihiro SHIBATA*

Abstract

In this paper, we establish global existence and uniqueness theo-
rems of solutions of second order fully nonlinear hyperbolic equations
with first order dissipation in the exterior domain, in the case that
data are sufficiently small and smooth and that the space dimension
n=3. Furthermore, we investigate some decay theorem.
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Introduction

Let £ be an unbounded domain in an n dimensional Euclidean space R" with
compact and C* boundary 0f2. Let us denote time variable by ¢ or x, and space
variables by x=(x,, ---, x.), respectively. For differentiation, we use the symbols
0,=0,=0/ot and 0,=(0,, ---, 0,) with 9;=0/dx,, j=1, ---, n. In this paper, we
consider the following initial-boundary value problem:

Ou)=¢u+o,u—du+F(¢, x, Au)=f in 9=[0, co)xX 2,
(P) u=0 on 9'=[0, 0)X082,
u(0, x)=g¢o(x), (0:u)0, x)=¢,(x) in 2,

where 4=37,0%, Au=(u, Au), Au=(Diu, Diu, d,u, 3,Diu, d3u), Diu=(0,u, -,
onu), Diu=(0,0;,u; 1=17, j<n).

When the equation is quasilinear or semilinear with dissipation and £ is R
or bounded, global existence and uniqueness theorems and the study of the prop-
erties of solutions of problem (P) and so on have been treated by many authors
cf. [33, [71, [12], [14], [16], [20], and further references in these papers).
In the case 2=R", it is well-known that by the method due to Dionne [2], we
can reduce fully nonlinear equations to quasilinear systems and hence we need
not consider essentially fully nonlinear equations in R". Applying results due
to Matsumura [7], we can thus show global existence and uniqueness theorems
of Cauchy problem for @(u) with sufficiently small and smooth data. But, when
£2 has boundary, we can not use such a method due to Dionne. In the case that
£ has boundary and @(u) is fully nonlinear, we must treat essentially phenomena
what is called “ derivative loss”. In order to overcome such difficulties, we can
use a well-known excellent method due to Nash (also Moser [9]). In fact,
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Rabinowitz established a global existence theorem of periodic solutions of
fully nonlinear dissipative wave equation of the form: dfu—0o%u+ad,u=cf(t, x, Au)
(a>0), when n=1, 2 is bounded and e is sufficiently small, by applying what is
called the Nash-Moser technique. Recently, Shibata showed global existence
and uniqueness theorems and decay theorems of solutions of mixed problem for
general second order fully nonlinear hyperbolic operators with dissipation of the
form: X7oa(t, x)0;0,u— 2 jo1@is(t, x)0:0;u+ D F-ob,(t, x)0u+c(t, X)u+Ft, x, Aw),
when 2 is bounded and data are sufficiently small and smooth, by also the Nash-
Moser technique. And also, applying the Nash-Moser technique to bifurcation
theorem, Craig showed the existence of non-trivial branches of periodic
solutions for fully nonlinear dissipative wave equation of the form: o}u-+ad.u—
du—mu+F@, x, Au)=0 (>0, me R*), when £ is bounded, which is an extension
of Rabinowitz’s result [15].

The purpose of this paper is to show global existence and uniqueness theo-
rems and some decay theorem of solutions of mixed problem (P), in the case that
data are sufficiently small and smooth and that £ is unbounded with compact and
C= boundary. We introduce the following assumptions, which will be assumed
throughout this paper.

AssUMPTIONS. 1° The space dimension n=3.

2° The nonlinear function F(, x, 2), A=(y, A), is real valued and belongs
to the space 8=([0, o0) X X {Ae Rr+e+(+D2. | 2| <11,

3° In the case: n=5, F satisfies the following conditions: F(¢, x, 0)=0,
(dF)t, x, 0)=0®.

4° In the case: 3<n=<d4, Fis of the form: F(t, x, )=F, x, )+F:(, x, ),
A=y, 1), where F, and F, satisfy the conditions: Fi(t, x, 0)=0, (d3;F1)(, x, 0)=0,
Fy(t, x, 00=0, (dFo)(, x, 0)=0, (d3F)(, x, 0)=0.

In this paper, we shall show the following

MAIN THEOREM®. Let Assumptions hold. (1) (Existence). Let m be an
integer =2. Then there exist some positive constant ¢ and a sufficiently small
positive constant 0, depending essentially only on n, m and F having the following
properties: if data ., ¢1 and f for problem (P) satisfy the #n-th order compati-

(1) B*(@), w being an open set, is the set of all functions defined in some open set
&2 w such that their partial derivatives of order <k all exists and are continuous and bounded.
We denote the norm of B* by | -] g»-

(2) Here, we have written d,G=(3G/0vy, -, 0G/dvy) and d2G= (02G/dv;dv;; 11,
j=Pk), when v=_(vy, **+, vp).

(3) Notations used in MAIN THEOREM will be defined in the part of Notations below.
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bility condition defined in § 10 below and an inequality:

[Dolle, em+sstnroatIPille, emsosrnrert | o qcnr. ehs14nsed

+0'(n)(“¢0”1,7n+2+”¢1”1,?ﬁ+1+[f|1,1.7n)§.5,
then there exists a solution ueC™[0, o)X 2) of problem (P) with

|u|oo.p(n),m+l/1u|2.o,m—2+[Aulg,l/g,m-zéca,

for any 0 with 0<8=d,. Here, m=2max(m—1, 2[n/2]+7)+9+2[n/2]. (1)
(Uniqueness). There exists a small number 0, with 0<6,=1 having the following
properties: if u and v are C*[0, o)X 2) solutions of problem (P) for the same
data and satisfy the conditions: |Ulew,00<01, |V]w.0 <1 then u=v.

Now, we give some examples of @(u).
du
VIFS
(ii) Pu)=03u+0,u—du-+ g(u), where g(u)eC=(R") is real-valued and satis-
fies the condition: (d/du)/g(0)=0, ;=0, 1, 2 (for example, g(u)=u?).
(il) P(u)=03u+0,u—Adu+X]o(0;u)*+ 27 j—o(0:0,u)>.

ExAMPLE. (i) @(w)=0?u+0,u—

Our proof of (I) in MAIN THEOREM is a straight forward adaptation of a
quadratic iteration scheme with a process of “smoothing ” because of “loss of
derivatives” at each step in the iteration. This technique is well-known as the
Nash-Moser technique ([9], [13]). In order to show the convergence of our
iteration scheme, it is important to show L? and uniform decay estimate for
linearized problem, which will be shown in Part 2. In particular, the results of
decay estimates are new and will be shown mainly by means of technique known
in the field of perturbation theory in Part 1 and §8 and §9 in Part 2.
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Notations

For any multi-indices a=(a;, -+, a,) and 8=(B8;, -, B.) where «; and S,
are non-negative integers, we put
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ag:ai‘l vee a%n, Ial:a1+ cae +an’ a!:a1! e A !,
(44

a—pB=(a;—PB1, =+, an—Pn), (ﬁ)=al/(a—ﬁ)! al,

and a=p means a;=pj; for any ;. For a non-negative integer N, we put
DY¥u=@%u; |a|=N), D¥u=(0{03u; j+|a|=N),
D¥u=(03u; |a|=N), DYu=(0{o3u; j+|a|=N).

For any open set © in R™ and p with 1=p=oo, we denote the usual L? and

locally L? spaces defined on © by L?(©) and LZ.(0), respectively. For functions
f and g, we put

(f, o=\ f-2dx, Iflo.,=([;1F17dx)"", 15p<eo, 1flo.=ess supl /1.
For a vector valued function hA=(h,, ---, h,), we put
he=hgt - hgn,  |R[2=|h|% - 1 hal®, hlle ,=25=illAsll0.5 -
Further, we put
1flo.p.v=ID¥fllo.n, lhlo.p »=Z5=1lbjlo.p.5,
HY©)={f€L?©); | flo.p.n<oo}.

By Hp(©) we denote the closure in Dirichlet norm of smooth scalar valued func-
tions with compact support in ©, where Dirichlet norm is defined by

I7s=Y, | DL S 12 .
When 0= or =R", for simplicity we use the following abbreviations:

f, @=f, Do, Iflo=Ifla.r, Iflo.x=0fl2r~, WAI=lfle,
f> &=, @rn, 1flp=1flzn2, Wf1ox=1flzmr.x, WAF=Iflzn.

For Banach spaces ., and 4,, B(J(,, 4,) denotes the Banach space of all bounded
linear operators on 4, to 4, and we denote its operator norm by |- llscsy, 55-
In particular, when 4 =4 =4, for simplicity we write B(%)=B(4, 4) and
I-lzwo=I"lgw 5. For an open set w in one dimensional complex plane C, a
Banach space 4 and an open set @ in R", by Anal(w; 4) (resp. CY(O; ) we
denote the space of all #-valued functions which are holomorphic in w (resp.
N-times continuously differentiable in ©). We put CY(O; IN={usC©O; A);
supp u is compact and contained in ©}. In particular, we put C¥(©)=C"(©; C) and
CY(©)=C¥(©; C). For p with 1=<p=co and a non negative integer N, we put

er-¥(E)=NX,C¥ [0, oo); HY¥(O)),
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where C/([0, o0); HY-9(0))= {u ; u=v in (0, o0) for some v C¥((—co, o) ; HY-(o)N}.
For ue&?%(©) and a non negative real number 2, we put
| ulo.5, 5 v =sup(L+0* 1DV uct, o, -
For any closed interval [a,b] (—co<a<b=<co) in R!' and ueNL.C’(La,b];

HZ(0)), where C¥([a, b]; H4(©))={u; u=v in (a, b) for some ve C’(—x, c0);
HL(0)} (¢ is a non negative integer), we put

lu|o,p.[a,b],N=aSSU£bH5Nu(t, Ne.p-
For simplicity, when ©=8 or R", we use the following abbreviation :
lulp e.v=lulo.p. b5, ] paon v =1l 0 potaon. v
[ulp 0. v= ||, 0,5, |5 taon v= U] &, p,a,00, 5 -
For any positive integer L, we put
E'={uce*X0); olu(, x)=0, j=0, 1, ---, L—1},
E'={ue E*NCE-Y[0, o) ; Hp(O)), 8%u(0, x)=0}.
For any »>0 and open set © in R", we put
O,.={x€0; |x|<r} (O#R"), B,={xeR"; |x| <7},
LYo)={f< L*R"); supp fCO/}.

Throughout this paper, r, denotes a fixed positive real number with B,,DR"—Q.
Choose a C~(R™-function z(x) so that n(x)=1 in B,, and =m(x)=exp(—|x|? in
R"—B, ,,. Using n(x), we define weighted L® norms <-> and <->’ as follows:

<f>ESg7z(x)|fI2dx , <f>,ES nﬂ(x)|f|2dx .

R

We define Banach spaces 4 and 4’ as follows:

I={fe LL(2); <D%f><oo, f=0 on 82}, S'={fcLiL(R");<D%f> <oo}.
We denote the Fourier transform of f(x) by f(&)=(F f )(S)Egexp(—vtlxé) f(x)dx,
and also the inverse Fourier transform of g(&) by Z(x)=(gF-'g)(x)=Q2r)"

Xgexp(«/—_lx{-‘)g(é)drf, where x§=x,&+ - + 280, x=(x1, -+, x3), E=(&1, -+, &En).

For positive integers s, 7, a function H=H(, x, v), v=(y,, ---, v,), defined on
[0, )X 2 X R?, vectors u=(uy, -, uy), v;=}, -, v <R*, we put

(dSH)(t, x, w)(vy, -, v)=(0'H/0n, -+ 09)(t, x, U+ i1 v)| pymemnymo -

For the space dimension n, we define functions p(n), g(n), o(n) by
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1 if 3=n=<4 5/4 if n=3 3/2 if n=3
o(n)= , p(m)={ 3/2 if n=4, q(n)=4 7/4 if n=4.
0 if n=5 n/4 if n=5 n/4 if n=5

Finally, throughout the paper, the letter C without subscripts will be used to
denote various constants. Further, if a constant depends on A, B, --- and we
need to emphasize this fact, we shall write C(A4, B, ---).

PART 1

Local energy decay of ’solutions of the mixed problem
for the operator 0:-+0d,—4

§]1. Statement of main results of part 1.

In this part, under the assumption: n=3, we shall determine the rate of
local energy decay of solutions of the following mixed problem:

(1.1) u=0 on 9/,
u(0, x)=go(x), (B,u)0, x)=¢;(x) in 2.

We shall show the following in this part.

THEOREM 1.1. Assume that n=3. Let r, be a fixed large number with
B, DR"—2, M and N any non negative integers, and r and r’ any real numbers
with v’ =r=r,+3. Then, there exists a positive constant C=C(r, r’, M, N) such
that if ¢y, ¢,=C=(2) have supp @o, supp ¢.C 82, and satisfy the compatibility con-
dition defined in (6.3) in §6 below and ueC=(Q) is the unique solution of (1.1),
then

[, 1Dxarue, 1t dx=Ca+0"" = Lguls swowsat Igalesensed.

Under the assumption that the domain £ is non trapping, it is well-known
that the rate of local energy decay of solutions of the mixed problem of the
wave operator is n (6], [22], [23], [24]). But, in our case, we don’t need the
assumption that 2 is non trapping by virtue of the dissipative term: 0..

Since the proof of is somewhat long, we here give a sketch of
the proof. The strategy follows Murata [II]. For any feL¥£), by R(z)f we
denote the solution of Dirichlet problem: (4d+72—+/—17)R(z)f=f in 2, R(z)f=0
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on 2. In §2, we show that R(z)f<Anal({reC; Im <0} ; H}())NC~(R'— {0} ;
H(0)). Further, by virtue of dissipation we can show that [|R(z)f|,=C|z|! as
|z]—o0, reR'. In §3, we define the fractional power of derivatives by means
of the terminology of Besov spaces. In §4, for f& L%R"™), by Ry(r)f denoting
the solution of the equation: (4+7*—+/—17)u=f in R", we show that ¥ Ry(z)f
is (-g— —I—N)-times differentiable near z=0 in the sense defined in §3. In §5, we
show that R(z) is a small perturbation to R,(z) near z=0. It follows from this
result that z¥ R(z) is also (—g— +N )—times differentiable near z=0. In § 6, roughly
speaking, we put u(, x)=(1/27r)SR(r) fe¥~'ttdz. Then, by using a theorem that
the decay order with respect to ¢ of the Fourier transformations of (£ +N )-times

2

. . . . n . —
differentiable functions is 7—|—N, we can show that the assertion of

holds for this function u(t, x).

§2. Definition and some properties of an inverse operator R’(z) in &.

Throughout part 1, we write
2.1) I-l=0-les I-W=N-l2, mi={reC;Rer+0, Imz<1/2},

r.={reC; Ret=0, Im <0}, r=k,Y&,.
By integration by parts, we have
(2.2) (47— —=17)u, w)=—llulP+(*—~—1o)lul?
for any ue Hp(Q)N\HYQ).

The following two lemmas are well-known (see Lax-Phillips [6, Lemma 1.1 of §1

in Chapter IV and (1.11) of §1 in Chapter V]).

LEMMA 2.1. Let uc Hp(2) and ve Hy(R™). Then there exists a positive con-
stant C=C(n) such that

SQ |ultdx=Cr¥|ull® for any r=r,, SB lv[2dx=Cri(lvll")* for any r>0.

LEMMA 2.2. If ueHy(R2) and dus L¥R), then all second derivatives of u

are square integrable and
I D% ul| < C{l dull+lull}.

By using [2.2), the Cauchy-Schwartz inequality, Lemmas 2.1 and and
well-known Riesz’s theorem, we have



On the global existence of classical solutions . 9

THEOREM 2.3. For each t<k, there exists a bounded linear operator R’(t)
on L¥2) to H(Q)NHp(R) such that for any f< LX), R'(z)f satisfies the equation :
(d+72—~/—10)R'(v)f=Ff in R, and the estimates:

2.3 IR@fISCLEIS, NROASCLOIA, I1DZR@F=CLEIS,

where
Cot)=(IRez||12Imz—1|)" if t€k;, and =(|z|+Iz|D) if tE€k,,

C@[1+ | Re ) —(Im)*+Im | DY2 if t<k,,
(lz]+1z®H* if TEk,,
Ln)=14|22—~—12|Co(r)+{i(z) if c€x.

(2.9) Cl(f)={

Let z and 7, be any points in £. Formally we put
(2.5) Cr)=25, {[(zi—v—17))—(c*—~/—=17) R (z 1)} .

In view of if = is close to 7,, the series on the right of con-
verges in B(L%*£2)) norm and it is easily checked that for such 7z, its limit is
indeed the inverse of the operator: 14+[(z*—+—17)—(z}—+~/—17,)1R' (7). It
follows from this that for such z, the equation: (4d+z*—~/—17)R'(z,)C(z)f=f in
Q, holds. So, we see easily from [Theorem 2.3 that R’(z)=R’(z;)C(z) for such .
In particular, we have that R’(r)e Anal(x; B(L*2); Hi)NHxL))). So, differ-
entiating the both side of the equation: (d+7:*—+—17)R'(z)f=f in 2 with
respect to 7, we have by

THEOREM 2.4. Let R’(t) be the same as in Theorem 2.3. Then R’(r) belongs
to Anal(x; B(L*Q); H3(2)NHp({2))).
Furthemore, the following estimates hold:

1@/00)" R'(D) fI=CN, )|z f1,
li@/90)¥ R'() FISCN, vl f1I,
ID3@/07)Y R' () fI =C(N, w)|=| - 1]

for any v>0, integer N=0 and = R' with |z|>v.

§3. Definition and some properties of the space C*.

In order to investigate the regularity of R’(z) near z=0, we shall define the
fractional power derivatives by means of the terminology of Besov spaces and
show some their properties in this section. Throughout § 3, 4 is a Banach space
with norm |-|4. First, we introduce the following space.



10 Yoshihiro SHIBATA

DEFINITION 3.1. Let N be a positive integer and k=N-+o¢ with 0<¢<1. Put

CF=CHR'; 4)={ucsCY Y(R'; H)NC(R*— {0} ; 4); (u)s 4 <o},
where

Ed~ u(r)‘ dz-+supl h|-°

[\

R

() =S
J

X

[

(
oG
(&

)
) u(t—l—h)-—(éi;)lvu(z')‘ﬁdz- if 0<o<l,
)

(U s 5= S u(z)|  dv+sup| k|-

-

R

xgm (ad—) w(z+2h)— 2(%_) u(T+h)+( d u(r)]ﬂdt.

C* is a subspace of the usual Besov space B* (R'; %) (see Muramatsu

[10]. In the following theorem, we shall give a sufficient condition in order that
f belongs to C*.

TEHOREM 3.2. Let N be a positive integer and X be a Banach space with
norm |-|x. Assume that feC(R'— {0} ; )NCT-YI; %) where I=(-2, 2).

(i) Let k=N+o with 0<o<1 and f satisfy the following condition (a).
(@) For any r=I— {0},

‘(g;)jf(r)lﬂéc(f) for any integer jE[0, N—1],

(§0) @] somnier, |(LY ol scnieos

Then, feC*R'; %) and f satisfies the following :
(ra=Cla, NYC(f), |f@)—F0)]|x=C(e, N)C(f)|z]°.

(ii) Let k=N+1 and f satisfies the Sollowing conditions (a) and (b).
(@) There exist foe 4 and a -valued function fi(z) defined on I such that

(%)Nf(?-'):fo loglz|+fi(c) for rel—{0}.

(b) For any t=I—{0},
‘(-;;)jf(r)lg_S_C(f) for any integer j=[0, N—17,
fils=C), 1A@Is0n, |(£) o] =i,

()" | sl
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Then, feC*R'; &) and [ satisfies the following :
e a<CN, a)C(f), |f@—fO0)]a=CWN, a)C(/)lz|"™

Theorem 3.2 follows immediately from the following four elementary lemmas.

LEMMA 3.3. Let f(z)eC R*— {0} ; ). If there exists a positive number o<1
such that | f@)|«=C(Hlz]77, ;;f(f)’ﬂéc(f)lfl”"z, then for any heR'—{0},

[ 17 n— @) adesC@Ch AL

LEMMA 3.4. Let f(z)eC*R*— {0} ; K). If there exist fo€ I and a K-valued
function fi(z) such that f(z)=fologlr|+fi(c) and if for any reR'— {0} the

estimates: | fol 4SO, |£:@1=00), |- 1] <011 and () 7] =
C(f)|z]"® hold, then for any heR'— {0}

[ I rerem—2rtm+ @) ades@+810g CNIh].

LEMMA 3.5. Let f(r)eCY{R'— {0} ; S)NC(R*; K).. If there exists a posi-
tive number o<1 such that for any t€R'— {0} the eslimates: | f(z)|«=C(f) and

%f(‘t)‘ﬂé(xf)lfl”‘l hold, then for any h, t€ R'— {0}
| fe+h)— (@) | a=C(a)C(f) h]°.

LEMMA 3.6. Let f(r)eC*R*— {0} ; 40). If there exists a positive number
4 o] zcnie, (L)1),

o<1 such that the estimates: | f()| «=C(f),
<C(f)|z|°® hold, then

" |pitsetm—r@1- 5 @) desCacIAle.

PrOOF of Lemmas B.3-3.6. [Lemma 3.5 follows immediately from elementary
calculus, so we omit the proof. follows from and Taylor
series expansions. Since the proof of is essentially the same as that
of we shall prove only First, we shall treat the case
that A>0. Putting J(h, 7)=|f(t+2h)—2f(z+h)+ f(z)|«, we divide the integral
I(h)= g J(h, 7)dz into four parts, that is, I(h)=23-.I ;(h) where I.(h)= S J(h, v)dr,
Iz(h)—g_h](h, D)de, Im=\"_Jth, dz, La={"Jih, ©)dz. First, we estimate

I,(h). By Taylor series expansions we have that for 7>0,
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Jh, c>gS:S:](;;)2 fe+0+7)| dodp=C f)S:S:(r+0+77)‘2dﬁdr/ .
Thus, by Fubini’s theorem we have
R(CR[ (oo

(3.1) L= 'f)SoSo [S (r+0+77)‘2dr]d0d77:(2 log 2)C(f)h .
Next, we estimate I,(h). By the assumption, we have
32) LWs| 1 fe+m—f@ladet] | 7e+m— @) ade

h 0

<4C(Nh+COp)| | ogle+hI—loglz| [de+ ' Jlogleth|—loglz||dr

By elementary calculus, we have

(3.3) S:; log |z k| —log|z| Idr:S:[log(r+h)—log r1dr=(2 log 2k,

(3.4) S‘ihuog leth|—log|z| Idr:S:m[log(h—-r)—-log cldr

+S :,2[1°g t—log(h—7)]dz=(2 log 2)h .

Combining (3.2), and (3.4), we have

3.5) I,(h)<(4+4 log 2)C(f)h .
In the way similar to the proof of we have
(3.6) I (h)=(4+4log 2)C(f)h .

Finally, we estimate I,(h). By the assumption, Fubini’s theorem and Taylor
series expansions, we have
-2h h(Ch
(3.7) Liw=chH| | 1e+o+51-dodn]de
h h =)
=, d6| dy(” c—6—y)-*dr=(2 log 2C()h.

Combining 3.1}, [3.5), [3.6) and [3.7), we have I(h)=(4+8log 2)C(/Hh if h>0.

Since f(—7) satisfies the same assumption as that imposed on f(z), we have also

I(h)=(4+8log 2)C(f)|h| if h<O0, which completes the proof of
Q.E.D.

Finally, we shall give a result which shows the decay order of the Fourier
transformation of functions belonging to ¢*. When 4 is a Hilbert space, such
a result is proved, for example, in Murata [11]. He showed it by using the
interpolation theory. Here, we give an elementary proof due to Muramatsu.
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Although we can show such a theorem for more general Besov space defined on
R™ without changing the essential part of the proof given below, for simplicity
we shall show only a theorem which we need in this paper.

THEOREM 3.7. Let 4 be a Banach space with norm |-|4. Let N be a posi-
tive integer and o be a positive number =1. Assume that fecV**(R*; ¥). Put

g(l)———(1/27r)So;f(z')exp(\/——_ltz')dr. Then,
g a<CA+1t)" N4 In+o. 5+

PROOF. Since (Tf;_»)jf(r)ELl(Rl; %), j=0, .-, N, noting the identity :
(+/ :Tt)‘j(zd;yexp(\/jl tr)=exp(x~/—1ir), we have by integration by parts that

(3.8) g)=(/—1-"{ /27r>g°_°w[(ad?)’v f(z')]exp(\/:T tr)dr .

For simplicity, we write h(r)=(1/27)(d/d7)¥ f(z). Since f(r)e L (R'; 4) and
f(—1) also belongs to C¥*°, we may show the theorem in the case that ¢t=1.
So, we assume that {=1 below. Choosing ¥(s)eC%(R") so that 1(s)=0if |s|=1/4,
|s|=2 and =1 if 1/2=|s|=1, we put X(s)=%(|s|). Choose an integer i for ¢ so
that 2:-1<t<2% We have

(3.9) 49 Smh(z)eﬁ"dr j .

Smh(r)ev-'l trdr ‘ j{ézia

<2i7 igElX(Z’is)Sth(t)e“T‘ "dr}ﬂ.

By the Fourier transform, we have

(3.10) I(s)zx<2-is)geﬁ“h(z>dc= FLF AR )F R )](s)

.—_(1/27r>§ein ”[SS’(X(Z’i-))(T’)h(z'-—z")dr’:ldr .
On the other hand, we have
(3.11) G2t (=22, 21S2(2iz'>df':2nm0)=o.

Combining [3.10) and [3.1I), we have

(3.12) I(s)=ZiSe‘/Tl“[Sf((?r’)[h(r—r’)—h(z‘)]dt']dz’ :

First, we shall consider the case that 0<o<1. By Fubini’s theorem, the defini-
tion of ¢¥+? and [3.12) we have
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(3.13) 1) =2 1R 1] 0dz'[§ 1217 | he—<")— h(2) | ﬂdr]
<2:2m)"( f>>N+a,£§ 12@ie) 7] “d<

:2-1'0((27;)—15 1@ 121 7dD S Y wso. s -

Combining [3.9), [(3.10) and [(3.13), we have the theorem in the case that 0<o<1.
Next, we shall consider the case that ¢=1. Since X(s)=X(—s),

(3.14) X2y =%(—2i7").
From and it follows that
(3.15) 1<s):21‘-1Sev—7"[Si(z%')th<f+r')—zh(f)+h(r—r'>]dff]dz .

By Fubini’s theorem, the definition of ¢¥*! and we have

(3.16) lI(S>IJ{§2“S!i(2"r’)IIr’ldr’SIh(r+r’)—-2h(r)+h(r—r’)lﬁ_lr’l“dr
<A 2w a| 12711721 | o

=27 1112 ) Fons

Combining and (3.16), we have the theorem in the case that o=1,
which completes the proof of the theorem.

§4. Behavior of R,(r) near z=0.
For feLXR"™), r>0, we can put

4.1) Ro(z')f:(27:)'"Se“?“”5f(5)(72——x/:lr— 1£15)7'dz, =R\

In fact, since lf(é)lgCIIfII{g_C(r)HfII’ because of the fact that fe L2(R") and
since n=3, Ry(z)f is well-defined for any z€R!. It follows immediately from
the definition of R,(z)f that

4.2) ' A+ —v—=17)Ry(0)f=f in R™.

The following theorem is the main result of this section.

THEOREM 4.1. Assume that n=3. Let f€LiR", a be a multi-index with

0=<|a| =<2 and Ry(c) be the same as in (4.1). Put 1:[—-%, 1]--{0}. Then, the

v

following four assertions hold.
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1° Ryo)feC>U; I’), where S’ is the same as in Notations.

2°  For any integer ]'e[(), filgfi‘i]’

lim (9/97)/(0/0:)% Ru(z) = lim 8/32)/3/0:)* Ru(z) .

3° If n+lal is odd, for any tel

(0/07)(0/0x)*Ro() >’ <C(j, a, DI fII
for any integer j<[0, (n+|a|—3)/2],

ntial

@/32Y(3/0x)* Ro) 1> <C(j, a, DI fI 2]~

. . —1
for any integer sz—lil—(le——.

4° If n+|al is even, there exist fo€ L% (R™ and an L}, (R™-valued func-
tion fi(z) such that
@/07)*121=212§ /9 x)* Ro(z) f=f o log |7+ f1(2)

and the following estimates hold for any t€l:

So'SCIfIY, fL@' =CIfIY,

(0/07)(0/0x)* Ro(2) > <C(r, 7, )l fIIf

for any integer j<[0, (n+|al—4)/2],
((B/0Y@/0x)" Ru(@) > <Clr, j, )llfI|e|-u+0+ 5%

for any integer j= ML.

In particular, combining Theorems 3.2 and 4.1, we have

COROLLARY 4.2. Assume that n=3. Let p(r) be a C7(R") function such that
o(@)=11if |t|=1/4 and =0if || =1/2. Let Ry(z) be the same as in (4.1). Then,
for any multi-index a with |a| =<2, integer N=0 and f< L} R"),

p(@TVOER (D) f TN (RY; )

Furthermore, the following estimates hold for any r€R'— {0} :
(p@)¥03R\(z) fhrtiat,y 5 ZCn, a, N, p, NI,
COSLR(2)f—Ro(0) f ' =Cla, N)|z* I fI.

Now, we are going to show [Theorem 4.1. Choosing A(§)eC7(R") so that
X(E)=1 if |&]<1 and =0 if |£]|=2, we put: Ry(z)f=S()f+T(r)f where
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4.3) S@)f =@m) " (O T — v —17— 1§]971d¢,

T(@) f=@n) " |[1-1E1eV /) — v/ —Tr—|§1)d§

Since |(9/07)/(z?—+/—17—|&|®)| =C()A+ &%) for Eesupp(l—X(§)) and U {0},
it follows from Parseval’s equality and differentiation under integral sign that

(0/07)(0/0x)°T () f>' =C(, a)|l I

for any multi-index a with |a| =2, integer j and z=/\J{0}. This shows that
all the assertions in hold for T(z)f. So, we shall show that all
the assertions in also hold for S(¢)f. First, we note the following
two facts:

(4.4) |s¥ /(g2 —~/—Lr—s)" | S2M . sN-2M
for any N and M with N=2M =0, r<l and s=0,

4.5) 02/©) =C@{A+1x 1) £(x) | dx =Cla, PIFI

for any multi-index a and fe L¥R"). Let pi(z), k=0, 1, ---, j, be polynomials
defined by the following formula.

(4.6) @/0t)(r2— v/ —1t— &) =] 0pl(D)?— v/ —1z— | §]H)~F-1,

Here, it follows immediately that pj(r)=(—1)/5! (2r—+/—1)’. Since |t?—+/—17
—|€|%] =|7|, it follows from differentiation under integral sign, and that

Vo1zEpa 7
AT)  @/3eY@/0x)S@f =Shuaph@ren | o HOTE g

s|a|+n—1

:zgzopg(ﬂ(zn)-nsz»(?_ \/-_-Ir_sz)kﬂdsSlwl=1e‘m""“w“X(sw) Flsw)dS.,

if z#0. Here, by dS, we have denoted the surface element on the unit sphere:
|w|=1. Since |z2—+/—17—s2|=|7|>0 if 7#0, it follows from (4.7) that the
assertion 1° in holds for S(z)f. If |a|+n—1=2(;+1), noting
and (4.7), we have by Lebesgue’s dominated convergence theorem that

lirgl (0/07)/(0/0x)*S(z) f= lil;n (0/07)!(0/0x)2S(z)f ,

=0+ 70~

[(0/07)(0/0x)*S(x) f| =C(r, a, DI, =<l

This shows that the assertion 2° and the estimates for any integer

je[O, n—Hgli] in the assertions 3° and 4° of hold for S(z)f.




On the global existence of classical solutions 17

Now, we are going to show that the rest of assertions in hold
also for S(z)f. For this purpose, we need the following lemma. Since we can
show it by elementary calculus, we omit its proof.

LEMMA 4.3. Let M and N be integers with 0SN<2M. Put
2 — 1 1
Ly ()= s /("= /= 1o —s%*ds, cel=[—5, 5|0

Then, the following facts hold.

1° If N is odd and M— —ZX-—Z‘_—I—=1, then there exist complex constants duy,u

depending only on N and M and C=({r; |t|=1/2}) functions py, u(c) depending
also essentially only on N and M such that
Iy, u(t)=dy u(log|z| —+/—1 tan~'2/t(1—7%)+pu~. u(7) .

2° If N is odd with M——iviz_—l— =2 or N is even there exist complex constants

d%.y depending only on N and M and C=({zr€R*; |t|£1/2}) functions pk, u(z),
7=1, 2, depending also essentially only on N and M such that

A% wply, w@T M e u(@)  if 70,

IN,M(z')z{ ~ . e . )
Ay, upty u(7)| 7] 2 +pkou(t) if 7<0.

Now, we return to the proof of [Theorem 4.1. We may show that the fol-
lowing two assertions hold for /(5 ; x, r)zge*’ii’”f&“X(é)f(E)(r”—— N —1z—|E|H)7-1d¢E,
in order to show the rest of assertions of [Theorem 4.1
n+lal—1

Assertion 1°. Let j be an integer= 5 Then,
4.8) 1JG 5 %, DISCr, J, @I fI17]790 %% for any el
Assertion 2°. If n+|a| iseven and j= _’l_ﬁ%l:{} there exist foe LE.(R")
and L& (R™)-valued functions f;(z) such that
(4.9) JG 5 x, ©)=fologlz|+fi(D),
(4.10) So'EC, a, DIFN, 1o’ SCr, e, DISI” for any z&l.

First, we shall show Assertion 1° just mentioned. Using a polar coodinate

system, we can write

o 2 e(‘/jix‘”)ss'“'f”'JX(Sw)f(ch)_i
@ dSwSo (z2—A/—17—s%)7*! ds.

(4.11) Ji; x, r)=§

fwl=1
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By Taylor series expansion, we have

@12) e s0) fsw)=F(0)+ Shelgilx, 0)s+| Hix, , p, 9)dps®

where
gi(x, @)=(1)"10/9s)e 12U (sw) fls®)| =0, =1,
(4.13) Hix, o, p, s)=(1—p)" " ((G—1) !)‘l(a/aa)ie“’j’“’”"X(oco)f(aa))|g:ps, =1,
k=2j4+3—(n+]al).
Using (4.12) and Iy yx(zr) defined in we can rewrite J(j; x, 7) as
follows :

414 Ji; x, T>:S| [f(0)1|m+n-1,j+1(r)+ 21g:(%, Diaren-1+4, j41(7)

w|=1

sk+n+|dl—1

) Hatx @, 0, 1dp] = Te g ds[odS..
Since fe L3 R™), we have
LOIECGITE
(4.15) | gi(x, @) =C(r, DA+ x DI LI,

(18, 0, 0, 91dp=Cte, N+ 1DH1I.

Noting the facts that j+1—- lﬂ;n =2 = izs- +( J— %) and that

J >—w, and applying to (4.14), we have by and [4.15)

that Assirtion 1° holds.
Finally, we shall show Assertion 2°. Since n+ |a]| is even and ].:_%2_’
using (4.12), (4.13) with /=1 and [Cemma 4.3-1°, we have
4.16) JPHEZ2 e = Fotoglel 47
where

fozg wadSwdlaHn—l,(n+|al)/2f(0)y

Fi@=[{ 0" dSe{(@ierin-s. mesens(—v/ =1 tan"12/z(1—c%)
+tiaisn-1, (n+|a|)/2(z—>}]f(0)

+Snwx=1{Sj[S:Hl(x’ @ 0 s)dp] (r2~\/§+;iii)(n+xal)/z }a)“dsw,
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and d; ; and p,, ;(r) are the same as in Lemma 4.3-1°. It follows immediately
that

(4.17) So'=C, a, DU, <f1' 20, a, HIFI) for zel.

Combining and we have that Assertion 2° holds, which completes
the proof of [Theorem 4.1l

§5. Behavior of R(r) near z=0.

Throughout §85 and 6, by » let us denote a fixed constant =#,+3 (cf.
Notations). By integration by parts, we have that for any ueCy(LQ)

(6.1 (du, w)=—Ilull?.
Thus, by Lemmas 2.1 and and well-known Riesz’s representation theo-

rem, we have

THEOREM 5.1. Assume that n=3. Then there exists an operator R’(0)e
B(LXQ); H¥2)), where Hy(2)={ve Hy(Q); |Div|]|<oo} (cf. (2.1)), such that for
any fe L¥Q)

R'O)f=f in 2,
RO FI=CHIfN, IDEZRO)FI=COHISI -

Now, we introduce the following operator.

DEFINITION 5.2. Let R’(zr), 7rex and R’(0) be the same as in Theorems 2.3
and 5.1, respectively. By R(zr) we denote the operator:

(5.2) R(z): LY)—4

that is obtained from R’(r) by contracting the domain of definition of R’(z)
according to the formula (5.2) and considering its range in a wider space J (cf.
Notations).

From Theorem 2.4 it follows that R(r)e Anal(x; B(L%(£2); 9)). Below, we
shall investigate the regularity of R(z) near z=0. Choosing ¢, ¢ €C>(R") so that

¢=1if |x|=r—1 and =0 if |x|=7,

¢=1if |x|=r—2 and =0 if |x|=r—3.

(5.3)

Using ¢ and ¢, we introduce the operators P and Q.

DEFINITION 5.3. Let R,(z) be the same operator as in (4.1). For feL¥%),
we define P and @ by the following formulae:
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P@)f=1—@)Ro(t)Pfo)+ RS,
Q@) f=227-10,8-0,(Ro(z) P f o))+ b Ro(x) () fo) —(z*—+/—17)- R'(0)
—227-10,6-0;(R'(0)f)—4p-R(0) f .
Here, fo=f if x= and =0 if xeR*—Q.

The following lemma for P and Q just defined follows immediately from

Theorems 2.3 and 5.1, Lemma 2.1, [Corollary 4.2 and well-known
Rellich’s theorem (cf. Mizohata [8, Theorem 3.37]).

LEMMA 5.4. For Z'Eli—%, %], we have the folowing three assertioss:
(i) P()eB(L¥2); 9,
(ii) Q(z) is a compact operator on L2(2) to LX),
(iii) for any feL¥Q) (44— —17D)P@)f=f—Q&)f in Q.

We are going to show the following lemma, which is one of the most
important lemmas in this part.

LEMMA 5.5. Assume than n=3. There exists a positive constant c, such that
I1—QO) 522 = o, where Q(z) is the same as in Definition 5.3.

PROOF. Since Q(0) is a compact operator on L%(2) to L%(£2), in view of the
well-known Riesz-Schauder theory, we have only to show the following.

(5.4) If feL¥(£2) and (1—-Q0))f=0 in 2, then f=0.

So, we assume that fe Li{2) and (1—Q(0))f=0 in £ in the course of the proof.
By [Lemma 5 4-(iii), we have

(5.5) P@0)f=0 in £.

In order to show that implies that f=0, we need the following two lemmas.

LEMMA 5.6. Assume that n=3. For any f< L¥R),
(1) MR ' =CIfIN,
(i) [DZR.O)fI’SC@)IfI’ (cf. Notations).

LEMMA 5.7. Assume that n=3. Let H}(Q) be the same as in Theorem 5.1 and
HYR")={uc L (R™; lull’ <o, |Diull’<co}. The following two assertions are
valid.

(1) If ueHYD) and du=0 in 2, then u=0.
(i) If veHHR™ and dv=0 in R", then v=0.
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Deferring the proofs of Lemmas 5.6 and 6.7, we continue the proof of
5.5. Combining Lemma 5.6 and [Theorem 5.1, we have that for any fe& L)
PO flI=COHISfI,
IDLZPO)fII=CHIfI,

from which it follows that P(0)f € H3(£2). Thus, combining (5.6) and
5.7, we have

(5.6)

(5.7) 0=P0)f=(1—@)Ro(0)(pf0)+oR'(0)f in L.
In particular, combining (5.3), and the fact that 4R’(0)f=f, we have
(5.8) R'0)f=f=0 in £2,.,.
Put
RO)f if xe8,

u={ 0 if xeR*—2.
From (5.3) and [5.8), we obtain
(5.9) ueHYR™, du=f,=¢f, in R™

Thus, since u—Ry(0)(¢fo)= HH(R™) and 4(u—R(0)(¢f,))=0 in R™ because of the
fact and we have by Lemma 5.7-(ii) that

(5.10) u=R,0)¢fo in R"

In particular, it follows from and the definition of u that
(5.10) Ry0)(¢fo)=RO)f in Q.
Combining and [5.10Y, we have

(5.11) Ry(0)(¢fe)=0 in Q.

Noting the fact that 4Ry(0)(¢pfe)=¢ fo, we have by that
(5.12) &fo=0 in 2.

Combining (5.3), [5.8)] and [5.12), we have that f=0, which shows that is
valid.

In order to complete the proof of we prove Lemmas b.6 and

ProoF of Lemma 5.6. By [4.I), we have
(5.13) Ry0)f=—(2m) {17470 1§15 .

From differentiation under the integral sign and Parseval’s equality,
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(ii) follows immediately. In order to prove Lemma 5.6-(i), first, we shall show

(5.14) lim p-zS | Ro(0)f |?dx=0 for any fe< LiR™).
o

pslxiIse

In fact, we note that the following formula holds (cf. Mizohata [8, p. 99]):

(5.15) ——(277:)""Se‘/‘—“”5|$|‘2d$:cnlxl‘"” if n=3,

where ¢,=—2"2g-"2[" <n;2) (I" is the Gammer function). Combining (5.13) and
(5.15), we have

(5.16) RO f=cnf(3)/1x—y|"*dy.

Taking p>2r and noting that fe= L2(R™) and that n=3, we have from (5.16)

(5.17) p-2S 2pIRO(O)f|2dx§Cp‘2Spsmszp[x|'2"“Slf(y)|dyéc(n, NI e~

psizis

Thus, (5.14) follows from (5.17).

Now, we shall show that Lemma 5.6-(i) follows from (5.14). Choosing
Ax)eCFP(R™ so that X(x)=1 if |x|=<1 and =0 if |x|=2 and 0<X=<1. Since
03R,(0)f belongs to L*B,) for any s>0 and multi-index a with |a|<2 because
of Corollary 4.2, we have by integration by parts that

(5.18) S [t 010, R0 f12d 2 =— (1o f ROF dx

+27 0110 | RyO)f |*dx

Here, we have used the fact that 4R,(0)f=f. Since supp XC {xsR"; 1=<|x|<2},
X(p7'x)=1 on |x|<p and fe L%R"), it follows from Lemma 2.1, (5.14) and (5.18)
that

619 IROFIE=lim| 19,R(0)f [*dx=C lim{| f]| R(O)f | dx
p~eJ1ZI<p p—eo

|z

1/2 ,
<ClIAI(] IR 1%dx) " <Crif I IR -
Lemma 5.6-(i) follows from (5.19), which completes the proof of Lemma 5.6.

PROOF of Lemma 5.7. First, we shall show that for any u< Hp(2)

(5.20) lim lu|®dx=0.
p—*0 psixis2p
In fact, since C(2) is dense in Hp(f2) with respect to the norm ||-|| and since

(5.20) is valid for any element of C(f), it follows immediately from Lemma 2.1 ™
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that is also valid for any element of Hp(£2).
Let X be the same as in the proof of Noting that u=0 on 092,

we have by integration by parts that
(5.21) E}LISQX(‘O‘I)C)|a,-ulzdx=2’1p"ZS(AX)(p'1x) lu|®dx .

Here, we have used the fact that Adu=0. Letting p—co in [5.21) and using
we have [|u/[*=0. Combining this and Lemma 2.1, we have u=0, which
completes the proof of Lemma 5.7-(i). By the same method as in the proof

just mentioned, we can show Lemma 5.7-(i)). So, we omit the proof of Lemma
5.7-(ii). Q.E.D.

Combining Definition 5.3, Lemma 5.5 and Corollary 4.2-(ii), we have

LEMMA 5.8. Let ¢, be the same as in Lerﬁma 5.5. Then there exists a small

positive constant d<1/4 such that
I1—Q@lpzn=co/2 if re[—d, d].

From Lemma 5.8, it follows that the inverse operator (1—Q() ‘e B(L£))

of the operator 1—Q(z) exists and that
I1—Q@) Hlpazwn=2/co if r€[—d, d].

Combining this and Lemma 5.4, we have that for any fe L32) and r=[—d, d]
(5.22) (d+72—+/—10)P(0)1—Q@) ' f=f in 2, P@)1—Q@)*eB(LYD); I).
Since |z2—+/—17—|&|2|Z2C@A+£]? if re[—d, d]— {0}, we have Ry(r)e
B(LXR™); H3R™"). Thus, P()(1—Q()"'e B(LXR) ; Hi(DNHY2), r€l—d, d]
—{0}. Combining this and (5.22), we have the facts that (4+72—~/—17)(R'(2)f
—P(@)(1—Q(2)"*f)=0 in 2 and that R’(r)f—P(z-)(l—Q(z-))“feHg(Q)mHD(Q). By
integration by parts we have that R'(z)f =P(z)(1—Q(z))"'f for zre[—d, d].

Furthermore, since P(0)(1—Q0)™'f satisfies the equation: 4P(0)(1—Q0)*f

=f in £ and the condition: PO(1—QO)feH 2(0) and since it follows from
Theorem 5.1 that R’(0)f satisfies the same equation: AR’(0)f=f in £ and the
same condition: R’(0)fH3%(£2), by Lemma 5.7-(i) we have also that R’(0)f =

PO)Y(1—QWO)f.
Summing up, we have showed

LEMMA 5.9. Let d be the same as in Lemma 5.8. Then, R(z)=P(z)(1—Q())™*
for te[—d, d].
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Combining Lemmas 5.8 and and Theorems 3.2, 4.1 and G£.1, we have

THEOREM 5.10. Let r be a fixed constant =v,+3 mentioned at the beginning
of this section. Assume that n=3. Let d be the same as in Lemma 5.8 and p(7)
a Cy(RY)-function such that p(z)=1 if |t|=d/4 and =0 if |z|=d/2. Then, for
any integer N=0, multi-index a with |a|<2 and feL¥£), we have that
p(t)e¥3¢R(7)f belongs to C/®*N¥(R'; J).
Furthermore,
(@)t oz R(a) Y2+ n.sSCn, N, p, a, DI fI.

§6. Proof of Theorem 1.1.
In this section, we consider the following problem:
03+0;,—DHu=0 in 9,
(6.1) u=0 on 9,
u(0, x)=¢o(x), @.u)0, x)=¢,(x), in £,

where ¢o, ¢ =C=(£2), supp ¢, supp $,C &2, and r=r,+3. It is well-known that
(6.1) is C=-well posed under the compatibility condition below (cf. lkawa
[4]). We define u;(x) successively by

(6.2) u0:¢0, u1:¢1, uj:—uj—1+Auj_2, ]2_2.
The compatibility condition for (6.1) is the following:
6.3) u;(x)=0 on 0%, j=0.

It follows immediately from the definitions of u; that 6{u(0, x)=u;(x), 7=0.
Furthermore, we have that for any p with 1=<p=co and non-negative integers
7 and N,

(6.4) ”uj”p.N§C(p: 7 N)[“¢o“p,N+j+“¢1Hp,N+j—1] .

We shall represent u in terms of R(z). For this purpose, choosing ¢(t)e
C=(R") so that ¢(t)=1 if t=1/2 and =0 if t=1, we define g;{, x) by

(6.5) gi(t, x)=03+0,— D Zixbur(x)t*/ R 1), j=0.
Put
6.6) hyz, x)ESme"‘-’ gt x)dt .

It follows from and [6.5) that if j=1
6.7) 95g;0, x)=0, O0=k=j—L
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Using and [6.7), we have by integration by parts that
(6.8) 0¥ hi(z, e,y SCWN, M)A+ 121"Vl Golle, vroestIPalle waessd,
h;e Anal(C-; Co(2)NC=(R'; C%)(20) .
Here we have put C.={reC;Imr<0}, C% R2,)={veC>(Q);v=0v" for some
v'eCy(B,)}. Put '

6.9) w,, x):EI;S:eﬁT”R(wh,-(f, Ve

First, we shall show that u=w; for any j=0. It follows from Theorems 2.4 and
Definition 3.2 and [(6.8) that

(6.10) R(z)hj(z, -)=Anal(C-; HNCUR'; I).

Noting that the resolvent equation:

(6.11) R(z)=(t*—~/—17) ' —(c?—+/—12)*R(0)4,

holds, we have by (2.3) and (2.4) in Theorem 3.3 and that

(6.12) (DiR@)hyz, -P=Cr)|Rez|*L+|z)) 7 LiPolle, s+5 1 Pall2. 44

if zeC- and |Rez|=1. Using Cauchy’s integral formula, we have by
(6.10) and [6.12) that

(6.13) wit, x):-%Smme“:i‘/“‘/?”)‘l?(y-{-x/q o)h,-(/rl—\/ji g, )dp

for any ¢=0. Furthermore, it follows from that
(6.14) wyt, x)€CI*((—o0, 0); ).
Since |z2—+/—17] g%umrlzgz if |Re 7| =1 and Im 7= —2, it follows from

and (6.13) that
wit, N=C@e "*Lldollz jastIPulle, j+ad

for any ¢<—2 and t<0, which shows
(6.15) w,t, x)=0 if <0 and xL.
Noting that R(z)h;(z, -)=0 on 0f2 and combining and (6.15), we have
Fw,0, x)=0, 0=k=<j+l,
w;=0 on 0£.
Using [6.5), [6.6), [(6.11) and (6.13), we have

(6.16)

6.17) wit, x>=§:g,~<s, (e~ —)ds+ f(t, x)
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where

fj(t; X):_*_

1 (=tv-1c . .
27[5 eVTIERDA(r, ) (et—+/—17)dT, 0 <0.

—cota/=10

Here we have used the fact that %Sj:j;;e“”—‘ te(z2— 1) 'dr=e"'—1 if t>0 and
=0 if £<0. It thus follows from (2.3), (2.4), [6.6), [6.8), [6.12) and that
03 +0,—Dw,(t, x)=g,t, x) in 2,
Df it W=COLN Boll s+ Billa, a1 -

In view of an usual energy method (cf. Lax-Phillips [6. the identity (1.2) in
Chapter VJ]), we have from (6.16) and (6.18) that

(6.18)

(6.19) ut, x)=(Ciiur(x)t*/k Np(t)—w;lt, x) for any ;j=0.

Now, we shall estimate wj(t, x). Choose p(r)eCg(RY) so that p(c)=1 if
|t|=d/4 and =0 if |r|=d/2, where d is the same as in [Theorem 5.10. Put

witt, D=5 |V p@ R@A Gz, ),
(6.20) 1
Wi, x):Egeﬂtf(1—p(z))R<r)hj<r, Ydz .
It follows from (6.20) and Theorems [3.7] and that
6.21)  <Di0Fw,t, )H>=C(r, NY1+|t])*»=¥¢¥ o(z) D2 R(2)h ((z, D LI
=C(r, N)(1+It[)—(n/z)_N[”QSo”z,jH"““¢1”2.j+2:| , for any integer N=0.
On the other hand, we have by (6.8), (6.20) and [Theorem 2.4 that for

any integer M =0
OF wit, - H=CM, N, NA+1tD [l @ole. s+s+ I @alle. soed, O0SN=j,
(6.22)  (DLo¥wit, -»=CIN, M, r)1+1¢1)" [l bollz. js+ I Bullz, j+2], O0=SN=j—1,
DZoFwit, D=CWN, M, YA+t MLl Golle, sestlIfalle, j+2], O0SN=j—2,

It thus follows from [6.19), (6.20), (6.21) and (6.22) that for any 7, »'=7,+3 and
>0
0¥ u(t, Ma,,.2.0=CWN, v, YA+ "2 =Yl @ollo, n+s+ | Pallz, w42]

(6.23)  |[DLoF u(t, e, 20 =CN, 7, T'l)(l‘i“t)—(n/m_N[”¢0”2,N+4+“¢1”2.N+3] )
IDZ0¥ ut, o, .2.0SCWN, 7, ¥ YA+ 2=V @lle, n+s+ I @ulle vral .

The assertions stated in follows from (6.23) in the case that M<2.
In order to estimate higher order derivatives of u, we need the following
well-known a priori estimate for 4.
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LEMMA 6.1. Let ry, v, be any positive numbers with ri>r,=r, and g&
HY*%(8,,) such that g=0 on 02. Then,
IDT**glle, .. =Clry, Tz)[llljé’dgllgrl,z+llg||grl,z]-
Since it follows from (6.1) that
(6.24) AoV u(t, x)=0V**u(t, x)+o¥* 'u(t, x) in £,
applying Lemma 6.1] to [6.24), by induction we can show the following:
(6.25) | D¥o¥u(t, e, .=C(r, r', N, M)A+1)" 2 N[\ @ollz, wear+st | Pullz, vrar+2]
for any 7, ¥’=r,+3 and ¢t>0, which completes the proof of [Theorem 1.1l

PART 2

Some estimates for linearized problems

In this part, we give L? and uniform decay estimates of solutions to linear-
ized problems. These estimates will be used in order to show the convergence
of our iteration scheme defined in part 3.

§ 7. L2-estimates for some hyperbolic equation.

In this section, we shall obtain LZestimates of solutions of the following
linear equation:

Lu=(1+a’t, x)u+2r.a’t, x)0,0,u—27 j=1(0:;+a(t, x))0:0,u
(146, x)0u+0 b, x)0utct, x)u=f({E, x) in D,
7D u=0 on 9’,
u(0, x)=(0,u)(0, x)=0 in 2,
where d;,=1 if ;=7 and =0 if /#; and f satisfies the condition:
7.2) feEL, L=2

(cf. Notations).
Throughout this section, without fear of confusion, for simplicity we write

u;=0u, wu=0u, [vOl-=IvE o=, [vOI=IvE e,

(v, w)=@®), wt)=w@, ), w, e,

and all functions are real-valued.



28 Yoshihiro SHIBATA
We impose the following assumptions on the coefficients of the operator L.

ASSUMPTION 7.1. Put JA=J({, x)=(a’t, x), j=0, -, n; a¥(¢, x), i, j=
1’ e, Ny bj(ty x); ].:01 1.- e, Ny C(t’ x))-

1° Each component of A is a 8=([0, o)X 2)-function.
2°  a¥(t, x)=a’l¢, x) for all (¢, x)=[0, o)X 2.
3° For any é=(4,, -+, £&,)€R™ and (¢, x)[0, o)X 2,

B2 smiBertat, DEEZ 18I

° 1
4 |aolw.o,o§7-

o o n P 1
5 [0°eo, 0,0+ 2701050 lw,o,o=§'-

Under Assumption 7.1, .£ is a strictly hyperbolic operator with first order
dissipative term. It thus follows that for any data f satisfying there exists
a unique solution uc K<L (cf. Ikawa [4]). The following is the main result of
this section.

THEOREM 7.2. Let L be an integer =2 and Assumption 7.1 be fulfilled. Let
d, be a small positive number defined in Lemma 7.3 below and % be a positive
number. Assume that the estimates:

(7.3) | Alw,0,0=d1, [uq|oo.1+7;,1§_1

hold. Then, the solution uc E*X of the equation (7.1) for a data f<E* satisfies

the following two estimates:
(7.4) luls,t0,m, . SCL, T)LI flatorar-1F | Alw o2l fleto. 0], for any T >0,
(7.5) l1]2,0,0 | D2, 172, -1 =C(L, ”)[[fl2,l+7).L-1+IJIN,1+y,L|fIZ.1+ﬂ.O:| .

Since to obtain the estimate (7.4) is easier than the estimate (7.5) and since
both methods are essentially the same, we shall show only the estimate (7.5)
below. In order to show the estimate (7.5), we need following two lemmas.

LEMMA 7.3. Let d¥(x), i, j=1, -, n, be real-valued B=(2)-functions and
satisfy the following conditions:

(i) d¥=d7,
(ii) for any §=(,, -, E)ER™ and x< 12 2?.j=1(5ij+d”(x)>éi$j—>__—%]5'2,
(iii) | D|w1=1 where D=(d"(x); i, j=1, ---, n).
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Then, there exists a small positive absolute constant di such that if |D\w=d, then
for any integer M =0 and {€HY+*(Q2)NHp(2)

| DX+, CCLYN7 2 e+ (L4 1D oo, ) (7 eI
where 7=(4+37 j=1d"(x)0:0,)C.

" LEMMA 7.4. Let 1), J(t) be non-negative continuous functions such that for
some positive constants ¢, p and  the estimate:

I(nch:(l+s>-1-ﬂ1(s)ds+](t) for any t>7,

holds and p(l+t)*=2c. Then

max [(s)<2 max J(s).
TSS8st TS8st

To prove we note the following two points.

(i) From assumptions (i), (ii) and (iii) in [Lemma 7.3, the operator 4+237, ;-:1d: 1030
is strongly elliptic in £2.

(ii) Since |D]. is sufficiently small, we can consider the operator A4+ ;21d;0:0;
as a small perturbation of 4 outside a ball B, (r=vo).

Choose ¢, p=C=(R"™) so that ¢=1 in B, and ¢=0 in R"—B,;s, and that
¢=1 in R"—B,,; and ¢=0 in B,. In view of the point (i) just mentioned, we
can estimate ¢ by using Ap. 2 in Appendix I and the usual manner
of estimating a second order strongly elliptic operator with zero Dirichlet condition
in bounded domains. In view of the point (ii) just mentioned, we can estimate
¢ by using Ap. 2, the estimates for the Laplacian 4 in R" and the
estimates for £ in £2,,,. From this point of view, we omit the detailed proof
of Since follows from an easier calculation, we also
omit its proof.

Now, we shall show the estimate (7.5). As is well-known, without loss of
generality, we may assume that uC>=([0, o); H LiHNHp()) (cf. Ikawa and
also Shibata [18, the proof of Theorem 4.10]). Differentiating (7.1) N-times
(N =0) with respect to f, we write the resulting equation as follows:

(1+ @V *2u+ %, a0y H10;u— X7 jo1(0s;+a*9)0:0,0f u+(1+5)97 'u
(7.6) +30,b70,0F u+ N 2 70(0:a%)07 0,u— N 7 ;-1(0:a*)3:0,08" " u
+o(N)cu=fxn in 9,

where (N—1)*=N—1 if N=1 and =0if N=0, p(N)=1if N=0and =0if N=1,
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f if N=0,
a7 fom oY f — 37 (0¥ (a70,0,u)— a?0y *'0,u—No,a’-0Y 0u}
37 1o {0F (0179,0,u)— aV99,0,07 u—Nd,a¥-3,0,07 - u}
+ 0 {0 (b0,)—b78,8Y u} +F (cw) if N=1.

Multiplying by 0¥*'u and integrating over £, we have by integration by
parts

78 +-Ltranaru, avrwr s 4

2 dt 27 i=1((0s4 a™)0,0¥ u, 0,0) u)

(14575 Sgaaf )0, D10 )+ B2 a0, w, O )

——;—2%‘,j=1(a§jaiaz”u, 0,00 u)+327-1(670,08 u, 0 **u)+p(N)(cu, 0 *'u)

+ N Z7o(aid;0F u, 0V +'u)—N(ZF j=1(a}0:0,0(" 2 u, 3 *'u)=(fw, 07 *'u).

When N=1, in order to estimate the terms: a}/0;0,0) 'u, differentiating (7.1)
(N—1)-times with respect to ¢, we write the resulting equations as follows:

(7.9) 7 ,21(0:;+a")0:0,0) 'u=1+a"0¥ "' u+X}-1a’0F0u+0Y ' f+gn-s
where
(7.10) gn1=—2% ;=1 [0F ~Y(a*0,0;u) — a*79,0,0F ~*u]
+ 27008 "(a%0,0.u)— a’0,0f u]+0Y ~*[(1+b°)0.u)
+3,08 - (70 u)+0F ~(cu) .
When N =1, applying [Lemma 7.3 to (7.9) and using [7.3), we have
(7.11) | DRoY u)|=co(l0F - f I+ DY u®) |+l g -1l + [ D07 ~*u@)|]

for some absolute constant ¢,. Let v be a large positive number determined later.
Integrating (7.8) from 7 to ¢t (>7) and using Assumption 7.1, [7.3), (7.11) and the
Cauchy-Schwarz inequality, we have

@12) DY u@le+| 10y us)ds
<a, (109 u@ I+ WD A+ o) D uCs)leds
+ N 527108 -2 SO I g () I+ | DY D () s

t
T

+oN| Aoy rues)ds+ {1 £a(s)l1ds]
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for some absolute constant ¢;>0. Here, we have used the fact that
(7.13) |A@, )|+ D'AR, 2)] = | Alw 149, 0+1)7177  for ¢>0.
Next, multiplying by 0¥u and integrating over £, we have by integra-
tion by parts that
(7.14) & (a9, 30— (@i, A0 —((L+ oy )

— > (aiod Hu, of u)—X7-,(a’0F *1u, 0,0 u)

+27 =1(Gi4 a*)0:0F u, 0,0f u)+ 37 j-1(a§0:0Y u, 0 u)

14

2 dt
—N 37 ;-1(a0:0,0(8 2% u, 9 u)+p(N)(cu, 0f u)=(fn, 0 u).

Integrating from ¢ to t (>7) and using Assumption 7.1, (7.3}, (7.12),

and the Cauchy-Schwarz inequality, we have

+ @F u, 0F u)+37=0(b?0Y0,u, 0F u)+ N Xj-o(alodo,u, oY u)

(7.15) [0 u @)+ D9y w(®l*+ | 1 Do u(s)lds

:
=c[ 107 u@ P+ ID0F u@) 1+ (W) | (1+9) =7l w(o)lds
+N* (L+5) 17 DB -0 u(s) s
AN 1497159y u(s)l*ds
+N* | A9 7 LI0 - £ I g - +(9) D

+ A7l £as)ods

for some absolute constant ¢,>0. Applying to [7.15), we have that
there exists a positive large number r=7(/N) depending only on N such that

@16 larulID oo+ 1Dy us)lds

<C[ 1D u@I*+ 107 @)+ —p (V) (45)7
XD -2 u(s) [+ [36¥ -2 F(5) [P+ g cxw-2+(5)
+H At rifaslrds] it t>e.

Now, we shall investigate the total energy decay. Multiplying by
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t0¥+'y and integrating over [z, t]X£2, we have by integration by parts, the
Cauchy-Schwarz inequality, Assumption 7.1, [7.3) and [7.16) that

@1 D+ slartue)itds

<CWV, | A+ DAY U@ PIOF u(@l*+ 1= p V) (457277
XL =2* FONI*+ g -+ P+ DI 2 u(s)|F1ds
+{laromrisaoids| it >

In fact, when N=0, multiplying with N=0 by ?0,u and integrating
over £, we have

1 d 1 1 1 )
(7.18) 7E((l+a°)tu5, uc)—g(a?tuz, uz)——z-(a"uc, ut)—72}‘=1(a§tuz, Up)
1d
2 dt
1

—5 2 (0 a)ug, u) (00U, u) -+ (b7tuy, uo)+(ctu, uy)

:(f; tut) .

L 1 . .
+ 272105+ a*Ntuy, ui)”‘?Zﬁjﬁl(a%jtui; u)+27 j=(a¥tuy, uy)

Since for any v>0 the inequalities:

(@¥tus, u)| = N aPO Il @ Pt w1,

((f, tud| S 51OVt

and

1
|(ctu, uc)léEllc(t)llﬁlllu(t)||2+vtl|uz(f)|\2
hold, integrating (7.18) from z to ¢ (>7) and using with N=0, we have

(7.19 D]+ | slaus)ds
<c[el D@+ lu@l+ | A+l f )l
+ (12°) ot Sl () uels)*ds

+{eiestu s+ (2 mlad©les

+ 307 =il aF()E) Druls)*d s
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+ (S sGes 1a() | DLu(s)*ds
+| (Spallb(5) s | D o)

+ I aslu@lds+ | A+l £)1ds|

for some positive constant c¢s. Since it follows from [7.3) and [7.13) that

[e@lzsiuesirds smaxiues) - { 1+5)*1ds=C0p max us) I,

we have from [7.3), (7.13), (7.16) with N=0 and that

tHDlu(Z)IIZ-HIu(t)Hz—i'S:SHatu(S)HZdS

=Cp| A+ D @]+ W+l 7 (5) s |

if =7, which shows with N=0. When N=1, we can show [7.17) in the

same manner. So, we omit the proof of [7.17) in the case that N=1.
Since

[ 1 x@Ids = laneg 0 (A+5) - 7ds SCO Firlsineg. o’
it follows immediately from (7.4), [7.16) and [(7.17) that

(7.20) ,u]2,0,0+]Dlaévulz,l/z,oécdv, 77)[|fN|2,1+7],0+(1_P(N>)([az(N_l)+f|2,o.0
Flgw-n+le0 ot DO 2 uls 00) 4+ fleo vt Alw o, v1l flo00].

In particular, (7.5) with L=1 follows from (7.20) with N=0, (7.3) and (7.7).

Now, using (7.20), we shall show (7.5) with L =2 by induction. When L=2,

we have from (7.11) and (7.20) with N=1 that
(7.21) | D?u |, 1/0,0=C(1, 77>[| f1]2,1+7;,0+|f]2,1/2.o+|g0|2,1/2,o+ | D'uls,1/2,0] -

It follows from (7.5) with L=1 just showed and that

|f112,1+ﬂ,0§c(|-51u|2,0,0+]f!2,1+ﬂ,1)§c|f]2,l+ﬂ,1}

(7.22)

|g012,1/2,0§c(|D1u|2,1/2,0+|u|2,0,o)§c|f12,1+p,o-
Combining (7.21), (7.22) and (7.5) with L=1, we have
(7.23) ID2u12,1/2,0§C|f12,1+7/.1)

which shows (7.5) with L=2.

7 6

When L =3, assuming that N =2 and that the estimate (7.24) below is already
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proved for smaller value than N+1, we shall prove

(7.24) |afv+1_KD§ul2.1/2,0§C(N)Uf|2.1+1;,N+!Jloo,1+r;,N+1|flz,1+n.o]

for any integer K with 0=K=N+1.
It follows from (7.11) and (7.20) that

(7.25) k=0l O EDE Ul 5,110, 0 SCIN)LI f l2s1s0, n-1t 1 gn-1l2,172,0
+ | DLOF 'uls 12,0+ [ fxle1eq.0].

Applying the induction hypotheses, Assumption 7.1, Leibniz’s formula and Theo-
rem Ap. 2 in Appendix I to and [7.10), we have
[ f e 1409 o SCUNDLI f 1o 149, v+ Al 14g, a2 | fl2 149,01,
[gN—1|2,1/2.0§C(N)[|f|2,1+7;.N—1+ |J|w,1+;y,1v|f]2,1+y,o] .

(7.26)

Combining (7.25) and (7.26), and applying the induction hypotheses to the term:
| D'OF 1|4, 12,0, We have

(7.27) =0l OV " EDEuly 112 o SCIN)LI f 2149, v+ A leo, 14 9. 8411 [ |2, 149,01

which shows that [7.24) is valid for each K with 0 K=<2.
Now, we shall show by induction on K. Assume that K>3 and that

is already proved for smaller value than K. Applying to (7.9)
with M=K—2, we have

(7.28) | DEON "% u |y 1720 SCINI{| f 2172, v -1+ | DE 2L+ a")08 ** K u) |2, 10,0
+I(A+a0V s /2 k-5 271 | DE 270,08 **Fu) | 2,1/2,0
+2711a%0,07 K ul s 1, k-3t | @Ne1-x |2 1/2 k-2
Al oo 172, k-2l | U 2.0, v43-x T [ lo,0, v+1-xF | gW+1-K]2,0.0]

By using Leibniz’s formula, Ap. 2, [(7.3), [(7.10) and the induction hypo-
theses, we have

(7.29) | DE-2((14a®0¥ **~%u) 2,172,021 | DE2(a?0,0 **Fu) |5, 1/2.0
SCN)LIDE*0Y** K ul g 10,0+ [ DETIOF** % w1720
+37 B [ DE 2 a7 0,0l DED'OY 2 K1 |2, 1/2,0]
SCINL f lzoswg, v H Al oo 14, w1l fl2 1470
+ 2P Al 14g, k-2l | Flo1ag, vrori-xH [ Al oo 10, weari-x Fl2.145,0]]
SCINC S lexeg, v F Al 14n, w41l Flo 149,01,
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(7.30) |(1+a"0F ** % u |51, k -5+ 211 @70,08** Kt | 2,170, k-5
SCINLI f loovwg. v-1H LAl 14, 5] 219,00

(7.31) |gys1-xle1ie, k-2 SCNIL! f lo1ag, w1 | AL 14y, 5 149,00

(7.32) | Aleo, 172, 2] DY E 1] 5,0, SCINIC | Al en, 172, k-2 | |2 10 7, w42-x

F Al 170, k-2 Al e, 1409, ¥43-5 | [ l2,145,0]
SCINCIf v, w1t | Ao, 1ag, w | F l2i149,01
(7.33) | Ao, 12, 821 [ 2,0, w41-s SCUNDLI 12,107, w2 | Al oo, 149, -1 149,01
(7.34) | Al 12, x-2] Ex+1-K 2000
SCN) | Alwe, 145, k=2l [ losreyg, we1- g+ [ Al 10y, wr2-x 1 [ 12.149.0]
SCINLI f lavasgu v-st [ Al oo g, w1 |2, 049.0]
Combining (7.28)-(7.34), we have
| DEOY 1 Fulo,1/0,0 SCINILLf |2 14g, wF [ Al o149, w41l F l2145,0,

which shows that (7.4) is valid for any K with 0<XK<N-1. This completes the
proof of

§8. Uniform decay estimate for the operator 0?+0,—4.

In this section, we shall investigate the rate of the uniform decay of solutions
of the following mixed problem:

0240;,— DHu=0 in 9,
8.1) u=0 on 9,
' u(0, x)=go(x), @.u)(0, x)=¢,(x) in 2.

By (¢, ¢1;t, x) we denote the solution of the mixed problem (8.1) with initial
data ¢, and ¢;. Here, initial data ¢, and ¢, satisfy the conditions (8.2) and (8.3)
below.

(8.2) Let us define u,(x), =0, by the formulae [6.2). Then all u; satisfy the
condition (compatibility condition for (8.1)).

(8.3) There exist @, ¢;=S(R™ such that go=¢o, g:=¢, in £ and for any p
with 1=<p=co and integer N=0, the estimates: [|@;ll5 »=C(p, N)ld;lo. n,
hold for ;=0, 1.

It is well known that there exists one and only one C=-solution (¢, ¢,; ¢, x) of
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the equation (8.1) with initial data @0, ¢: satisfying the conditions (8.2) and (8.3).
The following is the main theorem of this section.

THEOREM 8.1. Assume that n=3. Let N be a non-negative integer and g,
¢IEC°°(.Q_) initial data satisfying the conditions (8.2) and (8.3). Let G(¢s, ¢1; t, x)
be a solution of the equation (8.1) with initial data ¢, é1.  Then, the following

estimates hold:
|§(¢o, D1 Yoo, ns2. &
=CN, )Ll @olle, v+atnizrest I @ille, v+ocnrereatIl@olls o+ [ alls, 0l
Ig(¢o, D1 ; Yoo nra, nSC, n)[”¢o”2,N+2En/2]+5+“¢1”2,N+2En/2]+4:| .
In order to prove [Theorem 8.1, we shall need the following two lemmas.
LEMMA 8.2. Assume that n=3. Let r be a fixed number =r,+3 and N a
non-negative integer. Assume that ¢o, ¢,=C=(2) satisfy the conditions (8.2) and
(8.3) and supp¢;,Cf,, j=0,1. Let g be any C=([0, o)X 2) function with

supp gCR'X {xeR"; r=|x|<r+1}. Then there exists one and only one solution
ueC>([0, 00) X 82) of the following mixed problem :

(0340, —NHu=g in 9,
u=0 on 9,
u(0, x)=¢o(x), @u)0, x)=¢,(x) in 2,
and the following two estimates are valid for u.
(1) If 1glenie n+2<0o, then for any v’ >r
ID¥ut, Mep 2. 0=Cr, 7/, NYAH"2(|Gollz, w45 1D1llo. waot | &lonse nas) .
(i) If n=5 and |gls nis n+2<0, then for any v'>r
ID¥u(t, g, ,00=Cl’, r, NYA+8)"""*(i@ollz, w+st+ 1 @1lle, w42t g le nre va2) -

LEMMA 8.3 (A. Matsumura [7]). Let v(t, x) be a solution of the following
Cauchy problem with initial data @, ¢,€S(R™):
(0340, — DHv=0 in [0, co) X R™,
v(0, x)=go(x), @O0, x)=¢,(x) in R"
Then, the following two estimates hold. For any integers j=0 and N=0
ID¥otu(, Hi=CWN, A+~ D+ VDL E N ne i I Ballh cnrstena
+1olli4140117,
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ID¥aiu(t, YISCN, DA+ @O+ F DD Bollg tnpmsrrnast| Gullz.cnrmen+i]

follows immediately from and well-known Duhamel’s
principle. So, we omit the proof of Lemma 8.2 Representing a solution v(Z, x)
in terms of Fourier transformations, we can prove by direct calcu-
lations. So, we also omit the detailed proof of which is given in

Matsumura [7].
Now, we shall prove below. For any data g, and $, in (8.3)

let us denote by u, the solution of the following Cauchy problem:
0%+0,—Au,=0 in [0, c0) X R",
(8.4) N ” .
10, x)=@o(x), (@:u1)(0, x)=¢:(x) in R™

Choosing #=7,+3 and 2(x)CF(R") so that X(x)=1if |x|<r and =0if |x | =r—+1,
we put
u,(t, x)=ult, x)—1—=Xx)u.t, x),

2, x)=2 3710,X(x)-05us(t, x)+AX(x)-uat, X).
It follows from and (8.3) that for any integer N=0
| Q=221 | nr0, ¥ SCWO, W olla.trsers v+ Bsllzcnroren+ldolli-Ball:],
|(L=2)%s o, 0, 5 SCWN, M)l Golla,crrsensatlBallecnraren ],
supp gCR'X {xeR"; r=|x| =r+1},
87  1glense v SCAN, WlGollo.cnrosysetl@illetnimensrtigollitlgalid,
| o nra, v SCW, m)ClGola.cnrzewsat I @alletnrmew+al -

Furthermore, it follows from the definition of u, that

(8.5)

(8.6)

@340, —Du,=g in 9,
(8.8) u;=0 on 9/,
1500, x)=X(x)o(x), (0cus)(0, x)=X(x)¢:(x) in L.
It thus follows from and (8.7) that
8.9  1DYust, i, ipe
<Cr, N, )AL+8)"2Cl@ollo, wsascnratl@alle, vrsscnratlidolliH18al:d,
and that if n=5
8.10) DY ust, M@,y :=C(r, N, n)Y(L+0)""4Cl Golle, v +estnrmnt | @alle wassenranl -

Choosing ¢(x)eC~(R") so that ¢(x)=1 if |x|=7+2 and =0 if x| <r-+1. Since
$g=0, ¢pX¢;=0, j=0, 1, we have



38 Yoshihiro SHIBATA

(0540, — A)(Ppu)=h(, x) in [0, co) X R",
(@u2)(0, x)=(0:(pus))0, x)=0 in R",

where h(f, x)=237,0;¢(x)-0;u:(t, x)+ (4dp)(x)-us(t, x). Since the fact that
supp 0;u(0, x)C&,,, for any /=0 follows immediately from (8.7), and the
fact that supp XCB,,;, we have by the fact that ¢=0 in B,,, that

(8.11)

8.12) (0ih)(0, x)=0 for any 7=0.
It thus follows from well-known Duhamel’s principle that
8.13) DN(¢u2>=S:§Ng0(0, h(s, ); t—s, x)ds .

Here, by 2,(0,, 0,;t, x) we have denoted the solution of the following Cauchy
problem with initial data &, 6,:

(0% 4+0;,—DHw=0 in [0, co) X R™,
w(0, x)=60(x), @.w)O0, x)=6,(x) in R"

In view of we have from and the definition of the function
h(t, x) that

@14 [talunse wSCW, m|supl (1+E—8) "2 (1+-9) " 2ds(1+ 1))

XLl A2 nie, v+ttt By, nre, 0]

=CWN, r, n)[luzlﬂr+1.2.n/2,N+[n/2]+1];
and that if n=5

t
B15) [l nsa, v SCV, )| 0pJ (11— ) /4(U-) 4L+ | Rl wacnss
=C(N, r, n)lu2|9,+1.2.n/4,1v+cn/23+1 .

Here, we have used the fact that lhll,n,z,(,gC(r)]uzlgrﬂ,z,n,z,l, which follows
from the Cauchy-Schwarz inequality. Combining (8.9), (8.10), (8.14) and (8.15),
we have that

(8.16) |tta| e, nro, v SCN, W)L Polle, wrsvecnsant I @alle, wasrscnrer I ol i+l ],
and that if n=5
(8-17) I uzlw,nM, NéC(N, n)[”¢o“2 N+5+2[n/2]+”¢1”2. N+4+2En/2]] .

On the other hand, we have by (8.9), (8.10) and well-known Sobolev’s imbedding
theorem that
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(8.18) | Q=P uz|eo,nre, v =CIL—D)ts] 2, ns2, ¥ 41410721
=CN, m)Llidolle, w+s+atnsart I @ulle, w+arstnimatl Goll i+l 41117,
and that if n=5
(8.19) A=) tuzlee, nra, v SClA—= | 2, n/4, ¥ 41400s2
=CN, LI @oll2, w+s+arnioat | Palle, v +4s2tnren] -

Combining (8.5), (8.6), (8.16), (8.17), [8.18) and [(8.19), we get the theorem, which
completes the proof of [Theorem 8.1

§9. Uniform decay estimate for some hyperbolic equation.

In this section, we shall investigate the rate of the uniform decay of solutions
to the following mixed problem :

(I+a°¢, x)0fu-+3i1a’t, x)0,0,u— X7 ;21(0:;+ a®(t, x))0:0,u
+A+0, x)0,u+27,bt, x)oju+c@t, x)u=f in 9,
u=0 on 9,
u(0, x)=(0,u)(0, x)=0 in 2.

0.1)

The following is the main result of this section.

THEOREM 9.1. Assume that n=3. Let a’, a¥, b’, ¢ be the same as in (9.1)
and put A=A, x)=(A'(t, x), c(t, x)), where A'=U4"(t, x)=(a’(t, x), =0, -, n;
a*t, x), i, j=1, =+, 0; b’(t, x), =0, ---, n). Let L be a non-negative integer
and K=L+2[n/2]+5. Let p(n), q(n) and o(n) be the same as in Notations.
Assume that A satisfies Assumption 7.1 and the condition (7.3) with p=p(n)—1

that if n=5
9.2) [ Ao, pnr,0=1, | Al pny, k+1< 00,
and that if 3<n<4

|c—'4,|w.p(n),o+lcloo,q(n).o+ | A" 21720 F ] Cl21.0=2 ’

| A" o, pn3, k1 €0, giny, g < 0.

9.2)

If u is a solution of the equation (9.1) with data f€E¥X satisfying the condition:
lf|2.q(n),K+0'(n)’fl1,1.o<°°:
then for any N with 0SN=<L
]uloo,pm).zvéc(N, n)[]f]2,q(n),N+zEn/zJ+s+0'(n)|f|1,1.o

F( Al e, peny, vtornroireF (1) [ €| oo, geny, wt2rnrzrea) | F e ey 0] -
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To show Theorem 9.1, we need the following two preliminary lemmas.

LEMMA 9.2. Assume that n=3. Let L be a non-negative integer and K=
L+2[n/2]+4. Let p(n), g(n) and o(n) be the same as in Notations. Let u be

a solution of the equation:
(03+0,—Du=f in 9,
9.3) u=0 on 9,
u(0, x)=(@0,u)(0, x)=0 in 2,
where f€EX satisfies the condition:
9.4) | fle.qem, g Fo@)| fli1,0<0,
(9.5) f=0 in [0, )X 82
for some large R with QrDR"—S. Then for any integer N with 0=N=L
| %o, pcny, ¥y SCR, N, WL f o qomr, vratnsareata(m)| fla10].

LEMMA 9.3. Let R be a large number with 2RDR"—£, N a positive integer,
=0 and fe&®¥(2g) with 810, x)=0, =0, 1, -+, N—1. Then there exists a
solution wes€»N*(Qp) with u, x)=0, ;j=0,1, -, N+1 of the equations:
0240, — Au=f in [0, )X 2z and u=0 on [0, 00) X 0Lx, where 082z is the boundary
of Lk

Moreover, u satisfies the estimate:

lul.QR,Z,k,N+1§C(R, k, N)If‘.QR.z,k.N,
Z.f lfl.()R,z, B N <O,

PRrROOF of Lemmas and 0.3 follows immediately from Theo-
rem 4.10 of [I8], so we may show only It follows from the fact
that feEX that ue E¥+, Using this fact and [9.5), we have by Duhamel’s

principle

9.6) D¥ult, 0)=| D¥G(0, £(s, ); t—s, x)ds
where ¢ is the same as in [Theorem 8.1. When 3=n=4, we have by and

that
1D%utt, o= C, m] |+ E—s) 209 (1 f Lo wsstnrmnact | f Ll

+S2/2(1+(t——s))'"/4(l+s)—q(n) dS : lf l 2,q(n), N+2En/2]+4j‘

<C(N, m)A+1)"2™[| f |2 qmr. v+ocnrmsat o) fli10].
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When n=5, using the facts that (14 |¢|)""/*< L'(R") and that —Z—:p(n):q(n), we
have from and that
(9.8) ID¥u(t, Mw=CWN, n)A+)"P™ | f o g, v+atniates -
Combining (9.7) and [9.8), we have
|l peny, v SCWN, ML f l2.qny, waotnrmeaT o (@) f111,0],

which completes the proof.
To prove [Theorem 9.1, the following lemma is essential, which we can
prove by Lemmas and

LEMMA 94. Assume that n=3. Let L be a non negative integer and K=
L+2[n/2]+4. Let p(n), g(n) and o(n) be the same as in Notations. Let u be a
solution of the equation (9.3) for feEX which satisfies the condition (9.4). Then

u satisfies the estimate:
|u|oo,p(n),N§C(N, n)[lf12.q(n),N+2[n/2]+4+0(n)|f|1,1,0]
for any integer N with 0=N=L.
PROOF. Let R be a large number with 2,DR"—. Choose CF(R")-functions

#(x) and ¢(x) so that @(x)=1 if xRz and =0 outside 2., and ¢(x)=1 if
x € 82res and =0 outside Q2x.:,. Let v be a solution of the equations:

@340, —Dv=¢(x)f(t, x) in [0, )X Lr4s,
v=0 on [0, )X 082xz+s,
v(0, x)=(0,v)(0, x)=0 in 2g+s,
where 002z.s is the boundary of 2gz.,. It follows from that
(9.9) V] 0psg 2. qny, ve1=CR, 1, K)o g v
for any integer N with 0S<N=<K. Put u=¢v+w. Then, w satisfies the equations:
(0340, —NHw=g in 9,
w=0 on 9,
w(0, x)=©0,w)©0, x)=0 in £,

where g=(1—¢)f+2 37-40,¢-0,0+4¢p-v. Noting that supp gCR'X(R"—Q5p), we
have by Lemma 92 that

(9.10) | u Iw,p(n),N§C<Ny n)[{glz,qm).N+2cn/21+4+0(n)lg11.1,o] .
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Since supp ¢C2r+s, we have by the Cauchy-Schwarz inequality, [9.9) and the
fact that ¢g(n)>1 that

|gIz,q(n).N+zEn/2]+4§C(N, n)| f| 2,q(n), N+2[n/21+4 »

9.11)
lg|1,1,0§c(n>[‘f]1,1.0+]f|2,q(n),0:] .

Combining and (9.11), we have the desired inequality, which completes the
proof.

Now, we prove [Theorem 9.1l Put g=a uju+37,a%,0,u—X7 j-1a*0,0;u-+
D 7ob’djutcu. Then, we rewrite the equation (9.1) in terms of g as follows:
03+0,—DHu=f—g in 9,
u=0 on 9/,
u(0, x)=0,u)0, x)=0 in £.
Since it follows from and the fact that fe EX that uc EX+!, we
have that f—geE¥-'. Applying we have
(912) [ulm.p(n).Néc(N; n)[lflz.q(n).N+2[n/2]+4+Iglz,q(n),N+2En/2]+4

Fao(M| fluot+18111.01]

for any integer N with 0=<N=<L. Put N'=N+42[n/2]+4. Note that p(n)+—§—
=g(n)>1 and that p(n):q(n)r-:—z— if n=5. Using [Theorem 712 with p=p(n)—1,

9.2y and [Theoreml Ap. 2 in Appendix I, we have

lg|2.q(n>.Nr =C(n, n)[!JL’Iw.p(n),N' |D-1D1u|z,1/2.o+lcloo,q(n).N' | %]2,0,0

(913) +|fl2,p(n).lv'+1+|‘Jqlw.p(n).N'+2lflz,p(n),oj
éC(N; n)[]flz,p(n).N'-H‘i’(lJ|°°.p(n).N'+2+U(n)Iclw,q(n),N')lflz,p(n),oj-

When 3<n<4, it follows from with p=p(n)—1, (9.2)’ and the
Cauchy-Schwarz inequality that

(9.14) |gll,l,oéc(]dq,!2,1/2,0|D—1D1u|2,1/2,o+]C|2.1,o|ulz.o,o)§c|f|2,p(n),1 .

Combining (9.13) and (9.14), we get the desired estimate, which completes
the proof of [Theorem 91.
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PART 3

Proof of main theorem

Throughout part 3, we assume that the assumptions stated in Introduction are
fulfilled and use notations defined in Introduction and Notations.

§10. Compatibility condition.
For ueC=(®) with u=0 on 9’, we define f, @, ¢ by
f(t, x)=@3+0,—DHu+F(t, x, Adu),
do(x)=u(0, x), @(x)=0,u(0, x).

(10.1)

Furthermore, we put
(10.2) u(x)=01u)O, x), =2

In this section, under some smallness assumption imposed on ¢, ¢, and f, we
shall represent u; ;=2, in terms of ¢, ¢ and f. And then, by using such
representations, we estimate u;, 7=2, by ¢, &1, f-

(10.3) Us+¢—Ado+F (0, x, Dio, Dighs, us)=r(0, x).
Puttlng 2:()*,: 2”; 1)) where 2,:(/1’ 21; Ty Zm /275]') Z') ]:1) ) n); 1”:(20, 201, Tty
Aon) and y=21,, we consider the following non-linear equation:
(10.4) V(U)=v+2—2%1dii+FO, x, ¥, 27, v)—g=0.

Here, we have put U=, 1, v, x, g). Since F(0, x, 0)=0, (0,0, 0, x, 0) is a
solution of the equation [I0.4). Since (d:F)(0, x, 0)=0 and Fe @*([0, o)X 2 X
{|2] £1}), there exists a positive small constant cr depending only on F such
that |0% /dy|=1/2 if |2|<crand x X 2. The following lemma thus follows from
the implicit function theorem.

LEMMA 10.1. There exist a sufficiently small positive number d, and a
C(2X{, 27, g); | X+ |+ gl =ds}) function v(x, X', 2", g) such that v is
uniquely determined, v(x, 0, 0, 0)=0 and

T, 2, ux, 7, X, 8), x, =0, if x€Q and X |+ |2 |+|g|=d..
From Lemma 10.1, we obtain
(10.5) uy(x)=v(x, D%do(x), Dig:(x), (0, x))
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if [@ollew, 21 P1lleo, 1 +11(0, )=do.
Differentiating the first equation of (10.1) ;—2 times with respect to ¢ and
restricting =0, we get the linear equation with respect to u,, j=3. So, we can

easily prove the following by induction on ;=3.

LEMMA 10.2. There exists a small positive constant d;=d, such that the

equations:
uj(X):le(x, ﬁé¢0(x): E;_lszsl(-x)y (Dj-2f>(01 x)) ’ ]22:

hold for some B> functions v; with vi(x, 0)=0 if [ @Polle, 2 P1llee, 1+ (0, )=ds.

Applying [Theoreml Ap. 4 in Appendix II to the representation of u,(x) given
in Lemma 10.2, we can easily show the following.

LEMMA 10.3. Let ¢o, ¢ and f be the same as in (10.1) u;, j=2, be the same
as in (10.2) and d; the same as in Lemma 10.2. If || @ollw, 2 | @1l 1+ £ (0, )w=ds,
then the inequalities:

sl v SCp, 7, N @ollp. wrst @il p, we 511DV =2£)0, -)|l5]

hold for any integers N=0 and ;=2 and p with 1=p=co.

In view of Lemmas [0.2 and [0l3, we introduce the compatibility condition

for the problem (P) as follows.

DEFINITION 10.4. Let d; be the same as in Lemma 10.2 and N an integer
=2. We shall say that ¢.(x), ¢:(x) and f(¢, x) satisfy the N-th order compati-
bility condition if ¢, ¢; and f satisfy the following two conditions:

(1) N @olleo, e+ 1@1lleo, 1+ 17O, Hw=ds,
(ii) The functions ¢0; ¢1 and uj(X)Ele(x, Dchbo(x)y D_é‘—lsﬁl(x)x (D-j—Zf)‘(O’ X)), ]:2’
.-+, N, vanish on 0f2, where v;, j=2, are the same as in Lemma 10.2.

§11. Smoothing operator.

In this section, we shall define a smoothing operator which will be needed
to define our iteration scheme. Choosing ¢(x)eS(R™), ¢(t)eS(R?) so that

Snngb(x)a’x::l, Smxagi(x)dx:(), lalz1,
(11.1) ~
Gt)=0 if <0, Smgb(t)dtzl, SthQp(t)dt:O, j=0.

If ¢ is the inverse Fourier transformation of a C7(R") function which is 1 near
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the origin, ¢ satisfies all the conditions (11.1) about ¢. The existence of a
function such as ¢ follows immediately from Boas’ theorem (cf. [19].

Since the boundary of £ is compact, via local map, by using Seeley’s exten-
sion theorem ([I7]), we can show the existence of a function u’ defined on
[0, o)X R* for any function u defined on ro, o)X 2 satisfying the following
properties :

w'(t, x)=u, x) on [0, o)X,

(11.2)
|0/ |5, . v SC(D, By N) ] 50w

for any p with 1=p=oco, non-negative real number & and non-negative integer
N. Furthermore, if 9iu(0, x)=0, j=0, 1, ---, N, we can construct an extension
4 of u such that u’ satisfies (11.2) and the conditions: 0{u’(0, x)=0, j=0, 1,
.-, N (N is a non-negative integer).

Using such an extension u’ of u, we define the smoothing operator S(@)u,
6=1, by

(11.3) S(ﬁ)uESjSRnﬁn“lqi(ﬁ(x—— YNOE—Nu'(s, y)dsdy .

Of course, S(8) depends on the manner of extensions of functions, but the manner
of extensions is independent of functions. So, when we define S(8), we fix the
manner of the extension of functions. The following facts are valid.

LEMMA 11.1. Let 6=1, =0, p be a real number with 1=p=0c0 and N, M
non-negative integers. Let S(0) be a smoothing operator defined by (11.3). Then,

following three assertions are valid.
(i) For any u with |ulp r n=
1S(0)ut| p. 0. v =C(p, by N) |l p,x.n, @ISO, x)=0 for any i=0.
(ii) For any usC¥([0, o)X Q) with |ulp, o, 5<%,
|1—SO)ulp, 2. 0=C(p, by N)O™ ¥ tulp, 0.5 -

(i) If M>Nz=0, for any ucC ([0, )X 2) satisfying the conditions: [u|p s ¥
< oo and (@iu)0, x)=0, j=0, 1, -+, N—1

IS(g)u1p.k,M§C(p) k: Ny M)aM_N|u|p,k,N-

ProoF. (i) The assertion (i) follows immediately from differentiation under
the integral sign and the fact that ¢(t)=0 when ¢<0.
(ii) When (¢, x)e[0, o)X 2, from Taylor series expansion, (11.1) and (11.2), we
obtain
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a=sonu=[{"7+]0" las], fla—prv-np] 5 (—oH—yeo-y

—o - Jots2
X—%v&!—-i—(afagu’)(t—psﬁ“, x——pyﬂ“)gb(s)gﬁ(y):ldpdyEIl—}—Iz .
Since the inequality :
(11.4) 14+8)/A+t—psf-1) =2
holds if s<6t/2 and 0=<p<1, applying to I, we have
(11.5) ilp 2.0=Cp, by LYY [tlp b n .
Next, since #=1 and ¢(s)eS(R'), we have that
(11.6) |05p(s)| =C(k, N, i)(1+1)"*(1+|s])- N+
if 9t/2<s=<@¢t. So, applying with 7=0 to I,,
(1L.7) ol p, 2, 0=C(p, &y N)O N[0 |5,0,5.

Combining (11.2), [I1.5)] and [11.7), we obtain the assertion (ii).
(iii) By differentiation under the integral sign and integration by parts, we obtain

2

(11.8) atass@u=0"-"—*[""{ @19y s)6z-24))

X (0%08u’)(t—s0Y, x—y0-Y)dsdy

for any ; and multi-index a with j+|a|=M, where [ and 8 are some number
and multi-index satisfying the conditions: /+|8|=N, 0=<f<a and 0=I<;.
Applying [11.4) with p=1 and with 7/=7—/ to [11.8) in the manner similar
to the proof of (ii), we obtain the assertion (iii) from (11.2), which completes the
proof.

§12. Construction of an iteration scheme.

Let = be a positive large integer given in MAIN THEOREM, data ¢, ¢,
and f for (P) satisfy m-th order compatibility condition. Let u;(x), j=2, be
functions defined in Definition 10.4 for ¢,, ¢, and f. Choosing p(t)eCF(R") so
that p()=1 if [¢|=<1/2 and =0 if [¢t|=1, we put

(12.1) u(t, x)=(Zhou(x)t?/j)p(t), where uo=go, u;=4¢,.
From LCemma 10.2, Definition 104 and we obtain
(12.2) OiLf —(@8+0,—Dv+F(¢t, x, Av)]|1=0=0, for j=0, 1, -, m—2,

If 4 is a solution of (P), putting
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(12.3) u(t, x)=v(t, x)+w, x),
we have that w(t, x) satisfies the following equation:

Lwt+GlH, x, Aw)=g in 9,

(12.4) w=0 on 9,
w0, X)=@w)0, x)=0 in 2,
where
GG, x, Aw):X:(l——r)(dﬁF)(t, %, Av+rAw)(Adw, Aw)dr,
(12.5) Lw=@+8,—Dw+(dF)¢, x, ) Aw,

g=f—(@+0,—Dv+F(t, x, Av)).
In particular, it follows from (12.2) that
(12.6) geE™!

if @, ¢; and f satisfy the conditions stated in MAIN THEOREM. Therefore, we
may solve the equation [12.4) under the assumption that g satisfies the condition
in order to show the existence of solutions of (P).

To end this section, we give an iteration scheme to solve the equation [(12.4),
following Klainerman [5]. First, by w, we denote the solution of the following
equation:

Lwe=g in 9,

(12.7) wo=0 on 9,
wo(0, x)=(0,w)(0, x)=0 in L.

We define w,, p=1, successively by

(12.8) Wp=Wp-1FWp-1=2W;+w, .

We must define w;, j=0. For this, first of all, we introduce some notations.
Let S(-) be a smoothing operator defined in §11, and # a large positive fixed
number >1. Put

(12.9) S,w=S@)w, 0,=0%.
We define linear operators L,, p=0, by
(12.10) Lyw=Lw+(d;;G)¢, x, SpAdw,)Aw,

and error terms ej, ¢y and e, by
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ep=(dG)t, x, Awp)Aw,—(d1G)¢, x, SpAwy) Ay,
(12.11) eh=G(t, x, Awpe))—G(t, x, Awp)—(dG)¢, x, Awp)Aw,,
e,=epteyp.
We define the summation E,, p=0, of error terms by
(12.12) E,=Xle;, pz1, E,=0.
Finally, we put

goE_SOEG(t’ X, Awo)],

(12.13)
ng_(Sp—sp—l)Ep-l_Spep—l_(Sp_Sp—l)G(ty X, Awo), P%l

Now, let us define 1w, p=0, by the solution of the following linear equation :
prp:gp in .@,
(12.14) w,=0 on 9,
W0, x)=(0,wp)0, x)=0 in £.
In particular, we have from [12.10)-(12.14) that
(12.15) Lwp+GE, x, Awp)=g+1—=Sp)G(t, x, Awe)+(1—Sp)Ep+e,.

We shall show the following in § 14 below.

LEMMA 12.1. Let m be an integer 22. Put f=max[2[n/2]+7, m—1], L=
2B+1 and m=L +2[n/2]+8. Assume that the assumptions 1°-4° stated in Intro-
duction hold. Then there exist a sufficiently small positive constant o, and a large
positive constant d(#m) depending on m having the following properties: for any

0 with 0=<8=0,, if ¢o, ¢ and f are data for (P) satisfying the #-th order com-
patibility condition and the condition:

lgoll, e+ s+tnraat I Pillz smrestnsart | f |, qemr, simsrstnson
+o(n)ClPolls, m+etlPills, st f 111, a1=0/d(m),
then there exists a solution w,eE‘ﬁ of the equation (12.14) such that
(i) | Aty ]o,0, 14| Atb; 10,12, . S8678+F if 0SLSE,
(ii) | Al p oy, 1 2807 P+ if 0sL=L.

Here d(m) and 0, will be defined in § 14.
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§13. Some lemmas to estimate non-linear term.

Throughout this section, F, G and v are the same as in §12. In this section,
we shall give some lemmas which are needed in order to estimate G(t, x, Aw),
the error terms ej, e¢j and the coefficients of the operator L,. First, we shall
give a lemma needed to estimate the coefficients of the operator L,. For this
purpose, we define the coefficients vectors A'(Z, x, AU) and A, x, AU) by

A, x, AU)=(a’@t, x, AU), j=0,1, -+, n;
(13.1) a¥(t, x, AU), i, j=1, -+, n; bi(t, x, AU), j=0, ---, n),
Alt, x, AU)=(A'(t, x, AU), c(t, x, AU)),
where a’, a¥/, b’, ¢ are defined by the following formulae:
(13.2)  (d.G), x, AUYAW =71 a’(t, x, AU)0;0.W —37 ;-.a¥(¢, x, AU)00,W
+32.6b03, x, AU)GW +-c(t, x, AUW .

Of course, without loss of generality, we may assume that a¢”’=a’*. We have

LEMMA 13.1. Assume that the assumption 1°-4° in Introduction are fulfilled,
that all semi-norms appearing below are finite and that | Av|ew,o, 0+ | AU |, pny,0=1.
Then, the following five assertions are valid. '

(1) [AC, AU o, pony, tSCLL AU oo, piny, £+ | AV] 0,0, 2]

(ii) If 3=n=4, |c(--, AU)iw.q(n),Léc(L)UAU'w,pm),L‘l’IAUIw,o,L]-

(il) If 3<n=4, | A G, AU g1sn ot cCry AU 51,0 SCL AU |4 0,0+ | AU | 3,172,061
(iv)  [(daF)(, AV, qiny, 2 SCL) [ AV] 0,2 -

(V) [(diF)-, Av)|s1,0=Cl Al 0,0.

PROOF. Since d;F(¢, x, 0)=0, (iv) and (v) follow immediately from [Theoren
Ap. 3 in Appendix II. We may write symbolically

(13.3) (d.G)t, x, /IU)/IWZS:r(l—r)(dEF)(t, x, Av+rAUYdr(AU, AU, AW)

+25;(1—r)(d§F)(t, %, Ao+ AUYAr AU, AW) .
In view of (13.3), we may write symbolically

(13.4) A, x, AU)=S:r(l—r)(d3F)(t, x, Av+rAUYdr(AU, AU)

—I—ZS:(l——r)(diF)(t, x, Adv+r AUYdr AU .
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Applying Ap. 2 in Appendix I and Leibniz’s formula to we have
the assertion (i). If 3<n=4, we may write symbolically

(13.5)  (d.G)t, x, AU)AW:S:r(l—r)(dEF)(t, x, Adv+rAU)Ydr(AU, AU, AW)
-{—ZS:(l—r)(d;Fl)(t, x, Av+r AU)Ydr(AU, AW)+(d3Fa)t, x, Av)(AU, AW)

—I—S:(l——r)z(dﬁFZ)(t, x, Av+rAUYAU, AU, AW)dr .
It thus follows from (13.2) and (13.5) that
136)  leCr, AD) | m g, nZ | (AP, Avtr AUXAU, AV g 27

+ l d?ze("’ ’ AU)AU]w,q(n),L .

Since the fact that (d3F.)(t, x, Av)=0 if t>1 follows from the facts that
(d3Fe)(t, x, 0)=0 and that v=0 (cf. (12.1)), noting that 2p(n)=qg(n) and that
| Av| w004 | AU |, pcny.0=1 and applying Ap. 2 and Leibniz’s formula
to we have the assertion (ii). Finally, it follows from (13.5) that

(13.7) [ Ao, AU)|2,1/2,0+|C(-", AU 2,10

gc[§;|<d3F><---, Av+r AUYAU, AU, 1.0dr

+ 1d2F)C, Dot r TUYAU e o+ 1 @3F)C , AD)AU 1410]

Since (djF:)(t, x, Av)=0 if t>1, noting that p(n)>1 and that | AU |« pny,0 =1, wWe
obtain the assertion (iii) easily from (13.7). This completes the proof of the
lemma.

Now, we introduce the following notation which will be needed in order to
estimate e;. We put

(13.8) e’ (@, AU, AW)=(d ;G)t, x, AUYAW —(d ,G)(t, x, S(@)AUYAW) .
Here S(®), ©@=1, is the smoothing operator defined by [11.3). We have

LEMMA 13.2. Assume that all semi-norms appearing below are finite, that the
assumptions 1°-4° in Introduction are fulfilled and that | AU |, pcny, o+ | AV] w0 0=1.
Then the following two assertions are valid.

(i) For any integer L=0,
|e,(@) AU, AW)(2.q(n),L
SCL)LI(L—SONAU o, pny, £l AW | 5,0,0+ | AW | 5,1/3,0)
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+ [ A=SONAU | e, pens, o | AW | 20,2+ AW |5,1/2, 1)
F(| Av]w, 0,2+ AU |, p(n>, 1)
X A|(L=SO) AU |, pny, ol | AW |5,0,0+ | AW | ,172,0} ] -
(i) If 3=n=4, for any integer L=0,
le’(O, AU, AW)|11,1
SCL)CIA=SONAU | 5,0, 1 AW | ,0,0+ [ (1—=SO)N AU | 2,0,0| AW | 20,2
+(|/1U|oo,o,L+I/Ivloo,o,L)I(1_-—5(@))/1(]!2,0,01/lle,o,o
+[A=SONAU 15,175, 21 AW |3,175,0+ | 1= SON AU |0, 112,01 AW |2, 112.2
(| AU |0, 2 | AV] 0, )| (L—=SO) AU | 5, 172,0| AW | 5,1/2,0] -
PROOF. (i) First we assume that n=5. Applying (13.3) to we may
write symbolically
(13.9) (O, AU, AW)
=('['ra—rasm, x, 4v+rS@O AU+sr1—SO) AVdrds
X (AU, AU, 1—=S(@) AU, AW)
+S:r(1~r)(dﬁF)(t, x, Av+rS(@)AU)dr[(1—S(O)AU, AU, AW)
+(S(OYAU, 1—-SO)AU, AW)]
+2{ {'ra—rasF), x, Av+7SO)AU+5r1—S6)AU)drds
X (AU, 1—=SO)AU, AW)
+2{ A=t Fae, x, Av+7S©)AV)AH1—SONAU, AW).
Noting that p(n)=g(n), n=5, and that | 4v|w,o0+|AU]x pm,0=1 and applying
Leibniz’s formula, Theorems Ap. 2 and Ap. 3 and Lemma 11.1-(i) to (13.9), we
obtain the assertion (i) when n=5. '

Next, we assume that 3<n=4. It follows from the assumption 4° in Intro-
duction that

13100 [{a-nwsr)e, x, Aw+rS©)AU)dr(L—SE@O)AU, AW)
=(a—nw@zrt, x, Tv+rS@OAV)dr(1—SONIU+TW)

(dEF)G, x, Av)(A—S(O)AU, AW)
+S:(1—r)2(d3F2)<t, %, Av-+rSO)AUYAHS@) AU, (1—SO) AU, AW).
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Noting that (diF,)(¢, x, Av)=0 if t=1, that | AV w0, 0,0+ | AU |, p(ny, o<1 and that
p(n)+711—=q(n) (3=n=4), and applying Leibniz’s formula, Theorems Ap. 2 and

Ap. 3 to (13.9) and (13.10), we obtain the assertion (i) when 3<n<4.
(i) Using Leibniz’s formula, Theorems Ap. 2 and Ap. 3, the Cauchy-Schwarz
inequality, and the fact that p(n)>1, we have

ZS:S:Ir(l—r)(diF)(---, Av+7rS(@) AU +sr(1—S(0) AU)drdss
X (AU, 1=S@NAU, AW)|,1,1
SULLA+ AU e 0,274 [ AV]wo,0,2) | AU oo, p (13, 0| (1=SO) AU |5,0,0] AW 5,64
H1AU o, pny, L1 (1=S(0)) AU | 3,0,0] AW | 2,0,
H1 AU |, pny, ol 1=S(@) AU | 5.0, .| AW | 5,0,0
F1AU |, pny, o [(1=S(@) AU |5.0,0| AW | ,0,27 ,

[1a=ndsrc:, Aotrs@AUdr—s©ONAU, IW), .
SCL)LA+] 4] w0, 24 [ AU |00, ) A=SONAU |5, 1120l AW [ 5.1/2.0
F1A=SONAU |3, 170, | AW |3, 115,0+ | (1 =SON AU | . 175,0| AW |5 172,21 -

We can estimate other parts of (13.9) and (13.10) in the same manner. So,
noting that (d3iF.)(, x, Av)=0 if t=1 and that | AU |, peny, 0+ | AV o, pcny, 0 =1, We
obtain the assertion (ii). Q.E.D.

Finally, in order to estimate the error term ey, we introduce the following:
(13.11) e"(AU, AW)=G(, x, AU+AW)—G(, x, AU)—(d;G)¢, x, AUYAW .
Using Taylor series expansions, we may write symbolically

(AU, AW)=\'{(d:G)t, x, AU+sAW) AW —(d;G)t, x, AUVAW) ds .

Thus, in the same manner as in the proof of we can show the
following lemma. We omit the proof.

LEMMA 13.3. Assume that all semi-norms appearing below are finite, that the
assumptions 1°-4° in Introduction are fulfilled and that

lAvloo,O,Ogl/zy IAUlw,p(n),0§1/4’ IAWIm,p(n),O§1/4-

Then the following two assertions are valid.
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(i) For any integer L=0,
le”(AU, AW)|4,qcm. 1
SCLY(| AV w0, 241 AU Lo, pcns, 2 | AW e, pny, ) AW |0, 5.0
X (AW |5,0,0 AW [5,115.0)
A+ 1AW Lo, pcn, Ll AW [ ,0,0+ | AW [ ,172,0)
A+ 1AW Lo, pcn, 2l AW | 5,0,0+ | AW | 2,172,0)
+ | AW |, pcns, ol | AW |50, 24+ | AW [5,1/2.1)] -
(i) If 3=n=4, for any integer L=0,
le” (AU, AW) |11
SCLYN AW |50, 1 AW [3,0,0+ | AW | 372, L] AW | 2,112,0
(| A0 ey, 1+ 1 AU |, pcr, 24+ L AW L pnr, 2)N AW [ 0,07 | AW [3,172,0) ]

§14. Proof of convergence of the iteration scheme.

In this section, we shall prove Lemma 12.1. Throughout this section, we
use the notations defined in §§ 12 and 13. Since it follows from [Theorem| Ap. 3,
and Sobolev’s inequality that

[(d2F)(, AV)| o, pens, 1

<CF, m)U@olls, mrsscniatI@alle meostnrat | flo0mezstnrand,
there exists a small positive number 4, such that
(14.1) (daF)y AV)]w0,0=d1/2, HdaF)C, AV) e, pmr,1=1/2

if ”¢0”2,ﬁu+4+[n/2]+“951”2,ﬁL+3+[n/2]+[flz,o,ﬁz+2+tn/z]§51- This fact guarantees the
hyperbolicity of the operator £ (cf. Assumption 7.1 and the condition (7.3). We
have

LEMMA 14.1. Let 8 be a positive number =min(l, d,) where 0, is the same
as in (14.1). Let d(m)>1 be a large number which will be defined by (14.4)
below. If data ¢o, ¢ and f for (P) satisfy the #n-th order compatibility con
dition and

”S[’onz, 21’h+3+[n/2:|+ ”¢1“2 21ﬁ+2+[n/2]+ ‘f l 2,q(n), 2m+1+[n/2]
+ oM Golls, rat @l msrt 1S 111, al1=0/d(m),

then there exists one and only one solution w,€ E™ of the equation (12.7) satisfying
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the estimates:

lAw0I2,0,1'r'L—2+ | Zwolz,1/2.ﬁ»—2<5 ’ lAwolw,p(n),ﬁL—2<5 .

ProoF. First, we note the following estimates: if all semi-norms appearing

below are finite
(14 2) lglp, k,Léc(P, k’ L)[lflp, k,L+”¢0”p,ﬁl.+2+L+”¢1”p,77r.+1+L+ |f|p.0,1’fL+L] ’
T @)y AV 0 SCL, D)L @oll g, mreerF Dl p, mrrert | f 10 mer],

for any p with 1=<p=co, real number £=0 and integer L=0. In fact, (14.2)

follows immediately from Ap. 5 and the facts that F(f, x, 0)=0 and
that (d;F)(, x, 0)=0. Since it follows from and the facts that §<d, and
d(m)>1 that the operator .L satisfies Assumption 7.1 and the condition we

obtain from Theorems and and (14.2) that
(14.3) | Awo) 5,0, -2 Awal s, 12, -2
=i f e g, 2m-1H 1 @ollz et [ @ullz 2
F I Pollee, 2+t 11 lleo, 241 f o, 0, 2)
X (| fle,qmy, it @olls, msat I Palle, +1)],
| Awo e, pens, £
= co(M)Ll Golls, 2in+1F 1 @alle 21 f |2, g, 21
+o(m)(| fly1at@olls mret@alls, mra)
+ (| Pollc, 2 +2F | Palleo, amr1 1 f 10,0, )
X fle.qmr. I @olle, avet I @ille, 1) ,

for some large positive constants ¢,(/#) and c.(#). Applying Sobolev’s inequality
to and noting that 6<1, we obtain that there exists a large positive number

d(m)>1 such that
(14.4) !AwOIZ,O,ﬁ'L—z_}_l/i'w0[2.1/2,171.—2<5) lAwo|oo,p(n),L<5:

if ||¢o||2.2ih+s+[n/2]+n¢1”2,2fh+2+[n/2]+ If|2,q(n),217b+1+[n/2]+a(")[lf]l,l,ﬁl.+”¢0”1,17L+2+
| ally, m+11=6/d (). This completes the proof of the lemma.

Now, we shall prove by induction on j. Thus, we assume that
[A.2] for p=1, Wy, -+, Wp-1, are alreay defined and all the statements of Lemma

12.1 are already proved for o, -+, Wp-1.

Under the assumption [A.2], we shall prove that i, is also well-defined and the
assertions of also hold for w,. Let ¢ be a sufficiently small positive



On the global existence of classical solutions 55

fixed number. In the course of the proof, all constants depending essentially on
f, m, t, n, § and B will be simply denoted by C and all constants depending on
L, for arbitrary non-negative integer L, will be denoted by C,, respectively.

The following lemma follows from Lemmas (1.1 and (4.1, [Theoreml Ap. 1,
the induction hypotheses [A.2] and the fact that {6,},-01... is the geometric
series. The proof is essentially the same as in Klainerman [5, p. 79-p. 80] and
Shibata [18, Lemmas 5.4 and 5.11]. So, we omit the proof.

LEMMA 14.2. Let the assumptions [A.1] and [A.2] be fulfilled. Put wj.,=
wot iy, 7=0, 1, -, p—1. Then the following seven assertions are valid for

all 7=0,1, -+, p—1L

(i) w;csE™

(i) |S;Aw;ls 0+ 1S;Aw;s 1701 SCLO07FE if —f+Lz=r.
(i)  1S;4w;ls0241S;Aw; 2,170, =Co if —p+L=—r.
(iv) |S;Aw;| e pny, L SCLOO7F+E if —B+L=t.
(V) 1S;4W, 1w pony, 1 =Cr86078+E | if —B+L<—r.
(Vi) 1(1=S)Aw; .02+ 1(1—=S) Aw;l e 11e 1 =CO077*E  if 0SL=L.
(i)  [A—S)Aw;|w peny, L ZCOOTFHE if 0SL=L.

Now, we are going to estimate the error term e,. Since

iAvI°°,0,0§CEH¢0”2,1?L+3+E72/2]+”¢1”2,171.+2+[n/2]+ |f|2,o,ﬁz+1+tn/2]]

and since

| Avlw,o,r’h§C[”¢0”2,27h+3+[n/2]+”¢1”2,2ﬁ1+2+[n/2]+ If i 2,0, 217L+1+[n/2]] ’

we obtain from Lemmas and that there exists a positive small number

J, such that
| AWl e, piny,0=1/4 for 0<;=<p—1,

| At |, peny0=<1/4  for 0=7=p—1,
| Av]w,0,0=1/2,

| AV | o0, =C0 for some positive constant C,

(14.5)

if the assumptions [A.1] and [A.2] and the following assumption hold:
[A- 3] ”¢o"2, 771,+3+[n/2]+”¢1”2, ﬁL+2+[n/2]+ lf | 2,0,ﬁt+1+[n/2]§52 .
Let ¢’ and ¢” be the same as in and (13.11), respectively. We have
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(14.6) ej=e'(0;, Aw;, Aw,), ej=e"(Aw; Aw;), e;=ejte].
The following lemma thus follows immediately from (14.5), and Lemmas
03.2, [3.3 and 142

LEMMA 14.3. Let the assumptions [A.1], [A.2] and [A.3] be fulfilled. Then,
the following three assertions are valid for all j=0, 1, ---, p—1.
(i) e;eEXnCL(9).
(ii) |ej!2,q(n),L§C520}2‘B+L if 0ZL=L.

(i) |esl11, L SCI?O72F+L if 0SL<[ and 3=n<4.
Now, we are going to estimate g,. For this purpose, we begin with

LEMMA 14.4. Let the assumption [A.1], [A.2] and [A.3] be fulfilled. Then
the following five assertions are valid.

(i) GG, x, wyeELNCL(D).
(ii) |G, Awo)lz qeny, . SCO* if 0SL=L.
(i) [(1=Sp)G(+, Awo)ls.qemr, L SCI*05F+F if 0<SL=L,
|(1=S,-)G(+ , Aw)|e,qem, 1 =CO07F+E  if 0SL<L.
(V) 1(Sp—Sp-1)G(+, Awo)|s,qeny, L=CH*0**** if LZO0.
(v) If 3=n=4,
|GG, Awo)| 1,1, L =ZCE? if 0SL=L,
|(1—Sp)G(-+ , Aw)|1,1,0=CO*07°F+E,
1(Sp—S,-0)G(+, Awo)|11,0=C3*07*P+L,
ProOF. (i) The assertion (i) follows immediately from Lemma 14.T and the

facts that G(t, x, 0)=0 and that dw,= EENCL(D).
(ii) It follows from that

(14.7) G, x, Awo)=S:(1—r)(d§F)(t, %, Av+rAw)(Aws, Awo)dr .

If n=5, noting that p(n)=¢(n) and applying Leibniz’s formula and Theoreml Ap.
2 to we obtain from and (14.5) that for 0=L=<L
|G(---, Awo)[z,q(n),L§CE(1+[Awo|oo.o,L)(|Awolz,o,o|Awo|w.p(n),o)

+lAwolz,o,LlAu)O'w.p(n),o"'IAwolz.o,olAwolw.p(n).L]§C52o
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If 3<n=4, it follows from the assumption 4° in Introduction that we may write
symbolically

(148 G, x, Adw)=| A—rXd3F, %, Zo+rAwTwe, Twodr

5 @3F, 5, ) Ay, Awg+{ (1=7(d3F)

X (t, x, Av+rdwo)(Aw,, Aw, Awodr.
Since (d3F,)(, x, Av)=0 if t=1, applying Leibniz’s formula and Ap. 2
to (14.8) and noting that p(n)—i—%:q(n), p(n)>1 and 0<6=1, we obtain from
and (14.5) that for 0SL<[
|G(-, Awo)lz,amr. L
SCLUA+ | Awol w0, 2)] Awol s,10,0 Awo| o, pcar,0H | Aol 2,172, ] Ao, pemr o
+ 1 Awo | o,172,0l Aol o, piny, 241 Aol 2,0, Ao o, pens .o
1 Awols,0,0] Ao, peny, L+ [ Ao lwo,0, )| AWo 2, 0,0(| AWo o, pn>. 0)?
1 Awol s, 0, .Ul AWo o, pny. 0+ | AW 2,0,0] AtWolwo, pcny. 2] AWl o, pen>. 0]
=Co®

Thus, we have the assertion (ii).

(iii) It follows from and the assertion (ii) just proved that
14.9 |(1=Sp)G(+ , Awo)|s,qeny, 0 SCOZE| G+, Awo) s, qimy, 1 SCHOFESCH?05%,
T A=S)G (-, Awo)| s gy, 1 <CE<CE*0527L

Here, we have used the fact that L =28+1 and 6,=1. It follows from
Ap. 1 that for 0<L<F

(14.10) [D*(1—=Sp)G(-+, Awo)lz gm0
SCUIA=S)GC+ , Aw) |2, qemy, o™ FPUA=S)G(+, Awo)| s, qm, D)F'E.

Combining (14.9) and (14.10), we have the first assertion of (iii). Noting that
0,=6-0,-,, we have the second assertion in the same manner.

Giv) If L>f, we obtain the assertion (iv) from Lemma 11.1-(iii) and the second
inequality of (14.9). If OgL__<__f, noting that S,—S,-;=1—S,.,—(1—S,), we
obtain the assertion (iv) from the assertion (iii) just proved.

(v) Applying Leibniz’s formula, Ap. 2, and the Cauchy-Schwarz

inequality to (14.8) and noting that p(n)—{——éll—:q(n) and that 0<6=<1, we obtain
from and (14.5) that for 0<L<L
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(14.11) [G(+, Awo)|1,1, L SCLA+] AW [wo,0,2)(| Awo] s, 175,02
+ 1 Awol 2,170, | Awol s, 170,08 Aws| 5,002+ | Awo) a0,z ] Awols. 0.0
F A+ Awo w0, )| AWwo o, pems, o | AWo | 2,0,0)*+ | Ao, pcny, 20l Aol 5, 0,0)7]
<C#,

which shows the first assertion of (v). The other assertion of (v) are able to

be proved by using the first assertion of (v) just proved, Cemma 11.1 and Theo-
rem Ap. 2, in the same manner as before. This completes the proof.
Next, we estimate the summation E, of error terms e;, 7=0, -+, p—1.

LEMMA 14.5.  Let the assumptions [A.11-[A.3] be fulfilled. Put E,=X-le,,
p=1. The following nine assertions are valid.

(i) E,eEinCci).

(i) |Epleqm, t=C3?052F+* if 0SL=L, L—28>~.

(iii ) |Epleqm, 2 SCS? if L—28< —r.

(iv) [Eply:,1=Co%052F+E if 0SL<L, L—28>r, 3=n<4.
(V) |Eply1,=Co* if L—28<—r1, 3=n<4.

(Vi) |A=Sp-DEplsqm, 21 =CO*05**, [(1—=Sp)Epls qmy, L SCH*0 5 +E

if 0<L<F.
(Vi) |(1=Sp-DEpl1, 1 1 =Co%052+L,

|(1—S,)E 11,1, 1 <Co%0528+F if 0=L<[, 3<n<4.
(viii)  [(Sp—Sp-DEpl2 qny, t<C0%0%*L  for any L=0 if 3<n=<d4.
(ix) [(Sp—Sp-DEp|1,1,0=C%05# if 3=n=4.
PROOF. The assertion (i) follows immediately from The
assertions (ii)-(v) follows from and the fact that {6,}-0.1,2. iS a

geometric series. In the same manner as in the proof of Lemma 1414, we can
show the assertions (vi)-(ix). So, we omit the proof. Q.E.D.

From (12.13), Lemmas [1.1, (4.4 and we obtain

LEMMA 4.6. Let the assumptions [A.1]-[A.3] be fulfilled. Then,
(i) gocE=.
(i1)  1gleqm), 1 =CL0%0,P+E for any L=C.

(iii) |gp|1,1,o§C52052'9 if 3=n=4.
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(iv) gocE>.
(V) 1&ol2 qny, . =C 82072+ for any L=0.

(vD) |goli1,0=Co%05%° if 3=n=4.

Now, we shall estimate w, by using Theorems and D.1. For this purpose,
first of all, we have to examine if the operator L; satisfies Assumption 7.1 and

the conditions 7.3), and [9.2). Since

Liw=(034+0,—NHw-+(d;F)t, x, Av)Aw+(d;G)¢, x, S;Aw;)Aw,
we represent the last term symbolically in terms of coefficient vectors A’ and ¢
defined by (13.1) and (13.2) as follows:

(d:G)t, x, S;Awp)Aw=A"t, x, S;Aw)Aw+c@, x, S;Aw;)w .

Therefore, combining Lemmas [3.1, [4.1 and [42 and (14.5), we obtain

LEMMA 14.7. Let the assumptions [A.1]1-[A.3] be fulfilled. Put
u[lj:(uql(t, X, SjAlUj), C(t, X, Sj/le)).
Let d, be the same as in Theorem 7.1. Then there exists a small positive constant

0s such that if 0<0=0; then the following eight assertions are valid for all
j=0, 1, -, p.

(i) 1diF)C, AV pnr, bt | Ajl o, peny, L SCLO07P* . if —B+L=z, L.
(i) [(@iF)C, AV)|w, penr, 2F [ Ajl o, piny, . =CO if —B+L=—r.

(ili)  [(daF)(, AV e pmyat Al pany 1 S 1

(iv) [ daF)C, AV 0,0t [ Ajlw o0, 0=

(v ) [(diF)(, Av)|2,1,0+lu4'(“' » Sjij)[2,1/2,0+|c("' ’ Sj/le)lz,l,o§1~

(vi) [(daF)Co, AV s gm0t | Aoy SjAW o pemr ot 1€Coe s SiAWws) e qiny, 0=1
if 3=n=4,

(vii) [(daF)(C, AV e qenr, L+ [ACor ) SiAWS) w0, pmy, L[y SiAW)) e, qemr. 2
<Cp0078+F if —B+L>7, OSL=<sm and 3=<n=4.

(viii) [(dF)(--, AU)|oo.q(n),L+ [ A, Sjij)]m,p<n),L+|C('“ ’ Sjij)lw,q(n),L§C5
if —B+L=—r, 3=n=4.

It follows from that the operator L, satisfies Assumption 7.1
and conditions [7.3), [9.2) and [9.2}'. Thus, applying with p=p(n)—1
and to (12.14), we obtain from Lemmas 14.6 and (4.7 that
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I Awp | 2,0,L1 I 4 lbp ] 2, 1/2,L§CL520;,2/5+L”,
| A p | <o, 0, LécL520;2ﬁ+L+2[n/23+7

(14.12)

for 0OSL<TL. Choose 0,>0 so small that

(14.13) o,max C =1

0sLsL
where C, is the same as in (14.12). Put
(14.14) 0o=min(d;, 0,5, 0s, 04)

where 0, d;, 0; and J, are the same as in [A.3], Lemma 14.7 and
respectively. We obtain from (14.12)-(14.14) and the fact: f=2[n/2]+7 that if
0<0=d, and

”¢0||2 21’h+3+[n/2l+ "¢1“2 21’h+2+[n/2:|+ lf I 2,q(n), 2Mm+1+[n/2]

+0'(n)(”¢0”1,171+2+“¢1"1,1’r‘u+1+[fll,l,ﬁ)éa/d(ﬁ’l);
then
IAwplz,o,L+I/Twplz,x/z.L§50;ﬁ+L’ IAwplw,p(n),L§50;;'5+L

for 0OSL=ZF, which shows that 1, also satisfies the assertion of LCemma 12.1
To complete the induction, it remains only to verify that i, satisfies the

assertion of Cemma 12.1. In view of Lemmas 14.6 and [4l7, its proof follows

exactly as before. We have completed the proof of Lemma 12.1, just now.

§15. Proof of main theorem.

First, we shall prove the existence of solutions of (P). Since f=max[m—1,
2[n/2]+7], it follows from Lemma 12.1 that there exists a function weC™(Q)NE™
such that

(15.1) w=2F=0W;+ W,

(15.2) | Aw |20, m-2+ | Aw s, 172, m-2t | AW |0, pny, m-2=C8,

where C=2(26—1)/(6d—1). Furthermore, we obtain from (12.7) and (12.14) that
(15.3) w=0 on 92, w0, x)=0,w)0, x)=0 in L.

On the other hand, combining (12.15), Lemmas (43, [4.4 and (4.5, we have

(15.4) l.fw+c<-~,Aw)—glz,o,éC[lw—wmxz,o,z

+ ’ S:(dZG)(" ’ AU)p+1+0A(w_wz;+1))d0(/1w_/1wp+1) .

0,0
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+I(l"'_Sp)Eplg,0,o+Iepl2,0,0+|(l*—sp)6('“ ’ AwO)lZ,O,O]
<C(66-7+5°0-%%%)  for any p=0.

It follows from (15.4) and the fact: weC¥9Q) (m=2) that Lw+G(t, x, Aw)=g
in @. Therefore, in view of §12, putting u=v-+w, we obtain that u is a
solution of (P), which completes the proof of the existence of solutions of (P).

Next, we shall prove the uniqueness theorem. For this purpose, we begin
with

LEMMA 15.1. Let R and T be any positive numbers with R >r, (cf. Notations)
and p be a large fixed number with pz2(n+1). Put

F'={x,t; x€82, |x|=R+u(T—t), 0=5t=T}.

Let aj;, j=0, -, n, a4, i, j=1, -+, n, by, j=0, -, n, ¢ be red valued CY9D)
functions such that |

(15.5) JE(tS;J)g['!(aj, J:()r ey, N, Qg Z.: ]:1; v, N, b]" ]:0; ct, N, c)|_£_1/2,

(15.6) a,=ay;.
Let us define a linear operator .L by
L=03+0;—Ad+27-0a,;0,0,— 27 j=00:;0:0;+ X F=b;0;+C .

If usC*9) satisfies the equations:

Lu=0 in I,
(15.7) u=0 on [0, TIxX0%,

u(0, x)=(0,u)0, x)=0 in Rrinr (cf. Notations),
then u=0 in I.

PROOF. We prove the lemma by well-known energy method. It follows
from the fact pg=2(n+1)

(15.8) [no(l+ao)—2in;a,10.u)*—2[ 2% -1n;(0:;+ a:;)0:u]0:u
+ 1o 22100+ a1;)0,u0;u
Zno {1—A)@.u)*—2p (n+A) | Drul |0;u| +(1—A)| Drul®t 20
if |x|=R+wu(T—1t), 0=t=T, where we have put
no=p(l+p*1 ny=x,(|x|Q4+pH)7, j=1 -, n.
Noting we have the identity:
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(15.9)  Lu-du=10,00+a)@+ Dhorlbs+ )il
+%E?ﬂaj[aj(azu)“’]-2?j=13j[(5ij+aij)a,-uatu]
—[{%25’=oaﬂj—<1+bo>}@:u>2— P (27-10;a1;b:)0sudu

1
- 52?j=1(azai,~)aiu3ju —cua,u] .

Now, we introduce the following notations:
Iy, t)={, x); x€2, | x| SR+pu(T—1), t,=t<t}
for any t,, t; with 0=¢,<t, =7,
Gt)={x€Q, |x| SR+u(T—t)} for any t with 0=t=T.
Integrating (15.9) over I'(0, s), we have by the divergence theorem and (15.5),
(15.7), and (15.9) that

15.10) | 1@t x)r+IDbut, 01% dx
2| {0+adt, W)@t )+ Eha@isant, D), 0dutt, N} dx

gulﬁ (@uls, 22| Dhuls, x)|*+uls, x)}dsdx
0JG (L)

for some constant ¢ depending only on ¢ and n. Here, we have put

A= sup_|(D'ay, j=0, -+, n, D*ayy, i, j=1, -, n, b;, 7=0, ---n, ¢)|+1.
¢, el

For any ¢, t, with 0=¢,<t, =T, let us put

Blts, ty=_sup | {@uu(s, )+ |Diuts, 019 dx.

os8stiy

We have by the Cauchy-Schwarz inequality that

(15.11) Sm) (s, x)lzdxészsamsl(atu)(r, X)|*drdx

gsﬁ 1@, 0)1*drdxSsEQ, ).

0JG(

Here, we have used the fact that G(»)DG(s) if 0=r<s=T. Combining (15.10)
and we have

(15.12) EQ, )=c A, (1+T2E(Q, t).

If we choose a positive number ¢, so small that ¢ A4,(1+7T2)¢,=1/2, we have by
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that E(0, t)=0 for 0<t<t,, which implies that =0 in I'(0, #,). Replacing
0 by t, and ¢, by 2, and repeating the argument just mentioned, we have that
u=0 in I'(¢t, 2t,). A finite number of iterations of this argument implies that
u=0 in I'(0, T)=I". This completes the proof of the lemma.

Now, we shall show the uniqueness theorem by using Lemma 15.1. Let u,
v be C3(D) solutions of (P) satisfying

(15.13) IAu]oo,o,oéal .

Here J, is a positive constant determined later. Put w=u—v. By Taylor series

expansion, we have
(6%—|—at—d)w+gz(d,zF)(t, %, 0 Adu-t+(1—6)Av)df Aw=0 in 9,
(15.14) w=0 on 9/,
w(0, x)=(0,w)(0, x)=0 in 2.

First, we shall prove u=v in [0, 1]X . For this purpose, we may show that
w=0 in {¢ x); |x|SR+p(l—1t), x=, 0=<t<1} for any R>r, If we choose
0; so small that

(15.15) (0, lles, 2 F-1(0:2)0, oo, s+ (O, H=ds,

where f=(0%4+0,—Au+F (¢, x, Au) and d, is the same as in we have by
that

@)(0, x)=@@%u)(0, x)=u(x, D%u(0, x), Diu(0, x), f(0, x)).
This implies

o, D=0, )+ @), 2ds,
(15.16) @)t, D)=@a(0, 0+ @)s, 1ds,

@)t =@, 1)+ Gw)s, x)ds.
For any ¢, t; with 0=¢,<?#,<1, let us put
L'ty t)={t, x); x€2, |x| SR+pl—1), t,<t=t}
where p is the same as in Lemma 15.1. Put

(15.17) ' e= sup [(Av), x)|.

t, zHrel(,n

It follows from [15.13), [15.16) and that
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(15.18) sup  |(Av)(s, x)|Stp+c(n)d,

s, el (o, )

for some constant ¢(n) depending only on n. On the other hand, since d;F (¢, x, 0)
=0, we can choose 0, small so that

(15.19) |dFt, x, H|=1/2 if (¢, x)€9D, |A]|=0,,
Therefore, if we choose 4, and t, so small that

(15.20) c(n)0,=0:/2, pt,=0./2,

we have by [15.13), [15.18) and [(15.19) that

(15.21) \Sid‘F(” %, 0 Au+(1—0)Av)do| <1/2

for (¢, x)I'(0, t,). Since u, veC?*(9), S:d;F(t, x, 0Au+(1—6)Av)dd =C*(D). By
this and we have that the linear operator af—l—at—A—l—S:d JF, x, 0 Au+
(1— @) Av)d @ satisfies all conditions in Lemma 15.1. So, applying Lemma I5.1 to
(15.14), we have that w=u—v=0 in I'(0, ¢,). In particular, u(t, x)=v(f, x),
(0,u)(ty, x)=(0,0)(o, x), and (FFu)(t, x)=(0%)(t,, x). Replacing 0 by #, and #, by
2t, and repeating the argument, we have that w=u—v=0 in I'(¢, 2¢,) without
changing the choise of §,. Because, 4, depends only on d. c¢(n) and 9, (cf.

and [15.20)) and 0, depends only on F(t, x, 2). A finite number of itera-
tions of this argument implies that w=v in I'(0, 1). Since we can choose R

arbitrarily large, we have u=v in [0, 11X £. Since d, depends only on d,, c(n)
and J,, we can show by repeated use of the argument just mentioned that u=v
in @ without changing the choice of d,. This completes the proof of the
uniqueness theorem.

APPENDIX
I. Interpolation inequality

THEOREM AP. 1 (Interpolation inequality). Let OCR" be a domain. Assume
that the boundary of © is compact and C*=, or =R", or that O=R". Assume
that all semi-norms appearing below are finite. Then, the following three assertions
are valid for any integers N and M with 0SN=M and p with 1=p=oco.

(i) D¥¢llo, ,=ClPllo. )" ¥ ™ (IBllo, p, )™ ™.
(ii) For any closed interval I=[a, bJCR' (—oo=a<b=c0),

ID¥ flo.p,1.0=C(I flo.p. 1.0 N (1 flo,p, 1. a)V'™.
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(i) For any non-negative real number k.
ID¥glo, 58, 0=Cllglo.p e V™ glo,p )™

Here all the constants C are independent of the functions ¢, f and g.

ProoF. First, we shall prove the theorem in the case of ©=R™ The
assertion (i) is the well-known classical interpolation inequality. Using a rep-
resentation theorem due to Muramatsu [10], we can show the following in the
same manner as in the proof of Lemma 2.2.4 in Shibata [1&].

(Ap. 1) I DY g1 3, 6 oSCUg s 1,00 " V(| g5, 0 a)¥ '™
where ]glgﬁ,k,stuE)(l—l-Itl)kllﬁNg(t, % If O satisfies the assumption of the
tER

theorem, via local map, using an extension theorem due to Seeley [17], we can
the following three assertions.

(Ap.2) For any ¢ defined on O, there exists ¢’ defined of R™ such that ¢=¢’ in
© and |[¢'ll5, ¥=Clidlo. 5. n-

(Ap.3) For any f defined on IXO, there exists f’ defined on R™' such that
f=f"on IxX0 and |f'|5,0v=C|flo.p.1.n

(Ap.4) For any g defined on [0, o) X0, there exists g’ defined on R™* such that
g=g" on [0, ©)X0 and |g'|3 s, v=Clglo.p, s n-

Here, if we fix the manner of the extension of functions, all the constants C
appearing in (Ap.2)-(Ap.4) depend essentially on only %, N, I, p and O but
independent of ¢, f and g. Combining (Ap.1)-(Ap.4), we have the theorem,
which completes the proof.

The following theorem is also proved in Shibata [18, Lemma 2.2.9]. We can
show it by using Ap.1 and the following elementary inequality :

1

a? b 1
—+7’ where a, b%o, 1§p§00 and ;—{‘?:1

p

a-b=s

THEOREM AP. 2. Let O be the same as in Theorem Ap. 1. Let the semi-
norms appearing below be finite. Let p, g, k, k' be real numbers with 1=p,
g=oo, k, k’20 and I, I’ }Je any closed intervals in R* and M, N, i, j be non-
negative integers with i=M and j<N. Then the following six inequalities hold.

1 Bllp, wllglle v =CUIPNp, il Pllg s n-sH 1Bl 5, a4 5-5llPllg, 51
2° NPllp.ul fla 1. v =CLUGlp, il o 1300 w-sF NPl o, e -5 f Na. 151
3° Nglp.ulflow.v=CUGNp. il flo v en-sH @l men-51f g v
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4° |f|p,1,Mlglq,1',N§C[|flp,l.ilg|q.1'.M+N—i+|f|p,1,M+N—j|g|q,1'.j]-
5° 1 flp )@l e vSCLIflp il &la essnv-st |l 1. 00en-5181q 5 5]
6° |f|p,k.M|g|q, k',N§C[|f|p,k.i|g|q.k',M+N—i+lf]p.k.M+N—jlg|q.k',j]-

Here all the constants C appearing in 1°-6° are independent of ¢, ¢, f and g and
we have omitted the index © in semi-norms.

II. Moser’s lemma

Using Ap. 1 and the well-known technique essentially due to Moser
[9], we have the following theorem (see also Klainerman [5, Lemma 5.1] and
Shibata [18, Lemma 5.127).

THEOREM AP. 3. Let © be the same as in Theorem Ap. 1. Let u=(u,, -+, uy)
with quCoo([O’ OO)XO)7 ].:1, e, S, and |u10,w’o,0§1. If H(t, X, W):H(t, X, W,
o, ws) s a B([0, co)XoX{weR;; |w| =1} function, then for any integer N=0
(i) [HC-, ul, Nlowor=CL, HY1+|ulo w0, L)

Moreover, if H(t, x, 0)=0, then

(i) 1HC, us, Nlo.wo0t=CL, H)|ulo,,0,L.
Here, we have assumed that semi-norms appearing above are all finite.

THEOREM AP. 4. Let N be a non-negative integer and 1=p=co. Let O be
the same as in Theorem Ap. 1, H(x, w)=H(x, w;, ---, ws) be a B°OX {weR?*;
[w|=1}) function and w(x)=(w,(x), ---, ws(x)) with w;sHY©) and |wleo -=1.
Assume that H(x, 0)=0. Then,

IH(:, w(-Dllo.p. »=CO, p, N)lwle,p. v

ProoF. Combining Ap. 1 and the well-known Nirenberg-Gagliardo
inequality, we obtain

IDiwllo, kpri,o =C(p, O, i, B)([wlo,e ) “"®(wlo,p, &) *.
Thus, by means of the technique which is used to show the well-known Moser’s

lemma [9], we can show the theorem. ' Q.E.D.

THEOREM AP. 5. Assume that all semi-norms appearing below are finite. Let
b0, ¢1 and f be data for (P) and v a function defined by (12.1) for ¢, ¢, and f,
and H@, x, ) a B°([0, o)X 2x {|2|=1}) function satisfying the condition:
H(t, x, 0)=0. Then for any p with 1<p=<oo and integer L=0

|H< » AU)]p,o,Léc(L, p)[”¢0”p.17L+2+L+”¢1”p,7'ﬂ+1+L+ If]p.o,ﬁwL:l .
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ProOOF. Since H(t, x, 0)=0, we may write symbolically
H@, x, Av)=H@, x, Av)Av

for some H. It thus follows that there exists a 2=([0, c0)x 2xI") function
G, x, v) (I' is some compact set) such that G(t, x, 0)=0 and

(Ap. 6) Ht, x, Av)=G(t, x, Dyun(x), -, Dius(x)),

where u,=¢, and u;=¢,. Since p()=0 if t=1, we may assume that G(t, x, 7)
=0 if t=1. We have from (Ap.6) that for any integer L=0

(Ap.7)  D*H(, x, Av)=ZF(-DY@F ¥G(t, x, Diua(x), -+, Diuy(x)).

Of course, it follows from the fact: G(t, x, 0)=0 that 07-¥G(¢, x, 0)=0. Therefore,
applying Ap. 4 to (Ap.7), we have

(Ap.8) IDEH(, -, A, =C(L, p)Zioll Diuyllyp, . -

Combining (Ap.8) and we obtain the desired estimate, which com-
pletes the proof.
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