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ON CERTAIN CURVES OF GENUS THREE
WITH MANY AUTOMORPHISMS
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Izumi KURIBAYASHI

Introduction.

Let $k$ be an algebraically closed ground field. When $C$ is a complete non-
singular curve of genus $g$ and $G$ is a subgroup of its automorphism group
$Aut(C)$ , we call the pair $(C, G)$ an $AM$ curve of genus $g$ (AM stands for
“ automorphism “).

In Part I, we consider the $AM$ curve $(K, Aut(K))$ , where $K$ is the plane

curve defined by $x_{1}x_{2}^{3}+x_{2}x_{3}^{3}+x_{3}x_{1}^{3}$ (in char $(k)\neq 7$). It is known [7] that $\#Aut(K)$

attains the Hurwitz’s bound: $84(g-1)$ with $g=3$ , in case char$(k)>g+1$ with
$g=3$ . To determine $(K, Aut(K))$ , we use the fact that $Aut(C)$ of a nonsingular

quartic plane curve $C$ is canonically identified with a subgroup of $PGL(3, k)$ .
We shall show in particular that when char$(k)=3,$ $(K, Aut(K))$ is isomorphic to

the $AM$ curve ( $K_{4},$ PS $U(3,3^{2})$ ), where $K_{4}$ is defined by $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ and $PSU(3,3^{2})$

is a simple subgroup of $PGL(3, k)$ of order 6048. We note that it is the maxi-
mum order among the automorphism groups of (complete nonsingular) curves of
genus 3 [8].

In Part II we consider the families of $AM$ curves $(C, G)$ of genus 3, where
$G$ is isomorphic to the symmetric group of degree 4, $\mathfrak{S}_{4}$ . (We note that $Aut(K)$

contains such subgroups.) In \S 1, we shall determine “ normal forms” of such
$AM$ curves. In \S 2 we shall determine the isomorphism classes in the above

normal forms. In \S 3, using these results, we explain the relations between the

subgroups of Teichm\"uller modular group Mod(3) which are isomorphic to $\mathfrak{S}_{4}$

and their representations on the spaces of holomorphic differentials. In fact, for

an $AM$ Riemann surface $(W, G)$ (similarly defined as in the case of $AM$ curves),

we obtain naturally a subgroup (denoted by $M(W,$ $G)$ ) of the Teichm\"uller modular

group Mod(3), which is isomorphic to $G$ . Also we obtain a subgroup (denoted

by $\rho(W, G))$ of $GL(3, C)$ which is the image of the representation of $G$ on the

space of holomorphic differentials. We shall prove:
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THEOREM. Let $(W, G)$ be an AM Riemann surface of genus three. Assume
that $G$ is isomorphic to $\mathfrak{S}_{4}$ . Then we have;

(1) $M(W, G)$ is Mod(3)-conjugate to either $MG_{24}$ or $MH_{24},$ $\rho(W, G)$ is $GL(3, C)-$

conjugate to either $G_{24}$ or $H_{24}$ .
(2) $M(W, G)\sim MG_{24}$ (resp. $MH_{24}$ ) if and only if $\rho(W, G)\sim G_{24}$ (resp. $H_{24}$ ).

$MG_{24}$ and $MH_{24}$ (resp. $G_{24}$ and $H_{24}$ ) in the above are certain subgroups of
Mod(3) (resp. $GL(3,$ $C)$ ), which are explained in (3.1) of Part II.

Contents.
Part I. On the automorphism group of the Klein’s quartic curve.

\S 1. Notations and theorem.
\S 2. The case char$(k)=2$ .
\S 3. The case char$(k)=3$ .

Part II. On curves of genus three which have automorphism groups isomorphic
to $\mathfrak{S}_{4}$ .

\S 1. Normal forms.
\S 2. Isomorphism classes.
\S 3. Subgroups of Mod(3) which are isomorphic to $\mathfrak{S}_{4}$ and their representa-

tions.

Part I. On the automorphism group of Klein’s quartic curve.
\S 1. Notations and theorem.

1.1. Let $k$ be an algebraically closed base field of characteristic $p\geqq 0$ . A
curve will mean a complete nonsingular curve over $k$ . If $C$ is a nonhyperelliptic
curve of genus 3, then its canonical embedding is a quartic plane curve. Con-
versely, any (nonsingular) quartic plane curve is nonhyperelliptic of genus 3,
and its embedding into the ambient projective plane is canonical.

Let C’ and $C$ be two quartic plane curves. We denote by $Lin(C^{\prime}, C)$ the set
of automorphisms of the ambient projective plane which induce isomorphisms of
C’ onto $C$. Then it is known that the natural mapping of $Lin(C^{\prime}, C)$ into
$Iso(C^{\prime}, C)$ is a bijection.

Considering a system of homogeneous coordinates, we put

$P^{2}=Proj(k[x_{1}, X_{2}, x_{3}]\}$ .
Then we may identify the group of automorphisms of $P^{2},$ $Aut(P^{2})$ , with a pro-
jective linear group, $PGL(3, k)$ . In fact, if a matrix $(a_{ij})$ represents an element
of $PGL(3, k)$ , its corresponding automorphism (of $P^{2}$) is defined by:
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$(x_{1}, X_{2}, x_{3})\leftrightarrow(\sum_{j=1}^{3}a_{1j}x_{j},\sum_{j=1}^{3}a_{2j}x_{j},\sum_{J=1}^{3}a_{3j}x_{j})$ .

If $C$ is a quartic plane curve in $P^{2}=Proj(k[x_{1}, x_{2}, x_{3}])$ the automorphism group
of $C,$ $Aut(C)$ , is always considered as a subgroup of $PGL(3, k)$ . For a matrix
$T=(a_{ij})$ in $M(3, k),$ $\tau*$ denotes the homomorphism of the graded k-algebra

$k[x_{1}, x_{2}, x_{3}]$ , defined by: $x_{i}\mapsto\sum_{j=1}^{\theta}a_{ij}x_{j}(i=1,2,3)$ . And when $T$ is an element

of $GL(3, k)$ and $H$ is a subset or an element of $GL(3, k)$ , we denote $T^{-1}\cdot H\cdot T$

by $T^{*}(H)$ .
We use the same notation for a quartic curve and a generator of its homo-

geneous ideal of definition. And we denote an element of $PGL(3, k)$ by its
representatives when there is no fear of confusion. Then, for example, if $C$ is
a quartic curve and $H$ is a subset of $Aut(C)$ , then for any element $T$ of
$PGL(3, k),$ $T^{*}(C)$ is well-defined as a plane curve, and $T^{*}(H)$ is also well-defined
as a subset of $Aut(T^{*}(C))$ .

1.2. Notations. We fix a primitive 7-th root $\zeta$ of unity in $k$ (if exists), and
we denote: (cf. [1])

$\beta_{1}$ $:=\zeta^{6}+\zeta^{2}$ , $\beta_{2}$ $:=\zeta^{3}+\zeta^{4}$ , $\beta_{3}$ $:=\zeta^{6}+\zeta$ ,

$\gamma_{1}$ $:=\zeta^{6}-\zeta^{2}$ , $\gamma_{2}$ $:=\zeta^{3}-\zeta^{4}$ , $\gamma_{3}$ $:=\zeta^{6}-\zeta$,

$\theta_{1}$ $:=\zeta+\zeta^{2}+\zeta^{4}$ , $\theta_{2}$ $:=\zeta^{6}+\zeta^{5}+\zeta^{3}$ and

$\alpha_{1}$ $;=\beta_{3}+\beta_{1}$ , $\alpha_{2}$ $:=\beta_{1}+\beta_{2}$ , $\alpha_{3}$ $:=\beta_{2}+\beta_{3}$ .

It is immediate to see:

(1) $\beta_{1}^{2}=\beta_{2}+2,$ $\beta_{2}^{2}=\beta_{3}+2,$ $\beta_{3}^{2}=\beta_{1}+2,$ $\beta_{1}\beta_{2}=\beta_{1}+\beta_{3},$ $\beta_{2}\beta_{3}=\beta_{2}+\beta_{1},$ $\beta_{3}\beta_{1}=\beta_{3}+\beta_{2}$ ,

(2) $\beta_{1},$ $\beta_{2}$ and $\beta_{3}$ are the distinct three roots of the equation $\beta^{3}+\beta^{2}-2\beta+1=0$,

(3) $\theta_{1}$ and $\theta_{2}$ are the distinct two roots of the equation $(2\theta+1)^{2}+7=0$ ,

(4) $\beta_{1}\gamma_{1}=\gamma_{2},$ $\beta_{2}\gamma_{2}=\gamma_{3},$ $\beta_{3}\gamma_{3}=\gamma_{1},$ $\alpha_{1}\gamma_{1}=\gamma_{3},$ $\alpha_{2}\gamma_{2}=\gamma_{1},$ $\alpha_{3}\gamma_{3}=\gamma_{2}$ .

Next we define distinguished elements and a subgroup of $GL(3, k)$ as fol-
lows: (cf. [3, p. 444])

$\lambda:=D(\zeta^{2}, \zeta^{4}, \zeta)$ , $\sigma_{i}$
$:=\gamma_{i}\cdot(\theta_{1}-\theta_{2})^{-1}\cdot S(\alpha_{i}, \beta_{i}, 1),$ $(i=1,2,3)$

$\tau:=\left(\begin{array}{lll}0 & 1 & 0\\0 & 0 & 1\\1 & 0 & 0\end{array}\right)$ , where $D(a, b, c)=\left(\begin{array}{lll}a & 0 & 0\\0 & b & 0\\0 & 0 & c\end{array}\right)$ and $S(a, b, c)=(bac$ $abc$
$abc$

And $G_{K}$ $:=\langle\lambda, \tau, \sigma\rangle$ , where $\sigma;=\sigma_{1}$ .

1.2.1. LEMMA. The followings hold in $GL(3, k)$ :
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(1) the order of $\lambda$ (resp. $\tau,$ $\sigma$ ) is 7 (resp. 3, 2).

(2) $\sigma_{1}=\tau\sigma_{2},$ $\sigma_{2}=\tau\sigma_{3},$ $\sigma_{3}=\tau\sigma_{1},$ $\sigma_{1}\tau=\sigma_{2},$ $\sigma_{2}\tau=\sigma_{3},$ $\sigma_{3}\tau=\sigma_{1}$ ,

(3) $\tau\lambda\tau^{-1}=\lambda^{2}$ ,
(4) “ defining relation” $\sigma_{i}\lambda^{-2i}\sigma_{i}=\lambda^{2i}\sigma_{i}\lambda^{2i}(i=1,2,3)$ .

PROOF. These are followed from above by direct calculation.

1.3. LEMMA. Assume that char $(k)\neq 7$ . There is an isomorphism of $PSL(2,7)$

onto $G_{K}$ sending $\left\{\begin{array}{ll}1 & 1\\0 & 1\end{array}\right\}(resp$ . $\left\{\begin{array}{ll}2 & 0\\0 & 1\end{array}\right\},$ $\left\{\begin{array}{ll}0 & 3\\1 & 0\end{array}\right\})$ to $\lambda$ (resp. $\tau,$ $\sigma$ ). Hence the

natural homomorphism of $G_{K}$ into $PGL(3, k)$ is injective.

PROOF. We have known that the followings are defining relations for
$PSL(2,7)$ :

$x^{7}=y^{3}=1$ , $y^{-1}xy=x^{2}$ , $t^{2}=1$ , $t^{-1}yt=y^{-1}$ and $(xt)^{3}=1$ .
If we take (in $PSL(2,7)$ )

$\left\{\begin{array}{ll}1 & 1\\0 & 1\end{array}\right\},$ $\left\{\begin{array}{ll}2 & 0\\0 & 1\end{array}\right\}$ and $\left\{\begin{array}{ll}2 & 0\\0 & 1\end{array}\right\}\left\{\begin{array}{ll}0 & 3\\1 & 0\end{array}\right\}\left\{\begin{array}{ll}2 & 0\\0 & 1\end{array}\right\}$

in lieu of $x,$ $y$ and $z$, then these satisfy the above relations. From (1.2.1) $\lambda,$ $\tau^{-1}$

and $\tau^{-1}\sigma\tau$ also satisfy the relations. Therefore there is a surjective homomor-
phism as in the statement of the Lemma. Since $PSL(2,7)$ is a simple group
(of order 168), this is an isomorphism. Then the latter part is obvious. Q. E. D.

1.4. A couple $(C, G)$ of a curve $C$ and its automorphism group $G$ shall be
called an $AM$ curve. An isomorphism of $AM$ curves of $(C^{\prime}, G^{\prime})$ onto $(C, G)$ is
an isomorphism of curves $T:C^{\prime}\rightarrow C$ such that $G^{\prime}=T^{-1}GT$ . In this case we
denote $(C^{\prime}, G^{\prime})$ by $T^{*}(C, G)$ or $(T^{*}(C), T^{*}(G))$ , and also write $(C^{\prime}, G^{\prime})\cong(C, G)$ .

The purpose of this part is to prove the following theorem:

1.4.1. THEOREM. When char $(k)\neq 3$ (resp. char$(k)=3$), $(K, Aut(K))$ is isomor-
phic (as AM curves) to $(K, G_{K})$ (resp. $(K_{4},$ $PSU(3,3^{2}))$ ). Moreover when char $(k)$

$=2,$ $(K, Aut(K))$ is isomorphic to $(K_{2}, PSL(3,2))$ .
In the above, $K$ denotes the plane curve defined by $x_{1}x_{2}^{3}+x_{2}x_{3}^{3}+x_{3}x_{1}^{3}$ , in

case char $(k)\neq 7$ . $K_{4}$ denotes the curve $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ and $K_{2}$ denotes the curve
$x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{1}^{2}x_{2}^{2}+x_{2}^{2}x_{3}^{2}+x_{3}^{2}x_{1}^{2}+x_{1}x_{2}x_{3}(x_{1}+x_{2}+x_{3})$ . And $PSU(3,3^{2})$ denotes the
injective image in $PGL(3, k)$ (in case char$(k)=3$) of

$SU(3,3^{2})=\{A\in SL(3,3^{2})|{}^{t}A\cdot A^{(3)}=I\}$ ,
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where $A^{(l)}$ $:=(a_{ij}^{l})$ if $A=(a_{ij})$ . It is known as a simple group of order $2^{5}\cdot 3^{3}\cdot 7$

$=6048$ . PS $L(3,2)$ denotes the injective image in $PGL(3, k)$ (in case char $(k)$

$=2)$ of a finite general linear group $GL(3,2)$ . It is known as a simple group
of order $2^{3}\cdot 3\cdot 7=168$ .

A part of proof. First we note that in case where char$(k)=7,$ $K$ is a
singular plane curve, so we omit this case. Now it follows that $\lambda^{*}(K)=K$,

$\tau^{*}(K)=K$ and $\sigma^{*}(K)=K$ in $k[x_{1}, X_{2}, x_{3}]$ by direct calculation using (1.2). So
$G_{K}$ is contained in $Aut(K)$ (in $PGL(3,$ $k)$ ). On the other hand, when char $(k)\neq 2$

or 3, it follows from [7] that $\#Aut(K)\leqq 84(g-1)$ with $g=3$ . Thus we get that
$Aut(K)=G_{K}$ in these cases.

The excluded cases are settled in \S 2, (2.2.1) and \S 3, (3.1.1).

\S 2. The case char $(k)=2$ .
Throughout this section we assume that char$(k)=2$ . First we write down

rather general notations for the use in Part II.

2.1. Notations. We define distinguished subgroups of $GL(3,2)$ :

$G_{8}$ $:=\langle R_{+}, R_{-}\rangle,$ $G_{24}(+):=\langle S_{+}, R_{+}R_{-}\rangle,$ $ G_{24}(-):=\langle S_{-}, R_{+}R_{-}\rangle$

where

$R_{+}:=(100$ $011$ $001$ $R_{-}:$ $=(001$ $001$ $011$ $S_{+}:$ $=(001$ $001$ $011$ $S_{-}:$ $=(110$ $001$ $001$

Here we have known that $G_{8}$ is a 2-Sylow subgroup of $GL(3,2)$ and that $G_{24}(+)$

and $G_{24}(-)$ are isomorphic to the symmetric group of degree 4, $\mathfrak{S}_{4}$ .
Also we define distinguished families of $AM$ curves as follows:

$F_{8}$ $:=the$ set of $AM$ curves $(C(a, b),$ $G_{8}$) (with parameters $a$ and b)

$F_{24}(+):=the$ set of $AM$ curves $(C(a, a),$ $G_{24}(+))$

$F_{24}(-):=the$ set of $AM$ curves $(C(1, b),$ $G_{24}(-))$

where

$C(a, b):=x_{1}^{4}+ax_{2}^{4}+bx_{3}^{4}+x_{1}^{2}x_{2}^{2}+ax_{2}^{2}x_{3}^{2}+x_{3}^{2}x_{1}^{2}+x_{1}x_{2}x_{3}(x_{1}+x_{2}+x_{3})$ .

When $G$ is a subgroup of $GL(3, k)$ (in any characteristic) we denote by

$F(G)$ the set of (nonsingular) quartic $AM$ curves $(C, G)$ . Forgetting automor-

phism groups, we also use the above each family as the set of corresponding

curves.
Now we prove a lemma which characterize the curve $K_{2}$ .
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2.1.1. LEMMA. We have: $F_{24}(+)=F(G_{24}(+))$ and $F_{24}(-)=F(G_{24}(-))$ . Hence
$F(PSL(3,2))=\{K_{2}\}$ .

PROOF. Comparing coefficients we see easily that $F(\langle R_{+}R_{-}\rangle)=the$ set of
curves $C(a, b, c_{2}, c_{3})$ , where $C(a, b, c_{2}, c_{3}):=x_{1}^{4}+ax_{2}^{4}+bx_{3}^{4}+(x_{1}^{2}x_{2}^{2}+c_{2}x_{2}^{2}x_{3}^{2}+c_{3}x_{3}^{2}x_{1}^{2})$

$+x_{1}x_{2}x_{3}(x_{1}+x_{2}+x_{3})+(1+c_{3})x_{2}^{3}x_{3}+(1+c_{3}+a+c_{2})x_{2}x_{3}^{3}+(1+c_{3})x_{1}x_{3}^{3}$ with $a,$ $b,$ $c_{2}$

and $c_{3}$ in $k$ . Again comparing coefficients as for $S_{+}$ (resp. $S_{-}$ ), we get that
$F(\langle S_{+}, R_{+}R_{-}\rangle)=the$ set of curves of the form $C(a, a, a, 1)i$ . $e$ . $F_{24}(+)$ , and that
$F(\langle S_{\leftarrow}, R_{+}R_{-}\rangle)=the$ set of curves of the form $C(1, b, 1,1)i$ . $e$ . $F_{24}(-)$ . Since
$\langle S_{+}, S_{-}, R_{+}R_{-}\rangle$ is equal to $PSL(3,2)$ , it follows from these facts that $F(PSL(3,2))$

$=F_{24}(+)\cap F_{24}(-)=\{C(1,1)i.e. K_{2}\}$ . Q. E. D.

2.2. We shall prove (2.2.1) using (2.2.2).

2.2.1. PROPOSITION. $(K, Aut(K))\cong$ ( $K_{2},$ PS $L(3,2)$ ).

2.2.2. LEMMA. Let $C$ be a curve in $F_{8}$ , and let $T$ be an element of $GL(3, k)$ .
If $T^{*}(C)$ is again a curve in $F_{8}$ , then $T$ is contained in $PSL(3,2)$ (in $PGL(3,$ $k)$).

PROOF of (2.2.2). Let $C=C(a, b)$ and $T=(a_{ij})$ be as above. We denote $T^{(2)}$ :
$=(a_{ij}^{2}),$ $\Delta:=(\Delta_{ij})$ where $\Delta_{ij}$ are the cofactors of the matrix $(a_{tj})$ , and put ${}^{t}\Delta\cdot T^{(2)}$

$=(b_{ij})$ . Then we have (in $k[x_{1},$ $x_{2},$ $x_{3}]$):

$T^{*}(x_{1}x_{2}x_{3}(x_{1}+x_{2}+x_{3}))=T^{*}(x_{1}^{2}x_{2}x_{3}+x_{2}^{2}x_{3}x_{1}+x_{3}^{2}x_{1}x_{2})$

$=(a_{11}^{2}x_{1}^{2}+a_{12}^{2}x_{2}^{2}+a_{13}^{2}x_{3}^{2})(a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3})(a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3})$

$+(a_{21}^{2}x_{1}^{2}+a_{22}^{2}x_{2}^{2}+a_{23}^{2}x_{3}^{2})(a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3})(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})$

$+(a_{31}^{2}x_{1}^{2}+a_{32}^{2}x_{2}^{2}+a_{33}^{2}x_{3}^{2})(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})(a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3})$ .
Thus we have:

(the coefficient of $x_{1}^{2}x_{2}x_{3}$ in $T^{*}(C(a,$ $b))$ )

$=$ ($the$ coefficient of $X_{1}^{2}X_{2}X_{3}$ in $T^{*}(x_{1}x_{2}x_{3}(x_{1}+x_{2}+x_{3}))$ )

$=a_{11}^{2}\Delta_{11}+a_{21}^{2}\Delta_{21}+a_{31}^{2}\Delta_{31}=b_{11}$ .
Similarly we have:

(the coefficient of $x_{2}^{2}x_{2}x_{3}$ (resp. $x_{3}^{2}x_{2}x_{3}$) in $T^{*}(C(a,$ $b))$ ) $=b_{12}$ (resp. $b_{13}$).

(the coefficient of $x_{1}^{2}x_{3}x_{1}$ (resp. $X_{2}^{2}X_{3}X_{1},$ $X_{3}^{2}X_{3}X_{1},$ $x_{1}^{s_{X_{1}X_{2}}},$ $X_{2}^{2}X_{1}X_{2},$ $x_{3}^{2}x_{1}x_{2}$)

in $T^{*}(C(a, b)))=b_{21}$ (resp. $b_{22},$ $b_{ss},$ $b_{31},$ $b_{32},$ $b_{83}$).

Since $T^{*}(C(a, b))$ is a curve in $F_{8}$ , we have that ${}^{t}\Delta\cdot T^{(2)}=(b_{ij})=I$ in $PGL(3, k)$ .
On the other hand we have ${}^{t}\Delta\cdot T=I$ in $PGL(3, k)$ . It follows that $T=T^{(2)}$ in
$PGL(3, k)$ . This means that $T$ is contained in $PSL(3,2)$ . Q.E.D.
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PROOF of (2.2.1). It follows from (2.1.1) and (2.2.2) that $Aut(K_{2})=PSL(3,2)$ .
On the other hand it is easy to see that $S(\beta_{1}, \alpha_{1},1)^{*}K=K_{2}$ (as curves) by (1.2).

Thus we conclude that $(K, Aut(K))$ is isomorphic (as $AM$ curves) to

$(K_{2}, PSL(3,2))$ . Q. E. D.

Also from (2.1.1), (2.2.1) and (2.2.2) we get:

2.2.3. REMARK. $G_{24}(+)$ and $G_{24}(-)$ are not $PGL(3, k)$-conjugate to each
other.

\S 3. The case char $(k)=3$ .
In this section we assume that char$(k)=3$ .

3.1. We shall prove (3.1.1) using (3.1.2).

3.1.1. PROPOSITION. $(K, Aut(K))\cong(K_{4}, PSU(3,3^{2}))$ .

3.1.2. LEMMA. Let $T$ be an element of $GL(3, k)$ such that $T^{*}(K_{4})$ is in $F_{24}$ .
Then $T$ is contained in $PSU(3,3^{2})$ (in $PGL(3,$ $k)$ ), and $T^{*}(K_{4})=K_{4}$ .

In the above, $F_{24}$ denotes (in general when char$(k)\neq 2$), the set of $AM$

curves $(C(a), G_{24})$ where $C(a)$ is a plane curve defined by: $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+$

$a(x_{1}^{2}x_{2}^{2}+x_{2}^{2}x_{3}^{2}+x_{3}^{2}x_{I}^{2}),$ $a\in k$ , and $G_{24}$ is a subgroup $\langle R, S\rangle$ of $GL(3, k)$ , with

$R=(001$ $001$ $001$ and $S=\left(\begin{array}{ll}0-1 & 0\\1 0 & 0\\0 0 & 1\end{array}\right)$

PROOF of (3.1.2). Let $T=(a_{ij})$ and ${}^{t}T\cdot T^{(3)}=(b_{ij})$ . First we note that:

$T^{*}(K_{4})=(a_{11}x_{1}+a_{12}x_{2}+a_{13}x_{3})^{4}+(a_{21}x_{1}+a_{22}x_{2}+a_{23}x_{3})^{4}+(a_{31}x_{1}+a_{32}x_{2}+a_{33}x_{3})^{4}$

$=b_{11}x_{1}x_{1}^{3}+b_{12}x_{1}x_{2}^{3}+b_{13}x_{1}x_{3}^{3}+b_{21}x_{2}x_{1}^{3}+b_{22}x_{2}x_{2}^{3}+b_{23}x_{2}x_{3}^{3}$

$+b_{31}x_{3}x_{1}^{3}+b_{32}x_{3}x_{2}^{3}+b_{33}x_{3}x_{3}^{3}$ .
Hence it follows by the asst.nption that $T^{*}(K_{4})=K_{4}$ and that ${}^{t}T\cdot T^{(3)}=I$ (in

$PGL(3, k))$ . Then we have also that $T^{(3)*}(K_{4})=K_{4}$ , so that ${}^{t}T^{(3)}\cdot T^{(9)}=Ii$ . $e$ .
${}^{t}T^{(9)}\cdot T^{(3)}=I$ . Hence we get that $T=T^{(9)}$ (in $PGL(3,$ $k)$ ). Put $c^{-8}\cdot T=T^{(9)}$ in
$GL(3, k)$ with some $c$ in $k$ . Then we have that $cT$ is in $GU(3,3^{2})$ and so that
$(\det(cT))^{5}\cdot cT$ is in $SU(3,3^{2})$ . Q. E. D.

PROOF of (3.1.1.). It also follows from the above prcof that $PSU(3,3^{2})$ is
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contained in $Aut(K_{4})$ . So we have that $Aut(K_{4})=PSU(3,3^{2})$ . On the other hand
it is easy to see that $S(\beta_{1}, \alpha_{1},1)^{*}(K)=K_{4}$ by (1.2). Thus we conclude that
$(K, Aut(K))$ is isomorphic to $(K_{4}, PSU(3,3^{2}))$ . Q. E. D.

3.2. REMARK. In the similar line (as in (3.1)) we also have that $Aut(X_{q+1})$

is isomorphic to PU$(3, q^{2})$ , if char$(k)=p$ is positive and $q=p^{n}>3$ with $n\geqq 1$ . In
the above, $X_{q+1}$ denotes the (nonsingular) plane curve (of genus $2^{-1}\cdot q(q-1)$ )

defined by: $x_{1}^{q+1}+x_{2}^{q+1}+x_{3}^{q+1}$ . Hence the order of $Aut(X_{q+1})$ is $(q^{3}+1)q^{8}(q^{2}-1)$ .
Moreover if $(3, q+1)=1$ , then PU$(3, q^{2})=PSU(3, q^{2})$ is a simple group. Here we
note that this curve is isomorphic to the curve defined by: $y^{q}+y=x^{q+1},$ $(e$ . $g$ .
[8, p. 528]).

Part II. On curves of genus three which have automorphism groups
isomorphic to $\mathfrak{S}_{4}$ .

\S 1. Normal forms.

The purpose of this section is to prove the following theorem:

1.1. THEOREM. Let $(C, G)$ be an AM curve of genus three. Assume that
$G$ is isomorphic to $\mathfrak{S}_{4}$ . Then there is an isomorphism $T$ (of AM curves) such
that:

(i) $T^{*}(C, G)$ is in $F_{24},$ $hF_{24}$ or $hF_{24}^{\prime}$ , when char $(k)\neq 2$ , or
(ii) $T^{*}(C, G)$ is in $F_{24}(+)$ or $F_{24}(-)$ , when char$(k)=2$ .

In the above we denote:

$F_{24}=the$ set of $AM$ curves $(C(a), G_{24})$ (with a parameter $a$ ), ($3.1$ of Part $I$),

$hF_{24}=$ {$the$ AM curve $(C^{*},$ $hG_{24})$ },
$hF_{24}^{\prime}=$ { $the$ AM curve $(C^{*},$ $hH_{24})$ },

where $C^{*}$ denotes the hyperelliptic curve (in case where char $(k)\neq 2$ or 3) defined
by: $y^{2}=x^{8}+14x^{4}+1$ , and $hG_{24}=\langle A_{4}\cdot J, T_{3}\rangle,$ $ hH_{24}=\langle A_{4}, T_{3}\rangle$ . In the above we
denote by $J$ (resp. $A_{4},$ $T_{3}$) the automorphism of $C^{*}$ defined by $(x, y)\rightarrow(x, -y)$

(resp. $(ix,$ $y),$ $(-i(x-1)\cdot(x+1)^{-1},$ $-4y(x+1)^{-4})$), ( $i$ denotes $\sqrt{-1}$ ).

1.2. The case: char $(k)\neq 2$ and $C$ is nonhyperelliptic. Then we may assume
that $(C, G)$ is a quartic plane $AM$ curve. Since it is obvious that $F(G_{24})=F_{24}$

(cf. (2.1 of Part $I$)), it suffices to show:

1.2.1. LEMMA. Assume that char $(k)\neq 2$ . Let $H$ be a subgroup of $PGL(3, k)$
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iuhich is isomorphic to $\mathfrak{S}_{4}$ . Then $H$ is $PGL(3, k)$ -conjugate to $G_{24}$ .

PROOF. We denote by P-PGL (resp. D-PGL) the set of elements of $PGL(3, k)$

which are represented by $(a_{ij})$ , where $a_{31}=a_{32}=a_{13}=a_{23}=0$ (resp. $a_{ij}=0$ if $i\neq]$ ).

Also we denote $\langle S^{2}, RS^{2}R^{-1}\rangle$ by $G_{4}$ .
Let $ V=\langle A_{1}, A_{2}\rangle$ be the (unique) normal subgroup of $H$ of order 4. We may

assume that $A_{1}=S^{2}$ by the Jordan’s canonical form. Then $A_{2}$ is contained in
P-PGL, which is equal to the centralizer of $S^{2}$ in $PGL(3, k),$ $C_{PGL}(S^{2})$ . Since
$A_{2}^{2}=I$ (in $PGL(3,$ $k)$ ), there is an element $T$ in P-PGL such that $T^{*}(A_{2})$ is in
D-PGL. Thus we get that $T^{*}(V)=\langle T^{*}(A_{1}), T^{*}(A_{2})\rangle=G_{4}$ . So we may assume
that $V$ is equal to $G_{4}$ .

Next it is easy to show that $C_{PGL}(G_{4})=D- PGL$ and that the normalizer of
$G_{4}$ in $PGL(3, k),$ $N_{PGL}(G_{4})$ eguals to $\langle R, S^{\prime}\rangle\cdot C_{PGL}(G_{4})$ , where $S^{\prime}=S^{2}\cdot RSR$ . The-
refore $H$ contains an element of the form $RD$ , where $D=D(\alpha, \beta, 1)$ (cf. (1.2 of
Part $I$)). Let $v$ be a solution of the equation $\alpha\beta v^{3}=1$ . Then we have that $D(\beta v^{2}$ ,

$v,$ $1)^{*}(RD)=R$ (in $PGL(3,$ $k)$ ). Thus we may assume that $R$ belongs to $H$.
Since $H$ is isomorphic to $\mathfrak{S}_{4}$ , we have that $ N_{H}(\langle R\rangle)=\langle R, S^{\prime}D^{\prime}\rangle$ for some

$D^{\prime}=D(\gamma, \delta, 1)$ . It follows from $(S^{\prime}D^{\prime})^{2}=I$ that $\gamma\delta=1$ . And it follows from
$S^{\prime}D^{\prime}\cdot R(S^{\prime}D^{\prime})^{-1}=R^{-1}$ that $\gamma^{2}=\delta$ . Then we have that $D^{\prime*}(S^{\prime}D^{\prime})=S^{\prime}$ . Since this
$D^{\prime}$ is in $ C_{PGL}\langle S^{2}, R\rangle$ , we get that $D^{\prime*}(H)=\langle D^{\prime*}(S^{2}), D^{\prime*}(R), D^{J*}(S^{\prime}D^{\prime})\rangle=G_{24}$ .
This completes the proof of (1.2.1), and hence the theorem (1.1) in case where
char $(k)\neq 2$ and $C$ is nonhyperelliptic.

1.3. The case: $C$ is hyperelliptic.

First we show:

1.3.1. LEMMA. Assume that char $(k)\neq 2$ .
(1) Let $\underline{H}$ be an abelian subgroup of $PGL(2, k)$ of type $(2, 2)$ . Then $\underline{H}$ is

$PGL(2, k)$-conjugate to $\underline{H}_{4}$ , where $\underline{H}_{4}$ denotes $\langle\underline{A}^{2},\underline{B}\rangle$ .
(2) $N_{PGL(2.k)}(\underline{H}_{4})$ is equal to $\langle\underline{A}, \mathcal{I}_{3}\rangle$ and is isomorphic to $\mathfrak{S}_{4}$ .

In the above we denote $\left\{\begin{array}{ll}i & 0\\0 & 1\end{array}\right\}(resp$ . $\left\{\begin{array}{ll}0 & 1\\1 & 0\end{array}\right\},$ $\left\{\begin{array}{ll}1 & -1\\i & i\end{array}\right\})$ by 4 (resp. $\underline{B},$ $\underline{T}_{3}$ ).

Also we shall denote $\left\{\begin{array}{ll}\alpha & 0\\0 & \beta\end{array}\right\}$ by $D(\alpha, \beta)$ .

PROOF. (1) Let $ H-=\langle\underline{A}_{1},\underline{A}_{2}\rangle$ . We may assume that $\underline{A}_{1}=\underline{A}^{2}$ by the Jordan’s
canonical form. Then $\underline{A}_{2}$ is of the form $D(\alpha, 1)\underline{B}$ . Put $\underline{T}=D(\beta, 1)\underline{B}$ with $\beta^{2}=\alpha$ .
Then we have that $\underline{T}^{-1}\cdot\underline{H}Z’=\langle\underline{T}^{-1}\underline{A}_{1}\underline{T}, \underline{T}^{-1}\underline{A}_{2}\underline{T}\rangle=\langle\underline{A}^{2},\underline{B}\rangle=\underline{H}_{4}$ .

(2) It is easy to show that $C_{PGL(2,k)}(\underline{H}_{4})=\underline{H}_{4}$ . Since we have that $\underline{B}^{\prime}\underline{A}^{2}\underline{B}^{\prime-1}$
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$=\underline{A}^{2},\underline{B}^{\prime}\underline{B}\underline{B}^{J- 1}=\underline{A}^{2}\underline{B}$ , where $\underline{B}^{\prime}=\underline{A}^{2}\underline{T}_{3}\underline{A}\underline{T}_{3}$ and that $\underline{T}_{3}^{-1}\underline{A}^{2}\underline{T}_{3}=\underline{B},$ $\underline{T}_{3}\underline{A}^{2}\underline{T}_{3}^{-1}=\underline{A}^{2}\underline{B}$ ,

it follows that $N_{PGL(2,k)}(\underline{H}_{4})=\langle\underline{T}_{3},\underline{B}^{\prime}\rangle\cdot C_{PGL(2,k)}(\underline{H}_{4})$ . Therefore we have that
$ N_{PGL(2,k)}(\underline{H}_{4})=\langle\underline{T}_{3},\underline{A}\rangle$ , since $\langle\underline{A}^{2},\underline{B}, \underline{T}_{3},\underline{B}^{\prime}\rangle=\langle\underline{T}_{3},\underline{A}\rangle$ . Since $(\underline{A}^{-1})^{4}=(\underline{T}_{3}\underline{A})^{2}=$

$(\underline{A}^{-1}\underline{T}_{3}\underline{A})^{3}=I$ , and since $\# N_{PGL(2.k)}(\underline{H}_{4})=24$, we have an isomorphism of $\mathfrak{S}_{4}$ onto
$N_{PGL(2,k)}(\underline{H}_{4})$ . Q. E. D.

Next we shall show the theorem (1.1) in case where $C$ is hyperelliptic. In
this case we have a natural exact sequence $\langle J\rangle\rightarrow Aut(C)\rightarrow PGL(2, k)$ . Since $G$

is isomorphic to $\mathfrak{S}_{4}$ , we have that the image $\underline{G}$ of $G$ in $PGL(2, k)$ is also
isomorphic to $\mathfrak{S}_{4}$ . Thus char $(k)$ must be different from 2, because there is no
elements of order 4 in $PGL(2, k)$ in case char$(k)=2$ . Then $C$ is determined
by $f(x, z)$ , where $f(x, z)$ is a homogeneous form of degree 8 which is a semi-
invariant with respect to $\underline{G}$ . Then we may assume by (1.3.1) that $\underline{G}=N_{PGL(2,k)}(\underline{H}_{4})$ .
Since $f(x, z)$ is a semi-invariant for $\underline{A}$ , we have that $f(x, z)=\alpha x^{8}+\beta x^{4}z^{4}+\gamma z^{8}$

for some $\alpha,$ $\beta$ and $\gamma$ . Moreover since $f(x, z)$ is a semi-invariant for $\underline{B}$ , we have
that Case 1: $\alpha+\gamma=0,$ $\beta=0$, or Case 2: $\alpha=\gamma$ . In Case 1, $f(x, z)$ cannot be a semi-
invariant for $\underline{T}_{3}$ . So Case 1 does not happen. In Case 2, since $f(x, z)$ is a semi-
invariant for $\underline{T}_{3}$ , we have that $14\alpha=\beta i$ . $e$ . $f(x, z)=\alpha(x^{8}+14x^{4}z^{4}+z^{8})$ . Thus we
see that $C$ is defined by $y^{2}=x^{8}+14x^{4}+1$ . Since $\underline{G}=\langle A, \underline{T}_{3}\rangle$ , and since $A_{4}$ and
$T_{3}$ are automorphisms of $C$, we have that $G$ is contained in $\langle A_{4}, T_{3}, J\rangle$ . On the
other hand $T_{3}$ is in $G$ , because there are no element of order 6 in $\mathfrak{S}_{4}$ . Thus
we obtain that $ G=\langle A_{4}J, T_{3}\rangle$ or $\langle A_{4}, T_{3}\rangle$ . This completes the proof of the fact
that $(C, G)$ isomorphic to $(C^{*}, hG_{24})$ or $(C^{*}, hH_{24})$ , in case where $C$ is hyperelliptic.

1.4. The case: char$(k)=2$ . Then we may assume that $C$ is nonhyperelliptic.
And it follows from the Jordan’s canonical form that we may assume that $R_{+}R_{-}$

is in $G$ . Then $C$ equals to some $C(a, b, c_{2}, c_{3})$ in $F(\langle R_{+}R_{-}\rangle)$ (cf. (2.1.1 of Part $I$). If

$T=\left(\begin{array}{lll}1 & \alpha & \beta\\ 0 & 1 & \alpha\\ 0 & 0 & 1\end{array}\right)$ ( $\alpha,$ $\beta$ in $k$ ), then $T$ is in $C_{PGL}(R_{+}R_{-})$ and $T^{*}(C)=C(a^{\prime}, b^{\prime}, c_{2}^{\prime}, c_{3}^{\prime})$

in $F(\langle R_{+}R_{-}\rangle)$ , where $ c_{2}^{\prime}=c_{2}+c_{3}(\alpha^{2}+\alpha)+\alpha^{4}+\alpha^{3}+\beta^{2}+\beta$ , and $ c_{3}^{\prime}=c_{3}+\alpha^{2}+\alpha$ . For
suitable choice of $\alpha$ and $\beta$ , we get that $T^{*}(C)$ is a curve in $F_{8}$ . Hence we may
assume that $C$ is in $F_{8}$ with $R_{+}R_{-}$ in $G$ . It follows from (2.2.2 of Part $I$) that
$Aut(C)$ is contained in $PSL(3,2)$ . It is easy to see that $C_{PSL(3,2)}\langle(R_{+}R_{-})^{2}\rangle=G_{8}$ .
So we have that $G_{8}$ is contained in $G$ . Therefore the normal subgroup of $G$ of
order 4 is either $\langle R_{+}, (R_{+}R_{-})^{2}\rangle$ or $\langle R_{-}, (R_{+}R_{-})^{2}\rangle$ . Since $ N_{PSL(3,2)}\langle R_{+}, (R_{+}R_{-})^{2}\rangle$

$=G_{24}(+)$ , and $N_{PSL(3.2)}\langle R_{-}, (R_{+}R_{-})^{2}\rangle=G_{24}(-)$ , we have that $G=G_{24}(+)$ or $G_{24}(-)$ .
On the other hand, since $F(G_{24}(+))=F_{24}(+)$ and $F(G_{24}(-))=F_{24}(-)$ ($2.1.1$ of Part $I$),

we get that $(C, G)$ is a member of $F_{24}(+)$ or $F_{24}(-)$ . This completes the proof
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of (1.1) in case where char$(k)=2$ .

\S 2. Isomorphism classes.

The purpose of this section is to prove the following theorem:

2.1. THEOREM. Assume that char $(k)\neq 2$ . Let $C(a)$ and $C(a^{\prime})$ be two curves
in $F_{24}$ , where $a\neq 3\theta_{1}$ or $3\theta_{2}$ . Then $C(a)$ is isomorphic to $C(a^{\prime})$ if and only if
$a=a^{\prime}$ .

PROOF. To prove the “ only if” part, we assume that $C(a)\cong C(a^{\prime})$ and
$a\neq a^{\prime}$ . First it is easy to see that $C_{PGL}(G_{24})=\{I\}$ . Since any automorphism of

$\mathfrak{S}_{4}$ is an inner automorphism, we also have that $N_{PGL}(G_{24})=G_{24}$ . Therefore by

the assumption it follows that $Aut(C(a))$ contains strictly $G_{24}$ . Then we apply
a result on the classification of nonhyperelliptic $AM$ curves of genus three [5],

and it follows that $C(a)$ is isomorphic to $K$ or $K_{4}$ .
(1) The case: $C(a)\cong K_{4}$ . When char$(k)=3$ , it follows from (3.1.2 of Part $I$)

that $a=0$ , where this is the excluded value. When char $(k)\neq 3$ , we note that
$\#Aut(K_{4})=96$ , and that $C_{Aut(K_{4})}(S^{2})$ is a 2-Sylow subgroup of $Aut(K_{4})$ with
$\langle D(i, i, -1)\rangle$ as its center. So any 2-Sylow subgroup of $Aut(K_{4})$ has a cyclic

subgroup of order 4 as its center. Since $ C_{PGL}\langle S^{2}, RS^{2}R^{-1}\rangle$ is contained in
D-PGL, $Aut(C(a))$ contains an element of D-PGL of order 4. Then we have
at any rate that $a=0$ . Also we have that $a^{\prime}=0$ . These lead to a contradiction
to the assumption on $a$ and $a^{\prime}$ .

(2) The case: $C(a)\cong K$. We may assume that char $(k)\neq 3$ , by (1.4.1 of Part
$I)$ . If we denote by $S_{0}$ (resp. $\overline{S}_{0}$ ) $S(\zeta^{6}\alpha_{3}, \zeta^{4}\beta_{1},1)$ (resp. $S(\zeta\alpha_{3},$ $\zeta^{3}\beta_{1},1)$ ) (cf. (1.2

of Part $I$)) then by direct calculations we see that $S_{0}^{*}(K)=C(3\theta_{1})$ (in $F_{24}$ ) and
$\overline{S}_{0}^{*}(K)=C(3\theta_{2})$ (in $F_{24}$). Let $T$ be an isomorphism of $K$ onto $C(a)$ . Then $T^{*}(G_{24})$

is $G_{K}$ -conjugate to either $S_{0}^{-1*}(G_{24})$ or $\overline{S}_{0}^{-1*}(G_{24})$ , since $G_{K}=Aut(K)(1.4.1$ of Part
$I)$ and $G_{K}$ is isomorphic to $PSL(2,7)$ . Hence replacing $T$ if necessary, we may
assume that $TS_{0}$ or $T\overline{S}_{0}$ is contained in $N_{PGL}(G_{24})=G_{24}$ , which is contained in
$Aut(C(a))$ . Thus we have at any rate that $a=3\theta_{1}$ or $3\theta_{2}$ , which are the excluded
values. This completes the proof of (2.1).

2.2. REMARK. We have an analogous result for the case char$(k)=2$ , by

(2.2.2 of Part $I$):

Assume that char$(k)=2$ . Let $C(a, b)$ and $C(a^{\prime}, b^{\prime})$ be two curves in $F_{8}$ . Then
$C(a, b)$ is isomorphic to $C(a^{\prime}, b^{\prime})$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$ .
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\S 3. Subgroups of Mod(3) which are isomorphic to $\mathfrak{S}_{4}$ and their
representations.

In this section we work in the category of (compact) Riemann surfaces.

3.1. Notations and theorem.

3.1.1. Let $W_{0}$ be a fixed Riemann surface of genus 3. For each Riemann
surface $W$ of genus 3, we consider the pairs $(W, \alpha)$ , where $\alpha$ are homotopy
classes of orientation-preserving (or shortly $0$ . $p.$ ) homeomorphisms of $W_{0}$ onto
$W$ . Two such pairs $(W, \alpha)$ and $(W^{\prime}, \alpha^{\prime})$ are said to be conformally equivalent
if there is a conformal mapping of $W$ onto $W^{\prime}$ which is an element of $\alpha^{\prime}\alpha^{-1}$ .
We denote by $\langle W, \alpha\rangle$ the equivalence class of $(W, \alpha)$ . And the set of these
classes is called the Teichm\"uller space $T(3)$ of genus 3. $T(3)$ becomes a metric
space [9], and moreover a (simply connected) complex manifold of dimension
$3g-3$ with $g=3[2]$ .

Let $G(W_{0})$ be the group of $0.p$ . homeomorphisms of $W_{0}$ . Each $c$ in $G(W_{0})$

defines a well-defined permutation $c^{*}$ of $T(3)$ sending $\langle W, \alpha\rangle$ to $\langle W, \alpha\cdot c^{-1}\rangle$ . In
fact this $c^{*}$ is a biholomorphic mapping. And so we have a group homomor-
phism of $G(W_{0})$ into $Aut(T(3))$ , the group of biholomorphic mappings of $T(3)$ .
We denote its image by Mod(3). For $\langle W, \alpha\rangle$ in $T(3)$ , we have a natural group
homomorphism (denoted by $M_{\alpha}$ ) of $Aut(W)$ into Mod(3) defined by a $\leftrightarrow(\alpha^{-1}\sigma\alpha)^{*}$ .
It is known that $M_{\alpha}$ defines an isomorphism of $Aut(W)$ and the isotropy sub-
group of Mod(3) at $\langle W, \alpha\rangle$ ( $e$ . $g$ . $[6$ , p. 16, Corollary]). For an $AM$ Riemann
surface $(W, G)$ (defined as in (1.4 of Part I)), taking a homotopy class $\alpha$ of $W_{0}$

onto $W$ , we define a homomorphism (denoted by $M$($W$ , )) of $Aut(W)$ into Mod(3)

as above. Then we note that its image $M(W, G)$ is determined up to Mod(3)-

conjugacy.

3.1.2. For an $AM$ Riemann surface $(W, G)$ of genus 3, taking a basis $\varphi_{1},$ $\varphi_{2}$ ,
$\varphi_{3}$ of the space of holomorphic differentials, we define a representation, $\rho(W, )$ ,

of $Aut(W)$ on the space which is defined by: $\rho(W, \sigma)=(a_{ij})$ in $GL(3, C)$ , where
$\sigma^{*}(\varphi_{i})=\sum_{j=1}^{3}a_{ij}\varphi_{j}(\sigma\in Aut(W))$ . Then we note that the image $\rho(W, G)$ of $G$ is

determined up to $GL(3, C)$-conjugacy.
The purpose of this section is to prove the following theorem:

3.1.3. THEOREM. Let $(W, G)$ be an AM Riemann surface of genus three.
Assume that $G$ is isomorphic to $\mathfrak{S}_{4}$ . Then we have:
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(1) $M(W, G)$ is Mod(3)-conjugate to either $MG_{24}$ or $MH_{24},$ $\rho(W, G)$ is $GL(3, C)-$

conjugate to either $G_{24}$ or $H_{24}$ .
(2) $M(W, G)\sim MG_{24}$ (resp. $MH_{24}$) if and only if $\rho(W, G)\sim G_{24}$ (resp. $H_{24}$).

In the above we denote by $MG_{24}$ (resp. $MH_{24}$) the subgroup $M(C^{*}, hG_{24})$

(resp. $M(C^{*},$ $hH_{24})$ ) of Mod(3). And we denote by $G_{24}$ (resp. $H_{24}$) the subgroup

$\langle R, S\rangle$ (resp. $\langle R,$ $-S\rangle$ ) of $GL(3, C)$ (cf. (3.1 of Part $I$)).

3.2. Our proof is based on the following several lemmas:

3.2.1. LEMMA. Let $(C(a), G_{24})$ is an AM Riemann surface in $F_{24}$ . Then

$\rho(C(a), G_{24})$ is $GL(3, C)$-conjugate to $G_{24}$ .

PROOF. Let $F(x_{1}, x_{2}, x_{3})$ be the homogeneous polynomial defining $C(a)$ .
And we denote by $x$ and $y$ the functions on $C(a),$ $x_{1}/x_{3}$ and $x_{2}/x_{3}$ . Since $C(a)$

is a nonsingular plane curve which meets the line defined by $x_{3}=0$ transversally,

the differentials $xF_{2}^{-1}dx,$ $yF_{2}^{-1}dx$ and $F_{2}^{-1}dx$ form a basis of the space of

holomorphic differentials, where $F_{2}=F_{2}(x, y)=(\frac{\partial}{\partial x_{2}}F)(x, y, 1)$ . If $\rho(C(a), )$ is

the representation with respect to this basis, then we have that $\rho(C(a), S)=S$,

since $S^{*}(xF_{2}^{-1}dx)=-yF_{2}^{-1}dx,$ $S^{*}(F_{2}^{-1}dx)=F_{2}^{-1}dx$ and $S^{*}(yF_{2}^{-1}dx)=x\cdot F_{2}^{-1}dx$ . On

the other hand we have that $R^{*}(F_{2}^{-1}dx)=(4x^{-3}+2a((yx^{-1})^{2}x^{-1}+x^{-1}))^{-1}d(yx^{-1})=$

$(4+2a(x^{2}+y^{2}))^{-1}x(xdy-ydx)=xF_{2}^{-1}dx$ , since $F_{1}(x, y)dx+F_{2}(x, y)dy=0$ .
Hence we also have that $R^{*}(xF_{2}^{-1}dx)=yx^{-1}R^{*}(F_{2}^{-1}dx)=yF_{2}^{-1}dx$ , and that
$R^{*}(yF_{2}^{-1}dx)=x^{-1}R^{*}(F_{2}^{-1}dx)=F_{2}^{-1}dx$ . Thus we get that $\rho(C(a), R)=R$ . The-

refore we conclude that $\rho(C(a), G_{24})=G_{24}$ . Q. E. D.

3.2.2. LEMMA. Let $C^{*}be$ the hyperelliptic surface in (1.1). Then $\rho(C^{*}, hG_{24})$

(resp. $\rho(C^{*},$ $hH_{24})$ ) is $GL(3, C)$-conjugate to $G_{24}$ (resp. $H_{24}$).

PROOF. Let $\rho(C^{*}, )$ be the representation of $Aut(C^{*})$ with respect to the

basis: $i(x^{2}-1)y^{-1}\cdot dx$ , $(x^{2}+1)y^{-1}\cdot dx$ and $2ixy^{-1}\cdot dx$ . First it is obvious that

$\rho(C^{*}, J)=-I$ . Next it follows easily that:

$(A_{4}J)^{*}(i(x^{2}-1)y^{-1}dx)=i^{2}(-x^{2}-1)(-y)^{-1}dx=-(x^{2}+1)y^{-1}dx$ ,

$(A_{4}J)^{*}((x^{2}+1)y^{-1}dx)=i(x^{2}-1)y^{-1}dx$ , and

$(A_{4}J)^{*}(2ixy^{-1}dx)=2ixy^{-1}dx$ .

Hence we obtain that $\rho(C^{*}, A_{4}J)=S$ and $\rho(C^{*}, A_{4})=-S$ . We also have that:

$T_{3}^{*}(y^{-1}dx)=i(x+1)^{2}(2y)^{-1}dx$ , $T_{3}^{*}(xy^{-1}dx)=(x^{2}-1)(2y)^{-1}dx$ and
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$T_{3}^{*}(x^{2}\cdot y^{-1}dx)=-i(x-1)^{2}(2y)^{-1}dx$ .

Hence we obtain that:

$T_{3}^{*}(i(x^{2}-1)y^{-1}dx)=(x^{2}+1)y^{-1}dx$ , $T_{3}((x^{2}+1)y^{-1}dx)=2ixy^{-1}dx$ and
$T_{3}^{*}(2ixy^{-1}dx)=i(x^{2}-1)y^{-1}dx$ .

Therefore it follows that $\rho(C^{*}, T_{3})=R$ . Combining these results, we have that
$\rho(C^{*}, hG_{24})=G_{24}$ and $\rho(C^{*}, hH_{24})=H_{24}$ . Q. E. D.

3.2.3. REMARK. $G_{24}$ and $H_{24}$ are not $GL(3, C)$-conjugate are each other, since
$\langle S\rangle$ and $\langle-S\rangle$ are not conjugate.

3.3. Now we prove the following proposition:

3.3.1. PROPOSITION. Let $C(a)$ and $C(a^{\prime})$ be two Riemann surfaces in $F_{24}$ .
Then there exists an orientation-preserving homeomorphism $f$ of $C(a)$ onto $C(a^{\prime})$

such that $f\cdot A=A\cdot f$ for each automorphism $A$ in $G_{24}$ .

PROOF. We shall prove this proposition in several steps.

Step 1. We denote by $C$ a Zariski-open subset $\{a|C(a)\in F_{24}\}$ of $C$. We fix
an element $a_{0}$ of $C$ . Let $L$ be a topological embedding of $R$ to $C$ such that
$L(O)=a_{0}$ . For $\epsilon>0$ , we denote by $L_{\epsilon}$ the restriction of $L$ to the open interval

\langle $-\epsilon,$ $\epsilon$ ). And we also denote by $L_{\epsilon}$ its image in $C$ .
Then it suffices to show:

CLAIM. There exists an $\epsilon>0$ such that for any $a$ in $L_{\epsilon}$ , there is an $0.p$ .
homeomorphism $f_{a}$ of $C(a_{0})$ to $C(a)$ with the property that $f_{a}\cdot A=A\cdot f_{a}$ for each
$A$ in $G_{24}$ .

If we prove this Claim, then we obtain a desired mapping after composing

of finitely many such mappings as in the Claim.
In the following we shall prove this Claim.

Step 2. Let $a_{0}$ and $L$ be as above. If $n_{1}(a)$ and $n_{2}(a)$ are the two solutions
(in $C$ ) of the equation: $n^{2}+2an+(a+2)=0$, then we denote $N_{i}^{\prime}(a)=1+2(n_{i}(a)+1)^{2}$

$n_{i}(a)^{-1}(i=1,2)$ . If $\epsilon$ is sufficiently small, then we may assume that the map-
ping $N_{i}^{\prime}$ of L\’e to $C$ is continuous, since $N_{1}^{\prime}(a)$ and $N_{2}^{\prime}(a)$ are distinct (and

different from $0$) for each $a$ in $C$ .
Next we choose a quasi-conformal mapping $\psi$ of $P^{1}$ onto $P^{1}$ such that

$\psi(0)=0,$ $\psi(\infty)=\infty,$ $\psi(N\text{\’{i}}(a_{0}))=1$ and $\psi(N_{2}^{\prime}(a_{0}))=i$ . We denote the continuous
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mapping $\psi N_{t}^{\prime}$ by $N_{i}$ .
Let $C$ be the complex subspace of $P^{2}\times L_{\text{\’{e}}}$ defined by the locus of the

equation:
$x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+a(x_{1}^{2}x_{2}^{2}+x_{2}^{2}x_{3}^{2}+x_{3}^{2}x_{1}^{2})=0$ .

Then we have the following Claim:

CLAIM. (1) If we define the continuous mapping $\pi$ of $C$ onto $P^{1}\times L_{\epsilon}$ by
sending $(x_{1}, x_{2}, x_{3}, a)$ to $(\psi(1+(x_{1}^{2}+x_{2}^{2})(x_{2}^{2}+x_{3}^{2})(x_{3}^{2}+x_{1}^{2})(x_{1}x_{2}x_{3})^{-2}, a)$ , then it is
the quotient mapping of $C$ onto $C/G_{24}$ .

(2) The $0$ . $p$ . continuous mapping $\pi_{a}$ ; $\pi^{-1}(a)\rightarrow P^{1}$ (the fiber of $\pi$ over a) is
the natural mapping of $C(a)$ onto $C(a)/G_{24}$ .

(3) The branch points of $\pi_{a}$ are $0,$ $\infty,$ $N_{1}(a)$ and $N_{2}(a)$ .

PROOF. We have (1) and (2) from the fact that the holomorphic mapping
of $C(a)$ to $P^{1}$ defined by $(x_{1}, x_{2}, x_{3})\mapsto 1+(x_{1}^{2}+x_{2}^{2})(x_{2}^{2}+x_{3}^{2})(x_{3}^{2}+x_{1}^{2})(x_{1}x_{2}x_{3})^{-2}$ is the
quotient mapping $C(a)\rightarrow C(a)/G_{24}$ .

Since $G_{24}$ is isomorphic to $\mathfrak{S}_{4}$ , it is easy to see that the branch points are
the images of the following 4 points of $C(a);(1, \omega, \omega^{2})$ : a fixed point of $R$ (in

$C(a))$ , where $\omega$ is a solution of the equation $\omega^{2}+\omega+1=0,$ $(*, 1,0)$ : a fixed point of
$S^{2},$ $(1,1, \sqrt{n_{i}(a)})$ : a fixed point of $S^{2}RSR(i=1,2)$ . These images are in fact $0$ ,
$\infty,$ $N_{1}(a)$ and $N_{2}(a)$ . Q. E. D.

Step 3. We define a mapping $g$ of $P^{1}\times L_{\epsilon}$ into $P^{1}\times L_{\epsilon}$ by $(P, a)->$

$(Re(P)N_{1}(a)+Im(P)N_{2}(a), a)$ (if $ P\neq\infty$ ), and $(\infty, a)\leftrightarrow(\infty, a)$ . If $\epsilon$ is sufficiently
small, then it follows easily that:

(1) $g$ is a homeomorphism such that $g(O, a)=(O, a)$ , $g(\infty, a)=(\infty, a)$ and
$g(N_{i}(a_{0}), a)=(N_{i}(a), a)(i=1,2)$ .

(2) the fiber of $g$ over $a$ (denote it by $g_{a}$ ) is an $0$ . $p$ . homeomorphism.

Step 4. $B(a)$ denotes the set { $(Q, a)$ in $P^{1}\times L_{\epsilon}|Q$ is a branch point of
$\pi_{a}$ : $C(a)\rightarrow P^{1}$ }, and $B$ denotes the union $\bigcup_{a\in L_{\epsilon}}B(a)$ . Since the action of $G_{24}$ on
$C\backslash \pi^{-1}B$ is fixed-point free, the restriction of $\pi$ to $C\backslash \pi^{-1}B$ into $P^{1}\times L_{\text{\’{e}}}\backslash B$ is
surjective and locally homeomorphic.

For a point $P$ of $C(a_{0})\backslash \pi_{a_{0}}^{-1}B(a_{0})$ and $a$ in $L_{\epsilon}$ , let $L(P, a)$ be the lifting with
initial point $P$ (considered as a point of $C$) of the R-curve from $[0, t_{a}]$ to $P^{1}\times L_{\epsilon}$

(where $L(t_{a})=a$ ) defined by $t-g(\pi_{a_{0}}(P), L(t))$ . Then we have a homeomorphism
(denoted by f) of $(C(a_{0})\backslash \pi_{a_{0}}^{-1}B(a_{0}))\times L.$ onto $C\backslash \pi^{-1}B$ , sending $(P, a)$ to the end
point of $L(P, a)$ . This mapping has the property that $f(AP, a)=Af(P, a)$ for
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any automorphism $A$ in $G_{24}$ , since $Af(P, a)$ is the end point of the R-curve
$AL(P, a)$ which is equal to $L(AP, a)$ .

It is obvious that $f$ can be uniquely extended to a homeomorphism (again

denoted by f) of $C(a_{0})\times L_{\epsilon}$ onto $C$, and that $f$ has the property that $f(AP, a)$

$=Af(P, a)$ , because $C\rightarrow L$ . is a proper mapping.

Step 5. The fiber (denoted by $f_{a}$ ) of $f$ over $a\in L_{*}$ is the desired homeo-
morphism of $C(a_{0})$ onto $C(a)$ with the property that $f_{a}A=Af_{a}$ for each $A$ in
$G_{24}$ . The fact that $f_{a}$ is orientation-preserving is followed from (2) of Claim in
Step 2 and from (2) of Step 3. Q. E. D. of (3.3.1).

3.3.2. COROLLARY. Let $(C(a), G_{24})$ and $(C(a^{\prime}), G_{24})$ be two AM Riemann
surfaces in $F_{24}$ . Then $M(C(a), G_{24})$ and $M(C(a^{\prime}), G_{24})$ are Mod(3)-conjugate to
each other.

PROOF. Let $f$ be as in (3.3.1). If we take a homotopy class $\alpha$ of $W_{0}$ onto
$C(a)$ , then we have that $M_{fa}(A)=((f\cdot\alpha)^{-1}A(f\cdot\alpha))^{*}=(\alpha^{-1}\cdot f^{-1}Af\cdot\alpha)^{*}=M_{\alpha}(f^{-1}Af)$

$=M_{\alpha}(A)$ . Thus we have that $M(C(a), G_{24})\sim M(C(a^{\prime}), G_{24})$ . Q. E. D.

3.4. Proof of the theorem: Let $(W, G)$ be as in (3.1.3).

First we note by (3.2.1), (3.2.2) and (1.1) that $\rho(W, G)isGL(3, C)$-conjugate
to either $G_{24}$ or $H_{24}$ , and that $\rho(W, G)\sim G_{24}$ (resp. $H_{24}$ ) if and only if $(W, G)$ is
an element of $F_{24}$ or $hF_{24}$ (resp. of $hF_{24}^{\prime}$), up to isomorphisms of $AM$ Riemann
surfaces.

For the rest of this section we shall prove the similar results as above
concerning the subgroups of Mod(3). In general, when $H$ is a finite subgroup
of Mod(3), we denote by $T(3)^{H}$ the fixed point set $\{\langle W^{\prime}, \alpha\rangle|c^{*}(\langle W^{\prime}, \alpha\rangle)=\langle W^{\prime}, \alpha\rangle$

for all $c^{*}$ in $H$}. If $\langle W^{\prime}, \alpha\rangle$ is an element of $T(3)^{H}$ , we consider the $AM$

Riemann surface $(W^{\prime}, G^{\prime})$ where $G^{\prime}=M_{\alpha}^{-1}(H)$ , and we denote by $d(H)$ the
number: 3 $\cdot$ (genus of $W^{\prime}/G^{\prime}$ ) $-3+\#$ ($branch$ points for $W^{\prime}\rightarrow W^{\prime}/G^{\prime}$ ). Then it
follows from [4] that $T(3)^{H}$ is a simply connected submanifold (of $T(3)$ ) of
dimension $d(H)$ . Since the genus of $c*/hG_{24}$ (resp. $C^{*}/hH_{24}$ ) is $0$ (resp. $0$) and
$\#$ (branch points for $C^{*}\rightarrow C^{*}/hG_{24}$ (resp. $C^{*}/hH_{24}$)) is 4 (resp. 3), we have by

definition that $d(MG_{24})=1$ (resp. $d(MH_{24})=0$). Thus in particular it follows that
$MG_{24}$ is not Mod(3)-conjugate to $MH_{24}$ . Since Mod(3) acts on $T(3)$ properly
discontinuously, it follows from the classification (1.1) and (2.1) that $T(3)^{MG_{24}}$

contains an element $\langle W, \alpha\rangle$ such that $(W, M_{\alpha}^{-1}(MG_{24}))$ is an $AM$ Riemann
surface in $F_{24}$ up to isomorphisms. Hence by (3.3.2) we have that $M(C(a), G_{24})$
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is conjugate to $MG_{24}$ for any $AM$ Riemann surface $(C(a), G_{24})$ of $F_{24}$ . Thus we
obtain that $M(W, G)$ is Mod(3)-conjugate to either $MG_{24}$ or $MH_{24}$ , and that
$M(W, G)\sim MG_{24}$ (resp. $MH_{24}$) if and only if $(W, G)$ is an element of $F_{24}$ or $hF_{24}$

(resp. of $hF_{24}^{\prime}$), up to isomorphisms of $AM$ Riemann surfaces.
The above two results completes the proof of (3.1.1).
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