ON CERTAIN CURVES OF GENUS THREE WITH MANY AUTOMORPHISMS

By
Izumi KURIBAYASHI

Introduction.

Let k be an algebraically closed ground field. When C is a complete nonsingular curve of genus g and G is a subgroup of its automorphism group $\operatorname{Aut}(C)$, we call the pair (C, G) an $A M$ curve of genus g ($A M$ stands for " automorphism ").

In Part I, we consider the $A M$ curve $(K, \operatorname{Aut}(K))$, where K is the plane curve defined by $x_{1} x_{2}^{3}+x_{2} x_{3}^{3}+x_{3} x_{1}^{3}$ (in $\operatorname{char}(k) \neq 7$). It is known [7] that \#Aut(K) attains the Hurwitz's bound: $84(g-1)$ with $g=3$, in case $\operatorname{char}(k)>g+1$ with $g=3$. To determine $(K, \operatorname{Aut}(K)$), we use the fact that $\operatorname{Aut}(C)$ of a nonsingular quartic plane curve C is canonically identified with a subgroup of $\operatorname{PGL}(3, k)$. We shall show in particular that when $\operatorname{char}(k)=3$, $(K, \operatorname{Aut}(K))$ is isomorphic to the $A M$ curve ($K_{4}, \operatorname{PSU}\left(3,3^{2}\right)$), where K_{4} is defined by $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ and $\operatorname{PSU}\left(3,3^{2}\right)$ is a simple subgroup of $\operatorname{PGL}(3, k)$ of order 6048 . We note that it is the maximum order among the automorphism groups of (complete nonsingular) curves of genus 3 [8].

In Part II we consider the families of $A M$ curves (C, G) of genus 3, where G is isomorphic to the symmetric group of degree $4, \mathbb{S}_{4}$. (We note that $\operatorname{Aut}(K)$ contains such subgroups.) In §1, we shall determine "normal forms" of such $A M$ curves. In $\S 2$ we shall determine the isomorphism classes in the above normal forms. In $\S 3$, using these results, we explain the relations between the subgroups of Teichmüller modular group $\operatorname{Mod}(3)$ which are isomorphic to \mathbb{S}_{4} and their representations on the spaces of holomorphic differentials. In fact, for an $A M$ Riemann surface (W, G) (similarly defined as in the case of $A M$ curves), we obtain naturally a subgroup (denoted by $M(W, G)$) of the Teichmüller modular group $\operatorname{Mod}(3)$, which is isomorphic to G. Also we obtain a subgroup (denoted by $\rho(W, G)$) of $G L(3, \boldsymbol{C})$ which is the image of the representation of G on the space of holomorphic differentials. We shall prove:

[^0]Theorem. Let (W, G) be an AM Riemann surface of genus three. Assume that G is isomorphic to \mathfrak{S}_{4}. Then we have:
(1) $M(W, G)$ is $\operatorname{Mod}(3)$-conjugate to either $M G_{24}$ or $M H_{24}, \rho(W, G)$ is $G L(3, C)$ conjugate to either G_{24} or H_{24}.
(2) $M(W, G) \sim M G_{24}$ (resp. $M H_{24}$) if and only if $\rho(W, G) \sim G_{24}$ (resp. H_{24}).
$M G_{24}$ and $M H_{24}$ (resp. G_{24} and H_{24}) in the above are certain subgroups of $\operatorname{Mod}(3)($ resp. $G L(3, \boldsymbol{C})$), which are explained in (3.1) of Part II.

Contents.

Part I. On the automorphism group of the Klein's quartic curve.
§ 1. Notations and theorem.
§2. The case $\operatorname{char}(k)=2$.
§3. The case $\operatorname{char}(k)=3$.
Part II. On curves of genus three which have automorphism groups isomorphic to \mathbb{S}_{4}.
§1. Normal forms.
§ 2. Isomorphism classes.
§3. Subgroups of $\operatorname{Mod}(3)$ which are isomorphic to \mathbb{S}_{4} and their representations.

Part I. On the automorphism group of Klein's quartic curve.

§ 1. Notations and theorem.

1.1. Let k be an algebraically closed base field of characteristic $p \geqq 0$. A curve will mean a complete nonsingular curve over k. If C is a nonhyperelliptic curve of genus 3, then its canonical embedding is a quartic plane curve. Conversely, any (nonsingular) quartic plane curve is nonhyperelliptic of genus 3 , and its embedding into the ambient projective plane is canonical.

Let C^{\prime} and C be two quartic plane curves. We denote by $\operatorname{Lin}\left(C^{\prime}, C\right)$ the set of automorphisms of the ambient projective plane which induce isomorphisms of C^{\prime} onto C. Then it is known that the natural mapping of $\operatorname{Lin}\left(C^{\prime}, C\right)$ into Iso(C^{\prime}, C) is a bijection.

Considering a system of homogeneous coordinates, we put

$$
\boldsymbol{P}^{2}=\operatorname{Proj}\left(k\left[x_{1}, x_{2}, x_{3}\right]\right\}
$$

Then we may identify the group of automorphisms of $\boldsymbol{P}^{2}, \operatorname{Aut}\left(\boldsymbol{P}^{2}\right)$, with a projective linear group, $P G L(3, k)$. In fact, if a matrix $\left(a_{i j}\right)$ represents an element of $\operatorname{PGL}(3, k)$, its corresponding automorphism (of \boldsymbol{P}^{2}) is defined by:

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\sum_{j=1}^{3} a_{1 j} x_{j}, \sum_{j=1}^{3} a_{2 j} x_{j}, \sum_{j=1}^{3} a_{3 j} x_{j}\right) .
$$

If C is a quartic plane curve in $\boldsymbol{P}^{2}=\operatorname{Proj}\left(k\left[x_{1}, x_{2}, x_{3}\right]\right)$ the automorphism group of C, $\operatorname{Aut}(C)$, is always considered as a subgroup of $P G L(3, k)$. For a matrix $T=\left(a_{i j}\right)$ in $M(3, k), T^{*}$ denotes the homomorphism of the graded k-algebra $k\left[x_{1}, x_{2}, x_{3}\right]$, defined by : $x_{i} \mapsto \sum_{j=1}^{3} a_{i j} x_{j}(i=1,2,3)$. And when T is an element of $G L(3, k)$ and H is a subset or an element of $G L(3, k)$, we denote $T^{-1} \cdot H \cdot T$ by $T^{*}(H)$.

We use the same notation for a quartic curve and a generator of its homogeneous ideal of definition. And we denote an element of $\operatorname{PGL}(3, k)$ by its representatives when there is no fear of confusion. Then, for example, if C is a quartic curve and H is a subset of $\operatorname{Aut}(C)$, then for any element T of $P G L(3, k), T^{*}(C)$ is well-defined as a plane curve, and $T^{*}(H)$ is also well-defined as a subset of $\operatorname{Aut}\left(T^{*}(C)\right)$.
1.2. Notations. We fix a primitive 7 -th root ζ of unity in k (if exists), and we denote: (cf. [1])

$$
\begin{aligned}
& \beta_{1}:=\zeta^{5}+\zeta^{2}, \quad \beta_{2}:=\zeta^{3}+\zeta^{4}, \quad \beta_{3}:=\zeta^{6}+\zeta \\
& \gamma_{1}:=\zeta^{5}-\zeta^{2}, \quad \gamma_{2}:=\zeta^{3}-\zeta^{4}, \quad \gamma_{3}:=\zeta^{6}-\zeta, \\
& \theta_{1}:=\zeta+\zeta^{2}+\zeta^{4}, \quad \theta_{2}:=\zeta^{6}+\zeta^{5}+\zeta^{3} \quad \text { and } \\
& \alpha_{1}:=\beta_{3}+\beta_{1}, \quad \alpha_{2}:=\beta_{1}+\beta_{2}, \quad \alpha_{3}:=\beta_{2}+\beta_{3} .
\end{aligned}
$$

It is immediate to see:
(1) $\beta_{1}^{2}=\beta_{2}+2, \beta_{2}^{2}=\beta_{3}+2, \beta_{3}^{2}=\beta_{1}+2, \beta_{1} \beta_{2}=\beta_{1}+\beta_{3}, \beta_{2} \beta_{3}=\beta_{2}+\beta_{1}, \beta_{3} \beta_{1}=\beta_{3}+\beta_{2}$,
(2) β_{1}, β_{2} and β_{3} are the distinct three roots of the equation $\beta^{3}+\beta^{2}-2 \beta+1=0$,
(3) θ_{1} and θ_{2} are the distinct two roots of the equation $(2 \theta+1)^{2}+7=0$,
(4) $\beta_{1} \gamma_{1}=\gamma_{2}, \beta_{2} \gamma_{2}=\gamma_{3}, \beta_{3} \gamma_{3}=\gamma_{1}, \alpha_{1} \gamma_{1}=\gamma_{3}, \alpha_{2} \gamma_{2}=\gamma_{1}, \alpha_{3} \gamma_{3}=\gamma_{2}$.

Next we define distinguished elements and a subgroup of $G L(3, k)$ as follows: (cf. [3, p. 444])
$\lambda:=D\left(\zeta^{2}, \zeta^{4}, \zeta\right), \quad \sigma_{i}:=\gamma_{i} \cdot\left(\theta_{1}-\theta_{2}\right)^{-1} \cdot S\left(\alpha_{i}, \beta_{i}, 1\right),(i=1,2,3)$
$\tau:=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, where $D(a, b, c)=\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$ and $S(a, b, c)=\left(\begin{array}{ccc}a & b & c \\ b & c & a \\ c & a & b\end{array}\right)$.
And $G_{K}:=\langle\lambda, \tau, \sigma\rangle$, where $\sigma:=\sigma_{1}$.
1.2.1. Lemma. The followings hold in $G L(3, k)$:
(1) the order of λ (resp. τ, σ) is 7 (resp. 3, 2).
(2) $\sigma_{1}=\tau \sigma_{2}, \sigma_{2}=\tau \sigma_{3}, \sigma_{3}=\tau \sigma_{1}, \sigma_{1} \tau=\sigma_{2}, \sigma_{2} \tau=\sigma_{3}, \sigma_{3} \tau=\sigma_{1}$,
(3) $\tau \lambda \tau^{-1}=\lambda^{2}$,
(4) "defining relation" $\sigma_{i} \lambda^{-2 i} \sigma_{i}=\lambda^{2 i} \sigma_{i} \lambda^{2 i}(i=1,2,3)$.

Proof. These are followed from above by direct calculation.
1.3. Lemma. Assume that $\operatorname{char}(k) \neq 7$. There is an isomorphism of $\operatorname{PS} L(2,7)$ onto G_{K} sending $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left(\right.$ resp. $\left.\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right]\right)$ to λ (resp. $\left.\tau, \sigma\right)$. Hence the natural homomorphism of G_{K} into $P G L(3, k)$ is injective.

Proof. We have known that the followings are defining relations for $\operatorname{PSL}(2,7)$:

$$
x^{7}=y^{3}=1, \quad y^{-1} x y=x^{2}, \quad t^{2}=1, \quad t^{-1} y t=y^{-1} \quad \text { and } \quad(x t)^{3}=1 .
$$

If we take (in $\operatorname{PSL}(2,7)$)

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]^{-1} \text { and }\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

in lieu of x, y and z, then these satisfy the above relations. From (1.2.1) λ, τ^{-1} and $\tau^{-1} \sigma \tau$ also satisfy the relations. Therefore there is a surjective homomorphism as in the statement of the Lemma. Since $\operatorname{PSL}(2,7)$ is a simple group (of order 168), this is an isomorphism. Then the latter part is obvious. Q.E.D.
1.4. A couple (C, G) of a curve C and its automorphism group G shall be called an $A M$ curve. An isomorphism of $A M$ curves of (C^{\prime}, G^{\prime}) onto (C, G) is an isomorphism of curves $T: C^{\prime} \rightarrow C$ such that $G^{\prime}=T^{-1} G T$. In this case we denote $\left(C^{\prime}, G^{\prime}\right)$ by $T^{*}(C, G)$ or $\left(T^{*}(C), T^{*}(G)\right)$, and also write $\left(C^{\prime}, G^{\prime}\right) \cong(C, G)$.

The purpose of this part is to prove the following theorem:
1.4.1. Theorem. When $\operatorname{char}(k) \neq 3(r e s p . \operatorname{char}(k)=3),(K, \operatorname{Aut}(K))$ is isomorphic (as AM curves) to (K, G_{K}) (resp. ($K_{4}, \operatorname{PSU}\left(3,3^{2}\right)$). Moreover when $\operatorname{char}(k)$ $=2$, $(K, \operatorname{Aut}(K))$ is isomorphic to ($K_{2}, \operatorname{PSL}(3,2)$).

In the above, K denotes the plane curve defined by $x_{1} x_{2}^{3}+x_{2} x_{3}^{3}+x_{3} x_{1}^{3}$, in case $\operatorname{char}(k) \neq 7 . K_{4}$ denotes the curve $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ and K_{2} denotes the curve $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{3}^{2} x_{1}^{2}+x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)$. And $P S U\left(3,3^{2}\right)$ denotes the injective image in $\operatorname{PGL}(3, k)$ (in case $\operatorname{char}(k)=3$) of

$$
S U\left(3,3^{2}\right)=\left\{\left.A \in S L\left(3,3^{2}\right)\right|^{t} A \cdot A^{(3)}=I\right\}
$$

where $A^{(l)}:=\left(a_{i j}^{l}\right)$ if $A=\left(a_{i j}\right)$. It is known as a simple group of order $2^{5} \cdot 3^{3} \cdot 7$ $=6048$. $P S L(3,2)$ denotes the injective image in $P G L(3, k)$ (in case $\operatorname{char}(k)$ $=2$) of a finite general linear group $G L(3,2)$. It is known as a simple group of order $2^{3} \cdot 3 \cdot 7=168$.

A part of proof. First we note that in case where $\operatorname{char}(k)=7, K$ is a singular plane curve, so we omit this case. Now it follows that $\lambda^{*}(K)=K$, $\tau^{*}(K)=K$ and $\sigma^{*}(K)=K$ in $k\left[x_{1}, x_{2}, x_{3}\right]$ by direct calculation using (1.2). So G_{K} is contained in $\operatorname{Aut}(K)$ (in $P G L(3, k)$). On the other hand, when $\operatorname{char}(k) \neq 2$ or 3 , it follows from [7] that $\# \operatorname{Aut}(K) \leqq 84(g-1)$ with $g=3$. Thus we get that $\operatorname{Aut}(K)=G_{K}$ in these cases.

The excluded cases are settled in $\S 2$, (2.2.1) and $\S 3$, (3.1.1).

§ 2. The case $\operatorname{char}(k)=2$.

Throughout this section we assume that $\operatorname{char}(k)=2$. First we write down rather general notations for the use in Part II.
2.1. Notations. We define distinguished subgroups of $G L(3,2)$:

$$
G_{8}:=\left\langle R_{+}, R_{-}\right\rangle, G_{24}(+):=\left\langle S_{+}, R_{+} R_{-}\right\rangle, G_{24}(-):=\left\langle S_{-}, R_{+} R_{-}\right\rangle
$$

where

$$
R_{+}:=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad R_{-}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad S_{+}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \quad S_{-}:=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Here we have known that G_{8} is a 2-Sylow subgroup of $G L(3,2)$ and that $G_{24}(+)$ and $G_{24}(-)$ are isomorphic to the symmetric group of degree $4, \mathbb{S}_{4}$.

Also we define distinguished families of $A M$ curves as follows:
$F_{8}:=$ the set of $A M$ curves $\left(C(a, b), G_{8}\right)$ (with parameters a and b)
$F_{24}(+):=$ the set of $A M$ curves $\left(C(a, a), G_{24}(+)\right)$
$F_{24}(-):=$ the set of $A M$ curves $\left(C(1, b), G_{24}(-)\right)$
where

$$
C(a, b):=x_{1}^{4}+a x_{2}^{4}+b x_{3}^{4}+x_{1}^{2} x_{2}^{2}+a x_{2}^{2} x_{3}^{2}+x_{3}^{2} x_{1}^{2}+x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right) .
$$

When G is a subgroup of $G L(3, k)$ (in any characteristic) we denote by $F(G)$ the set of (nonsingular) quartic $A M$ curves (C, G). Forgetting automorphism groups, we also use the above each family as the set of corresponding curves.

Now we prove a lemma which characterize the curve K_{2}.
2.1.1. Lemma. We have : $F_{24}(+)=F\left(G_{24}(+)\right)$ and $F_{24}(-)=F\left(G_{24}(-)\right)$. Hence $F(P S L(3,2))=\left\{K_{2}\right\}$.

Proof. Comparing coefficients we see easily that $F\left(\left\langle R_{+} R_{-}\right\rangle\right)=$the set of curves $C\left(a, b, c_{2}, c_{3}\right)$, where $C\left(a, b, c_{2}, c_{3}\right):=x_{1}^{4}+a x_{2}^{4}+b x_{3}^{4}+\left(x_{1}^{2} x_{2}^{2}+c_{2} x_{2}^{2} x_{3}^{2}+c_{3} x_{3}^{2} x_{1}^{2}\right)$ $+x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)+\left(1+c_{3}\right) x_{2}^{3} x_{3}+\left(1+c_{3}+a+c_{2}\right) x_{2} x_{3}^{3}+\left(1+c_{3}\right) x_{1} x_{3}^{3}$ with a, b, c_{2} and c_{3} in k. Again comparing coefficients as for S_{+}(resp. S_{-}), we get that $F\left(\left\langle S_{+}, R_{+} R_{-}\right\rangle\right)=$the set of curves of the form $C(a, a, a, 1)$ i. e. $F_{24}(+)$, and that $F\left(\left\langle S_{-}, R_{+} R_{-}\right\rangle\right)=$the set of curves of the form $C(1, b, 1,1)$ i.e. $F_{24}(-)$. Since $\left\langle S_{+}, S_{-}, R_{+} R_{-}\right\rangle$is equal to $\operatorname{PSL}(3,2)$, it follows from these facts that $\operatorname{F}(\operatorname{PSL}(3,2))$ $=F_{24}(+) \cap F_{24}(-)=\left\{C(1,1)\right.$ i. e. $\left.K_{2}\right\}$.
Q.E.D.
2.2. We shall prove (2.2.1) using (2.2.2).
2.2.1. Proposition. $(K, \operatorname{Aut}(K)) \cong\left(K_{2}, \operatorname{PSL}(3,2)\right)$.
2.2.2. Lemma. Let C be a curve in F_{8}, and let T be an element of $G L(3, k)$. If $T^{*}(C)$ is again a curve in F_{8}, then T is contained in $\operatorname{PSL}(3,2)$ (in $\operatorname{PGL}(3, k)$).

Proof of (2.2.2). Let $C=C(a, b)$ and $T=\left(a_{i j}\right)$ be as above. We denote $T^{(2)}$: $=\left(a_{i j}^{2}\right), \Delta:=\left(\Delta_{i j}\right)$ where $\Delta_{i j}$ are the cofactors of the matrix $\left(a_{i j}\right)$, and put ${ }^{t} \Delta \cdot T^{(2)}$ $=\left(b_{i j}\right)$. Then we have (in $k\left[x_{1}, x_{2}, x_{3}\right]$):

$$
\begin{aligned}
& T^{*}\left(x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)\right)=T^{*}\left(x_{1}^{2} x_{2} x_{3}+x_{2}^{2} x_{3} x_{1}+x_{3}^{2} x_{1} x_{2}\right) \\
&=\left(a_{11}^{2} x_{1}^{2}+a_{12}^{2} x_{2}^{2}+a_{13}^{2} x_{3}^{2}\right)\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}\right)\left(a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}\right) \\
& \quad+\left(a_{21}^{2} 1_{1}^{2}+a_{22}^{2} x_{2}^{2}+a_{23}^{2} x_{3}^{2}\right)\left(a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}\right)\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}\right) \\
& \quad+\left(a_{31}^{2} x_{1}^{2}+a_{32}^{2} x_{2}^{2}+a_{33}^{2} x_{3}^{2}\right)\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}\right)\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}\right) .
\end{aligned}
$$

Thus we have:
(the coefficient of $x_{1}^{2} x_{2} x_{3}$ in $T^{*}(C(a, b))$)

$$
\begin{aligned}
& =\left(\text { the coefficient of } x_{1}^{2} x_{2} x_{3} \text { in } T^{*}\left(x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)\right)\right) \\
& =a_{11}^{2} \Delta_{11}+a_{21}^{2} \Delta_{21}+a_{31}^{2} \Delta_{31}=b_{11} .
\end{aligned}
$$

Similarly we have:
(the coefficient of $x_{2}^{2} x_{2} x_{3}$ (resp. $x_{3}^{2} x_{2} x_{3}$) in $T^{*}(C(a, b))$) $=b_{12}$ (resp. b_{13}).
(the coefficient of $x_{1}^{2} x_{3} x_{1}$ (resp. $x_{2}^{2} x_{3} x_{1}, x_{3}^{2} x_{3} x_{1}, x_{1}^{2} x_{1} x_{2}, x_{2}^{2} x_{1} x_{2}, x_{3}^{2} x_{1} x_{2}$) in $\left.T^{*}(C(a, b))\right)=b_{21}\left(\right.$ resp. $\left.b_{22}, b_{23}, b_{31}, b_{32}, b_{33}\right)$.

Since $T^{*}(C(a, b))$ is a curve in F_{8}, we have that ${ }^{t} \Delta \cdot T^{(2)}=\left(b_{i j}\right)=I$ in $\operatorname{PGL}(3, k)$. On the other hand we have ${ }^{t} \Delta \cdot T=I$ in $P G L(3, k)$. It follows that $T=T^{(2)}$ in $\operatorname{PGL}(3, k)$. This means that T is contained in $\operatorname{PSL}(3,2)$.
Q. E. D.

Proof of (2.2.1). It follows from (2.1.1) and (2.2.2) that $\operatorname{Aut}\left(K_{2}\right)=\operatorname{PS} L(3,2)$. On the other hand it is easy to see that $S\left(\beta_{1}, \alpha_{1}, 1\right) * K=K_{2}$ (as curves) by (1.2). Thus we conclude that $(K, \operatorname{Aut}(K))$ is isomorphic (as $A M$ curves) to ($K_{2}, \operatorname{PSL}(3,2)$).
Q.E.D.

Also from (2.1.1), (2.2.1) and (2.2.2) we get:
2.2.3. Remark. $G_{24}(+)$ and $G_{24}(-)$ are not $P G L(3, k)$-conjugate to each other.

§ 3. The case char $(k)=3$.

In this section we assume that $\operatorname{char}(k)=3$.
3.1. We shall prove (3.1.1) using (3.1.2).
3.1.1. Proposition. $(K, \operatorname{Aut}(K)) \cong\left(K_{4}, \operatorname{PSU}\left(3,3^{2}\right)\right)$.
3.1.2. Lemma. Let T be an element of $G L(3, k)$ such that $T^{*}\left(K_{4}\right)$ is in F_{24}. Then T is contained in $\operatorname{PSU}\left(3,3^{2}\right)$ (in $\operatorname{PGL}(3, k)$), and $T^{*}\left(K_{4}\right)=K_{4}$.

In the above, F_{24} denotes (in general when $\operatorname{char}(k) \neq 2$), the set of $A M$ curves $\left(C(a), G_{24}\right)$ where $C(a)$ is a plane curve defined by: $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+$ $a\left(x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{3}^{2} x_{1}^{2}\right), a \in k$, and G_{24} is a subgroup $\langle R, S\rangle$ of $G L(3, k)$, with

$$
R=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \text { and } S=\left(\begin{array}{crr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Proof of (3.1.2). Let $T=\left(a_{i j}\right)$ and ${ }^{t} T \cdot T^{(3)}=\left(b_{i j}\right)$. First we note that:

$$
\begin{aligned}
T^{*}\left(K_{4}\right)= & \left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}\right)^{4}+\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}\right)^{4}+\left(a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}\right)^{4} \\
= & b_{11} x_{1} x_{1}^{3}+b_{12} x_{1} x_{2}^{3}+b_{13} x_{1} x_{3}^{3}+b_{21} x_{2} x_{1}^{3}+b_{22} x_{2} x_{2}^{3}+b_{23} x_{2} x_{3}^{3} \\
& +b_{31} x_{3} x_{1}^{3}+b_{32} x_{3} x_{2}^{3}+b_{33} x_{3} x_{3}^{3} .
\end{aligned}
$$

Hence it follows by the asst nption that $T^{*}\left(K_{4}\right)=K_{4}$ and that ${ }^{t} T \cdot T^{(3)}=I$ (in $P G L(3, k))$. Then we have also that $T^{(3) *}\left(K_{4}\right)=K_{4}$, so that ${ }^{t} T^{(3)} \cdot T^{(9)}=I$ i. e. ${ }^{t} T^{(9)} \cdot T^{(3)}=I$. Hence we get that $T=T^{(9)}$ (in $P G L(3, k)$). Put $c^{-8} \cdot T=T^{(9)}$ in $G L(3, k)$ with some c in k. Then we have that $c T$ is in $G U\left(3,3^{2}\right)$ and so that $(\operatorname{det}(c T))^{5} \cdot c T$ is in $S U\left(3,3^{2}\right)$.
Q.E. D.

Proof of (3.1.1.). It also follows from the above proof that $\operatorname{PSU}\left(3,3^{2}\right)$ is
contained in $\operatorname{Aut}\left(K_{4}\right)$. So we have that $\operatorname{Aut}\left(K_{4}\right)=\operatorname{PSU}\left(3,3^{2}\right)$. On the other hand it is easy to see that $S\left(\beta_{1}, \alpha_{1}, 1\right)^{*}(K)=K_{4}$ by (1.2). Thus we conclude that $(K, \operatorname{Aut}(K))$ is isomorphic to ($K_{4}, \operatorname{PSU}\left(3,3^{2}\right)$).
Q. E. D.
3.2. Remark. In the similar line (as in (3.1)) we also have that $\operatorname{Aut}\left(X_{q+1}\right)$ is isomorphic to $\operatorname{PU}\left(3, q^{2}\right)$, if $\operatorname{char}(k)=p$ is positive and $q=p^{n}>3$ with $n \geqq 1$. In the above, X_{q+1} denotes the (nonsingular) plane curve (of genus $2^{-1} \cdot q(q-1)$) defined by: $x_{1}^{q+1}+x_{2}^{q+1}+x_{3}^{q+1}$. Hence the order of $\operatorname{Aut}\left(X_{q+1}\right)$ is $\left(q^{3}+1\right) q^{3}\left(q^{2}-1\right)$. Moreover if $(3, q+1)=1$, then $\operatorname{PU}\left(3, q^{2}\right)=\operatorname{PSU}\left(3, q^{2}\right)$ is a simple group. Here we note that this curve is isomorphic to the curve defined by: $y^{q}+y=x^{q+1}$, (e.g. [8, p. 528]).

Part II. On curves of genus three which have automorphism groups isomorphic to \mathfrak{S}_{4}.

§1. Normal forms.

The purpose of this section is to prove the following theorem:
1.1. Theorem. Let (C, G) be an $A M$ curve of genus three. Assume that G is isomorphic to \mathfrak{S}_{4}. Then there is an isomorphism T (of AM curves) such that:
(i) $T^{*}(C, G)$ is in $F_{24}, h F_{24}$ or $h F_{24}^{\prime}$, when $\operatorname{char}(k) \neq 2$, or
(ii) $T^{*}(C, G)$ is in $F_{24}(+)$ or $F_{24}(-)$, when $\operatorname{char}(k)=2$.

In the above we denote:
$F_{24}=$ the set of $A M$ curves $\left(C(a), G_{24}\right)$ (with a parameter $\left.a\right)$, (3.1 of Part I), $h F_{24}=\left\{\right.$ the $A M$ curve $\left.\left(C^{*}, h G_{24}\right)\right\}$,
$h F_{24}^{\prime}=\left\{\right.$ the $A M$ curve ($\left.\left.C^{*}, h H_{24}\right)\right\}$,
where C^{*} denotes the hyperelliptic curve (in case where $\operatorname{char}(k) \neq 2$ or 3) defined by: $y^{2}=x^{8}+14 x^{4}+1$, and $h G_{24}=\left\langle A_{4} \cdot J, T_{3}\right\rangle, h H_{24}=\left\langle A_{4}, T_{3}\right\rangle$. In the above we denote by J (resp. A_{4}, T_{3}) the automorphism of C^{*} defined by $(x, y) \mapsto(x,-y)$ (resp. (ix, y), $\left(-i(x-1) \cdot(x+1)^{-1},-4 y(x+1)^{-4}\right)$), (i denotes $\sqrt{-1}$).
1.2. The case: $\operatorname{char}(k) \neq 2$ and C is nonhyperelliptic. Then we may assume that (C, G) is a quartic plane $A M$ curve. Since it is obvious that $F\left(G_{24}\right)=F_{24}$ (cf. (2.1 of Part I)), it suffices to show :
1.2.1. Lemma. Assume that $\operatorname{char}(k) \neq 2$. Let H be a subgroup of $\operatorname{PGL}(3, k)$
which is isomorphic to \mathfrak{S}_{4}. Then H is $\operatorname{PGL}(3, k)$-conjugate to G_{24}.
Proof. We denote by \boldsymbol{P} - $P G L$ (resp. \boldsymbol{D} - $P G L$) the set of elements of $\operatorname{PGL}(3, k)$ which are represented by ($a_{i j}$), where $a_{31}=a_{32}=a_{13}=a_{23}=0$ (resp. $a_{i j}=0$ if $i \neq j$). Also we denote $\left\langle S^{2}, R S^{2} R^{-1}\right\rangle$ by G_{4}.

Let $V=\left\langle A_{1}, A_{2}\right\rangle$ be the (unique) normal subgroup of H of order 4. We may assume that $A_{1}=S^{2}$ by the Jordan's canonical form. Then A_{2} is contained in $\boldsymbol{P}-P G L$, which is equal to the centralizer of S^{2} in $P G L(3, k), C_{P G L}\left(S^{2}\right)$. Since $A_{2}^{2}=I$ (in $P G L(3, k)$), there is an element T in P - $P G L$ such that $T^{*}\left(A_{2}\right)$ is in D-PGL. Thus we get that $T^{*}(V)=\left\langle T^{*}\left(A_{1}\right), T^{*}\left(A_{2}\right)\right\rangle=G_{4}$. So we may assume that V is equal to G_{4}.

Next it is easy to show that $C_{P G L}\left(G_{4}\right)=\boldsymbol{D}-P G L$ and that the normalizer of G_{4} in $P G L(3, k), N_{P G L}\left(G_{4}\right)$ eguals to $\left\langle R, S^{\prime}\right\rangle \cdot C_{P G L}\left(G_{4}\right)$, where $S^{\prime}=S^{2} \cdot R S R$. Therefore H contains an element of the form $R D$, where $D=D(\alpha, \beta, 1$) (cf. (1.2 of Part $I)$). Let v be a solution of the equation $\alpha \beta v^{3}=1$. Then we have that $D\left(\beta v^{2}\right.$, $v, 1)^{*}(R D)=R$ (in $P G L(3, k)$). Thus we may assume that R belongs to H.

Since H is isomorphic to \Im_{4}, we have that $N_{H}(\langle R\rangle)=\left\langle R, S^{\prime} D^{\prime}\right\rangle$ for some $D^{\prime}=D(\gamma, \delta, 1)$. It follows from $\left(S^{\prime} D^{\prime}\right)^{2}=I$ that $\gamma \delta=1$. And it follows from $S^{\prime} D^{\prime} \cdot R\left(S^{\prime} D^{\prime}\right)^{-1}=R^{-1}$ that $\gamma^{2}=\delta$. Then we have that $D^{\prime *}\left(S^{\prime} D^{\prime}\right)=S^{\prime}$. Since this D^{\prime} is in $C_{P G L}\left\langle S^{2}, R\right\rangle$, we get that $D^{\prime *}(H)=\left\langle D^{\prime *}\left(S^{2}\right), D^{\prime *}(R), D^{\prime *}\left(S^{\prime} D^{\prime}\right)\right\rangle=G_{24}$. This completes the proof of (1.2.1), and hence the theorem (1.1) in case where $\operatorname{char}(k) \neq 2$ and C is nonhyperelliptic.
1.3. The case: C is hyperelliptic.

First we show:
1.3.1. Lemma. Assume that $\operatorname{char}(k) \neq 2$.
(1) Let \underline{H} be an abelian subgroup of $P G L(2, k)$ of type $(2,2)$. Then \underline{H} is $P G L(2, k)$-conjugate to \underline{H}_{4}, where \underline{H}_{4} denotes $\left\langle\underline{A}^{2}, \underline{B}\right\rangle$.
(2) $N_{P G L(2, k)}\left(\underline{H}_{4}\right)$ is equal to $\left\langle\underline{A}, \underline{T}_{3}\right\rangle$ and is isomorphic to \mathbb{S}_{4}.

In the above we denote $\left[\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right]$ (resp. $\left.\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ i & i\end{array}\right]\right)$ by \underline{A} (resp. $\underline{B}, \underline{T}_{3}$). Also we shall denote $\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]$ by $D(\alpha, \beta)$.

Proof. (1) Let $\underline{H}=\left\langle\underline{A}_{1}, \underline{A}_{2}\right\rangle$. We may assume that $\underline{A}_{1}=\underline{A}^{2}$ by the Jordan's canonical form. Then \underline{A}_{2} is of the form $D(\alpha, 1) \underline{B}$. Put $\underline{T}=D(\beta, 1) \underline{B}$ with $\beta^{2}=\alpha$. Then we have that $\underline{T}^{-1} \cdot \underline{H} \underline{T}=\left\langle\underline{T}^{-1} \underline{A}_{1} \underline{T}, \underline{T}^{-1} \underline{A}_{2} \underline{T}\right\rangle=\left\langle\underline{A}^{2}, \underline{B}\right\rangle=\underline{H}_{4}$.
(2) It is easy to show that $C_{P G L(2, k)}\left(\underline{H}_{4}\right)=\underline{H}_{4}$. Since we have that $\underline{B}^{\prime} \underline{A}^{2} \underline{B}^{\prime-1}$
$=\underline{A}^{2}, \underline{B}^{\prime} \underline{B} \underline{B}^{\prime-1}=\underline{A}^{2} \underline{B}$, where $\underline{B}^{\prime}=\underline{A}^{2} \underline{T}_{3} \underline{A} \underline{T}_{3}$ and that $\underline{T}_{3}^{-1} \underline{A}^{2} \underline{T}_{3}=\underline{B}, \underline{T}_{3} \underline{A}^{2} \underline{T}_{3}^{-1}=\underline{A}^{2} \underline{B}$, it follows that $N_{P G L(2, k)}\left(\underline{H}_{4}\right)=\left\langle\underline{T}_{3}, \underline{B}^{\prime}\right\rangle \cdot C_{P G L(2, k)}\left(\underline{H}_{4}\right)$. Therefore we have that $N_{P G L(2, k)}\left(\underline{H}_{4}\right)=\left\langle\underline{T}_{3}, \underline{A}\right\rangle$, since $\left\langle\underline{A}^{2}, \underline{B}, \underline{T}_{3}, \underline{B}^{\prime}\right\rangle=\left\langle\underline{T}_{3}, \underline{A}\right\rangle$. Since $\left(\underline{A}^{-1}\right)^{4}=\left(\underline{T}_{3} \underline{A}\right)^{2}=$ $\left(\underline{A}^{-1} \underline{T}_{3} \underline{A}\right)^{3}=I$, and since $\# N_{P G L(2, k)}\left(\underline{H}_{4}\right)=24$, we have an isomorphism of \mathbb{S}_{4} onto $N_{P G L(2, k)}\left(\underline{H}_{4}\right)$.
Q. E. D.

Next we shall show the theorem (1.1) in case where C is hyperelliptic. In this case we have a natural exact sequence $\langle J\rangle \rightarrow \operatorname{Aut}(C) \rightarrow P G L(2, k)$. Since G is isomorphic to \mathbb{S}_{4}, we have that the image \underline{G} of G in $\operatorname{PGL}(2, k)$ is also isomorphic to \mathfrak{S}_{4}. Thus char (k) must be different from 2, because there is no elements of order 4 in $P G L(2, k)$ in case $\operatorname{char}(k)=2$. Then C is determined by $f(x, z)$, where $f(x, z)$ is a homogeneous form of degree 8 which is a semiinvariant with respect to \underline{G}. Then we may assume by (1.3.1) that $\underline{G}=N_{P G L(2, k)}\left(\underline{H}_{4}\right)$. Since $f(x, z)$ is a semi-invariant for \underline{A}, we have that $f(x, z)=\alpha x^{8}+\beta x^{4} z^{4}+\gamma z^{8}$ for some α, β and γ. Moreover since $f(x, z)$ is a semi-invariant for \underline{B}, we have that Case 1: $\alpha+\gamma=0, \beta=0$, or Case 2: $\alpha=\gamma$. In Case 1, $f(x, z)$ cannot be a semiinvariant for \underline{T}_{3}. So Case 1 does not happen. In Case 2, since $f(x, z)$ is a semiinvariant for \underline{T}_{3}, we have that $14 \alpha=\beta$ i. e. $f(x, z)=\alpha\left(x^{8}+14 x^{4} z^{4}+z^{8}\right)$. Thus we see that C is defined by $y^{2}=x^{8}+14 x^{4}+1$. Since $\underline{G}=\left\langle\underline{A}, \underline{T}_{3}\right\rangle$, and since A_{4} and T_{3} are automorphisms of C, we have that G is contained in $\left\langle A_{4}, T_{3}, J\right\rangle$. On the other hand T_{3} is in G, because there are no element of order 6 in \mathbb{S}_{4}. Thus we obtain that $G=\left\langle A_{4} J, T_{3}\right\rangle$ or $\left\langle A_{4}, T_{3}\right\rangle$. This completes the proof of the fact that (C, G) isomorphic to $\left(C^{*}, h G_{24}\right)$ or $\left(C^{*}, h H_{24}\right)$, in case where C is hyperelliptic.
1.4. The case: $\operatorname{char}(k)=2$. Then we may assume that C is nonhyperelliptic. And it follows from the Jordan's canonical form that we may assume that $R_{+} R_{-}$ is in G. Then C equals to some $C\left(a, b, c_{2}, c_{3}\right)$ in $F\left(\left\langle R_{+} R_{-}\right\rangle\right)$(cf. (2.1.1 of Part $\left.I\right)$. If $T=\left(\begin{array}{ccc}1 & \alpha & \beta \\ 0 & 1 & \alpha \\ 0 & 0 & 1\end{array}\right)(\alpha, \beta$ in $k)$, then T is in $C_{P G L}\left(R_{+} R_{-}\right)$and $T^{*}(C)=C\left(a^{\prime}, b^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right)$ in $F\left(\left\langle R_{+} R_{-}\right\rangle\right)$, where $c_{2}^{\prime}=c_{2}+c_{3}\left(\alpha^{2}+\alpha\right)+\alpha^{4}+\alpha^{3}+\beta^{2}+\beta$, and $c_{3}^{\prime}=c_{3}+\alpha^{2}+\alpha$. For suitable choice of α and β, we get that $T^{*}(C)$ is a curve in F_{8}. Hence we may assume that C is in F_{8} with $R_{+} R_{-}$in G. It follows from (2.2.2 of Part I) that $\operatorname{Aut}(C)$ is contained in $\operatorname{PSL}(3,2)$. It is easy to see that $C_{P S L(3,2)}\left\langle\left(R_{+} R_{-}\right)^{2}\right\rangle=G_{8}$. So we have that G_{8} is contained in G. Therefore the normal subgroup of G of order 4 is either $\left\langle R_{+},\left(R_{+} R_{-}\right)^{2}\right\rangle$ or $\left\langle R_{-},\left(R_{+} R_{-}\right)^{2}\right\rangle$. Since $N_{P S L(3,2)}\left\langle R_{+},\left(R_{+} R_{-}\right)^{2}\right\rangle$ $=G_{24}(+)$, and $N_{P S L(3,2)}\left\langle R_{-},\left(R_{+} R_{-}\right)^{2}\right\rangle=G_{24}(-)$, we have that $G=G_{24}(+)$ or $G_{24}(-)$. On the other hand, since $F\left(G_{24}(+)\right)=F_{24}(+)$ and $F\left(G_{24}(-)\right)=F_{24}(-)(2.1 .1$ of Part $I)$, we get that (C, G) is a member of $F_{24}(+)$ or $F_{24}(-)$. This completes the proof
of (1.1) in case where $\operatorname{char}(k)=2$.

§ 2. Isomorphism classes.

The purpose of this section is to prove the following theorem:
2.1. Theorem. Assume that $\operatorname{char}(k) \neq 2$. Let $C(a)$ and $C\left(a^{\prime}\right)$ be two curves in F_{24}, where $a \neq 3 \theta_{1}$ or $3 \theta_{2}$. Then $C(a)$ is isomorphic to $C\left(a^{\prime}\right)$ if and only if $a=a^{\prime}$.

Proof. To prove the "only if" part, we assume that $C(a) \cong C\left(a^{\prime}\right)$ and $a \neq a^{\prime}$. First it is easy to see that $C_{P G L}\left(G_{24}\right)=\{I\}$. Since any automorphism of \mathfrak{S}_{4} is an inner automorphism, we also have that $N_{P G L}\left(G_{24}\right)=G_{24}$. Therefore by the assumption it follows that $\operatorname{Aut}(C(a))$ contains strictly G_{24}. Then we apply a result on the classification of nonhyperelliptic $A M$ curves of genus three [5], and it follows that $C(a)$ is isomorphic to K or K_{4}.
(1) The case: $C(a) \cong K_{4}$. When $\operatorname{char}(k)=3$, it follows from (3.1.2 of Part I) that $a=0$, where this is the excluded value. When $\operatorname{char}(k) \neq 3$, we note that $\# \operatorname{Aut}\left(K_{4}\right)=96$, and that $C_{\text {Aut }\left(K_{4}\right)}\left(S^{2}\right)$ is a 2 -Sylow subgroup of $\operatorname{Aut}\left(K_{4}\right)$ with $\langle D(i, i,-1)\rangle$ as its center. So any 2 -Sylow subgroup of $\operatorname{Aut}\left(K_{4}\right)$ has a cyclic subgroup of order 4 as its center. Since $C_{P G L}\left\langle S^{2}, R S^{2} R^{-1}\right\rangle$ is contained in $\boldsymbol{D}-P G L$, Aut $(C(a))$ contains an element of $\boldsymbol{D}-P G L$ of order 4. Then we have at any rate that $a=0$. Also we have that $a^{\prime}=0$. These lead to a contradiction to the assumption on a and a^{\prime}.
(2) The case: $C(a) \cong K$. We may assume that $\operatorname{char}(k) \neq 3$, by (1.4.1 of Part $I)$. If we denote by S_{0} (resp. $\left.\bar{S}_{0}\right) S\left(\zeta^{6} \alpha_{3}, \zeta^{4} \beta_{1}, 1\right.$) (resp. $S\left(\zeta \alpha_{3}, \zeta^{3} \beta_{1}, 1\right)$) (cf. (1.2 of Part I)) then by direct calculations we see that $S_{0}^{*}(K)=C\left(3 \theta_{1}\right)$ (in $F_{2_{4}}$) and $\bar{S}_{0}^{*}(K)=C\left(3 \theta_{2}\right)$ (in F_{24}). Let T be an isomorphism of K onto $C(a)$. Then $T^{*}\left(G_{24}\right)$ is $G_{K^{-}}$-conjugate to either $S_{0}^{-1 *}\left(G_{24}\right)$ or $\bar{S}_{0}^{-1 *}\left(G_{24}\right)$, since $G_{K}=\operatorname{Aut}(K)$ (1.4.1 of Part I) and G_{K} is isomorphic to $\operatorname{PSL}(2,7)$. Hence replacing T if necessary, we may assume that $T S_{0}$ or $T \bar{S}_{0}$ is contained in $N_{P G L}\left(G_{24}\right)=G_{24}$, which is contained in Aut $(C(a))$. Thus we have at any rate that $a=3 \theta_{1}$ or $3 \theta_{2}$, which are the excluded values. This completes the proof of (2.1).
2.2. Remark. We have an analogous result for the case $\operatorname{char}(k)=2$, by (2.2.2 of Part I):

Assume that $\operatorname{char}(k)=2$. Let $C(a, b)$ and $C\left(a^{\prime}, b^{\prime}\right)$ be two curves in F_{8}. Then $C(a, b)$ is isomorphic to $C\left(a^{\prime}, b^{\prime}\right)$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$.

§ 3. Subgroups of $\operatorname{Mod}(3)$ which are isomorphic to \mathfrak{S}_{4} and their representations.

In this section we work in the category of (compact) Riemann surfaces.
3.1. Notations and theorem.
3.1.1. Let W_{0} be a fixed Riemann surface of genus 3. For each Riemann surface W of genus 3 , we consider the pairs (W, α), where α are homotopy classes of orientation-preserving (or shortly o. p.) homeomorphisms of W_{0} onto W. Two such pairs (W, α) and ($W^{\prime}, \alpha^{\prime}$) are said to be conformally equivalent if there is a conformal mapping of W onto W^{\prime} which is an element of $\alpha^{\prime} \alpha^{-1}$. We denote by $\langle W, \alpha\rangle$ the equivalence class of (W, α). And the set of these classes is called the Teichmüller space $T(3)$ of genus 3. $T(3)$ becomes a metric space [9], and moreover a (simply connected) complex manifold of dimension $3 g-3$ with $g=3$ [2].

Let $G\left(W_{0}\right)$ be the group of o.p. homeomorphisms of W_{0}. Each c in $G\left(W_{0}\right)$ defines a well-defined permutation c^{*} of $T(3)$ sending $\langle W, \alpha\rangle$ to $\left\langle W, \alpha \cdot c^{-1}\right\rangle$. In fact this c^{*} is a biholomorphic mapping. And so we have a group homomorphism of $G\left(W_{0}\right)$ into $\operatorname{Aut}(T(3)$), the group of biholomorphic mappings of $T(3)$. We denote its image by $\operatorname{Mod}(3)$. For $\langle W, \boldsymbol{\alpha}\rangle$ in $T(3)$, we have a natural group homomorphism (denoted by M_{α}) of $\operatorname{Aut}(W)$ into $\operatorname{Mod}(3)$ defined by $\sigma \mapsto\left(\alpha^{-1} \sigma \alpha\right)^{*}$. It is known that M_{α} defines an isomorphism of $\operatorname{Aut}(W)$ and the isotropy subgroup of $\operatorname{Mod}(3)$ at $\langle W, \alpha\rangle$ (e.g. [6, p. 16, Corollary]). For an $A M$ Riemann surface (W, G) (defined as in (1.4 of Part I)), taking a homotopy class α of W_{0} onto W, we define a homomorphism (denoted by $M(W$,$)) of \operatorname{Aut}(W)$ into $\operatorname{Mod}(3)$ as above. Then we note that its image $M(W, G)$ is determined up to $\operatorname{Mod}(3)$ conjugacy.
3.1.2. For an $A M$ Riemann surface (W, G) of genus 3 , taking a basis φ_{1}, φ_{2}, φ_{3} of the space of holomorphic differentials, we define a representation, $\rho(W$,$) ,$ of $\operatorname{Aut}(W)$ on the space which is defined by: $\rho(W, \sigma)=\left(a_{i j}\right)$ in $G L(3, \boldsymbol{C})$, where $\sigma^{*}\left(\varphi_{i}\right)=\sum_{j=1}^{3} a_{i j} \varphi_{j}(\sigma \in \operatorname{Aut}(W))$. Then we note that the image $\rho(W, G)$ of G is determined up to $G L(3, \boldsymbol{C})$-conjugacy.

The purpose of this section is to prove the following theorem:
3.1.3. Theorem. Let (W, G) be an AM Riemann surface of genus three. Assume that G is isomorphic to \mathfrak{S}_{4}. Then we have:
(1) $M(W, G)$ is $\operatorname{Mod}(3)$-conjugate to either $M G_{24}$ or $M H_{24}, \rho(W, G)$ is $G L(3, \boldsymbol{C})$ conjugate to either G_{24} or H_{24}.
(2) $M(W, G) \sim M G_{24}$ (resp. $\left.M H_{24}\right)$ if and only if $\rho(W, G) \sim G_{24}$ (resp. H_{24}).

In the above we denote by $M G_{24}$ (resp. $M H_{24}$) the subgroup $M\left(C^{*}, h G_{24}\right)$ (resp. $M\left(C^{*}, h H_{24}\right)$) of $\operatorname{Mod}(3)$. And we denote by G_{24} (resp. H_{24}) the subgroup $\langle R, S\rangle$ (resp. $\langle R,-S\rangle$) of $G L(3, C)$ (cf. (3.1 of Part $I)$).
3.2. Our proof is based on the following several lemmas:
3.2.1. Lemma. Let $\left(C(a), G_{24}\right)$ is an $A M$ Riemann surface in F_{24}. Then $\rho\left(C(a), G_{24}\right)$ is $G L(3, \boldsymbol{C})$-conjugate to G_{24}.

Proof. Let $F\left(x_{1}, x_{2}, x_{3}\right)$ be the homogeneous polynomial defining $C(a)$. And we denote by x and y the functions on $C(a), x_{1} / x_{3}$ and x_{2} / x_{3}. Since $C(a)$ is a nonsingular plane curve which meets the line defined by $x_{3}=0$ transversally, the differentials $x F_{2}^{-1} d x, y F_{2}^{-1} d x$ and $F_{2}^{-1} d x$ form a basis of the space of holomorphic differentials, where $F_{2}=F_{2}(x, y)=\left(\frac{\partial}{\partial x_{2}} F\right)(x, y, 1)$. If $\rho(C(a)$,) is the representation with respect to this basis, then we have that $\rho(C(a), S)=S$, since $S^{*}\left(x F_{2}^{-1} d x\right)=-y F_{2}^{-1} d x, S^{*}\left(F_{2}^{-1} d x\right)=F_{2}^{-1} d x$ and $S^{*}\left(y F_{2}^{-1} d x\right)=x \cdot F_{2}^{-1} d x$. On the other hand we have that $R^{*}\left(F_{2}^{-1} d x\right)=\left(4 x^{-3}+2 a\left(\left(y x^{-1}\right)^{2} x^{-1}+x^{-1}\right)\right)^{-1} d\left(y x^{-1}\right)=$ $\left(4+2 a\left(x^{2}+y^{2}\right)\right)^{-1} x(x d y-y d x)=x F_{2}^{-1} d x$, since $F_{1}(x, y) d x+F_{2}(x, y) d y=0$.
Hence we also have that $R^{*}\left(x F_{2}^{-1} d x\right)=y x^{-1} R^{*}\left(F_{2}^{-1} d x\right)=y F_{2}^{-1} d x$, and that $R^{*}\left(y F_{2}^{-1} d x\right)=x^{-1} R^{*}\left(F_{2}^{-1} d x\right)=F_{2}^{-1} d x$. Thus we get that $\rho(C(a), R)=R$. Therefore we conclude that $\rho\left(C(a), G_{24}\right)=G_{24}$.
Q. E. D.
3.2.2. Lemma. Let C^{*} be the hyperelliptic surface in (1.1). Then $\rho\left(C^{*}, h G_{24}\right)$ (resp. $\rho\left(C^{*}, h H_{24}\right)$) is $G L(3, C)$-conjugate to G_{24} (resp. H_{24}).

Proof. Let $\rho\left(C^{*},\right)$ be the representation of $\operatorname{Aut}\left(C^{*}\right)$ with respect to the basis: $i\left(x^{2}-1\right) y^{-1} \cdot d x,\left(x^{2}+1\right) y^{-1} \cdot d x$ and $2 i x y^{-1} \cdot d x$. First it is obvious that $\rho\left(C^{*}, J\right)=-I$. Next it follows easily that:

$$
\begin{aligned}
& \left(A_{4} J\right)^{*}\left(i\left(x^{2}-1\right) y^{-1} d x\right)=i^{2}\left(-x^{2}-1\right)(-y)^{-1} d x=-\left(x^{2}+1\right) y^{-1} d x \\
& \left(A_{4} J\right)^{*}\left(\left(x^{2}+1\right) y^{-1} d x\right)=i\left(x^{2}-1\right) y^{-1} d x, \quad \text { and } \\
& \left(A_{4} J\right)^{*}\left(2 i x y^{-1} d x\right)=2 i x y^{-1} d x
\end{aligned}
$$

Hence we obtain that $\rho\left(C^{*}, A_{4} J\right)=S$ and $\rho\left(C^{*}, A_{4}\right)=-S$. We also have that:

$$
T_{3}^{*}\left(y^{-1} d x\right)=i(x+1)^{2}(2 y)^{-1} d x, \quad T_{3}^{*}\left(x y^{-1} d x\right)=\left(x^{2}-1\right)(2 y)^{-1} d x \quad \text { and }
$$

$$
T_{3}^{*}\left(x^{2} \cdot y^{-1} d x\right)=-i(x-1)^{2}(2 y)^{-1} d x .
$$

Hence we obtain that:

$$
\begin{aligned}
& T_{3}^{*}\left(i\left(x^{2}-1\right) y^{-1} d x\right)=\left(x^{2}+1\right) y^{-1} d x, \quad T_{3}\left(\left(x^{2}+1\right) y^{-1} d x\right)=2 i x y^{-1} d x \quad \text { and } \\
& T_{3}^{*}\left(2 i x y^{-1} d x\right)=i\left(x^{2}-1\right) y^{-1} d x .
\end{aligned}
$$

Therefore it follows that $\rho\left(C^{*}, T_{3}\right)=R$. Combining these results, we have that $\rho\left(C^{*}, h G_{24}\right)=G_{24}$ and $\rho\left(C^{*}, h H_{24}\right)=H_{24}$.
Q. E. D.
3.2.3. Remark. G_{24} and H_{24} are not $G L(3, \boldsymbol{C})$-conjugate are each other, since $\langle S\rangle$ and $\langle-S\rangle$ are not conjugate.
3.3. Now we prove the following proposition:
3.3.1. Proposition. Let $C(a)$ and $C\left(a^{\prime}\right)$ be two Riemann surfaces in F_{24}. Then there exists an orientation-preserving homeomorphism f of $C(a)$ onto $C\left(a^{\prime}\right)$ such that $f \cdot A=A \cdot f$ for each automorphism A in G_{24}.

Proof. We shall prove this proposition in several steps.
Step 1. We denote by \boldsymbol{C}. a Zariski-open subset $\left\{a \mid C(a) \in F_{24}\right\}$ of \boldsymbol{C}. We fix an element a_{0} of \boldsymbol{C}. Let L be a topological embedding of \boldsymbol{R} to \boldsymbol{C} such that $L(0)=a_{0}$. For $\varepsilon>0$, we denote by L_{ε} the restriction of L to the open interval $(-\varepsilon, \varepsilon)$. And we also denote by L_{ε} its image in C.

Then it suffices to show :
Claim. There exists an $\varepsilon>0$ such that for any a in L_{ϵ}, there is an o.p. homeomorphism f_{a} of $C\left(a_{0}\right)$ to $C(a)$ with the property that $f_{a} \cdot A=A \cdot f_{a}$ for each A in G_{24}.

If we prove this Claim, then we obtain a desired mapping after composing of finitely many such mappings as in the Claim.

In the following we shall prove this Claim.
Step 2. Let a_{0} and L be as above. If $n_{1}(a)$ and $n_{2}(a)$ are the two solutions (in \boldsymbol{C}) of the equation: $n^{2}+2 a n+(a+2)=0$, then we denote $N_{i}^{\prime}(a)=1+2\left(n_{i}(a)+1\right)^{2}$ $\cdot n_{i}(a)^{-1}(i=1,2)$. If ε is sufficiently small, then we may assume that the mapping N_{i}^{\prime} of L_{ε} to \boldsymbol{C} is continuous, since $N_{1}^{\prime}(a)$ and $N_{2}^{\prime}(a)$ are distinct (and different from 0) for each a in C.

Next we choose a quasi-conformal mapping ψ of \boldsymbol{P}^{1} onto \boldsymbol{P}^{1} such that $\psi(0)=0, \psi(\infty)=\infty, \psi\left(N_{1}^{\prime}\left(a_{0}\right)\right)=1$ and $\psi\left(N_{2}^{\prime}\left(a_{0}\right)\right)=i$. We denote the continuous
mapping ψN_{i}^{\prime} by N_{i}.
Let C be the complex subspace of $\boldsymbol{P}^{2} \times L_{\varepsilon}$ defined by the locus of the equation:

$$
x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+a\left(x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{3}^{2} x_{1}^{2}\right)=0 .
$$

Then we have the following Claim:
Claim. (1) If we define the continuous mapping π of C onto $\boldsymbol{P}^{1} \times L_{\varepsilon}$ by sending $\left(x_{1}, x_{2}, x_{3}, a\right)$ to $\left(\psi\left(1+\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right)\left(x_{3}^{2}+x_{1}^{2}\right)\left(x_{1} x_{2} x_{3}\right)^{-2}, a\right)\right.$, then it is the quotient mapping of C onto C / G_{24}.
(2) The o.p. continuous mapping $\pi_{a}: \pi^{-1}(a) \rightarrow \boldsymbol{P}^{1}$ (the fiber of π over a) is the natural mapping of $C(a)$ onto $C(a) / G_{24}$.
(3) The branch points of π_{a} are $0, \infty, N_{1}(a)$ and $N_{2}(a)$.

Proof. We have (1) and (2) from the fact that the holomorphic mapping of $C(a)$ to \boldsymbol{P}^{1} defined by $\left(x_{1}, x_{2}, x_{3}\right) \mapsto 1+\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right)\left(x_{3}^{2}+x_{1}^{2}\right)\left(x_{1} x_{2} x_{3}\right)^{-2}$ is the quotient mapping $C(a) \rightarrow C(a) / G_{24}$.

Since G_{24} is isomorphic to \mathbb{S}_{4}, it is easy to see that the branch points are the images of the following 4 points of $C(a) ;\left(1, \omega, \omega^{2}\right)$: a fixed point of R (in $C(a))$, where ω is a solution of the equation $\omega^{2}+\omega+1=0,(*, 1,0)$: a fixed point of $S^{2},\left(1,1, \sqrt{n_{i}(a)}\right)$: a fixed point of $S^{2} R S R(i=1,2)$. These images are in fact 0 , $\infty, N_{1}(a)$ and $N_{2}(a)$.
Q.E.D.

Step 3. We define a mapping g of $\boldsymbol{P}^{1} \times L_{\varepsilon}$ into $\boldsymbol{P}^{1} \times L_{\varepsilon}$ by $(P, a) \mapsto$ ($\left.\operatorname{Re}(P) N_{1}(a)+\operatorname{Im}(P) N_{2}(a), a\right)$ (if $\left.P \neq \infty\right)$, and $(\infty, a) \mapsto(\infty, a)$. If ε is sufficiently small, then it follows easily that:
(1) g is a homeomorphism such that $g(0, a)=(0, a), g(\infty, a)=(\infty, a)$ and $g\left(N_{i}\left(a_{0}\right), a\right)=\left(N_{i}(a), a\right)(i=1,2)$.
(2) the fiber of g over a (denote it by g_{a}) is an o. p. homeomorphism.

Step 4. $B(a)$ denotes the set $\left\{(Q, a)\right.$ in $\boldsymbol{P}^{\mathbf{1}} \times L_{\varepsilon} \mid Q$ is a branch point of $\left.\pi_{a}: C(a) \rightarrow \boldsymbol{P}^{1}\right\}$, and B denotes the union $\underset{a \in L_{\varepsilon}}{\bigcup} B(a)$. Since the action of G_{24} on $C \backslash \pi^{-1} B$ is fixed-point free, the restriction of π to $C \backslash \pi^{-1} B$ into $P^{1} \times L_{\varepsilon} \backslash B$ is surjective and locally homeomorphic.

For a point P of $C\left(a_{0}\right) \backslash \pi_{a_{0}}^{-1} B\left(a_{0}\right)$ and a in L_{ε}, let $L(P, a)$ be the lifting with initial point P (considered as a point of C) of the \boldsymbol{R}-curve from $\left[0, t_{a}\right]$ to $\boldsymbol{P}^{1} \times L_{\varepsilon}$ (where $L\left(t_{a}\right)=a$) defined by $t \mapsto g\left(\pi_{a_{0}}(P), L(t)\right.$). Then we have a homeomorphism (denoted by f) of $\left(C\left(a_{0}\right) \backslash \pi_{a}^{-1} B\left(a_{0}\right)\right) \times L_{\varepsilon}$ onto $C \backslash \pi^{-1} B$, sending (P, a) to the end point of $L(P, a)$. This mapping has the property that $f(A P, a)=A f(P, a)$ for
any automorphism A in G_{24}, since $A f(P, a)$ is the end point of the \boldsymbol{R}-curve $A L(P, a)$ which is equal to $L(A P, a)$.

It is obvious that f can be uniquely extended to a homeomorphism (again denoted by f) of $C\left(a_{0}\right) \times L_{\varepsilon}$ onto C, and that f has the property that $f(A P, a)$ $=A f(P, a)$, because $C \rightarrow L_{s}$ is a proper mapping.

Step 5. The fiber (denoted by f_{a}) of f over $a \in L_{s}$ is the desired homeomorphism of $C\left(a_{0}\right)$ onto $C(a)$ with the property that $f_{a} A=A f_{a}$ for each A in G_{24}. The fact that f_{a} is orientation-preserving is followed from (2) of Claim in Step 2 and from (2) of Step 3.
Q.E.D. of (3.3.1).
3.3.2. Corollary. Let $\left(C(a), G_{24}\right)$ and $\left(C\left(a^{\prime}\right), G_{24}\right)$ be two AM Riemann surfaces in F_{24}. Then $M\left(C(a), G_{24}\right)$ and $M\left(C\left(a^{\prime}\right), G_{24}\right)$ are $\operatorname{Mod}(3)$-conjugate to each other.

Proof. Let f be as in (3.3.1). If we take a homotopy class α of W_{0} onto $C(a)$, then we have that $M_{f \alpha}(A)=\left((f \cdot \alpha)^{-1} A(f \cdot \alpha)\right)^{*}=\left(\alpha^{-1} \cdot f^{-1} A f \cdot \alpha\right)^{*}=M_{\alpha}\left(f^{-1} A f\right)$ $=M_{\alpha}(A)$. Thus we have that $M\left(C(a), G_{24}\right) \sim M\left(C\left(a^{\prime}\right), G_{24}\right)$.
Q.E.D.

3.4. Proof of the theorem: Let (W, G) be as in (3.1.3).

First we note by (3.2.1), (3.2.2) and (1.1) that $\rho(W, G)$ is $G L(3, \boldsymbol{C})$-conjugate to either G_{24} or H_{24}, and that $\rho(W, G) \sim G_{24}$ (resp. H_{24}) if and only if (W, G) is an element of F_{24} or $h F_{24}$ (resp. of $h F_{24}^{\prime}$), up to isomorphisms of $A M$ Riemann surfaces.

For the rest of this section we shall prove the similar results as above concerning the subgroups of $\operatorname{Mod}(3)$. In general, when H is a finite subgroup of $\operatorname{Mod}(3)$, we denote by $T(3)^{H}$ the fixed point set $\left\{\left\langle W^{\prime}, \alpha\right\rangle \mid c^{*}\left(\left\langle W^{\prime}, \alpha\right\rangle\right)=\left\langle W^{\prime}, \alpha\right\rangle\right.$ for all c^{*} in $\left.H\right\}$. If $\left\langle W^{\prime}, \alpha\right\rangle$ is an element of $T(3)^{H}$, we consider the $A M$ Riemann surface (W^{\prime}, G^{\prime}) where $G^{\prime}=M_{\alpha}^{-1}(H)$, and we denote by $d(H)$ the number: $3 \cdot\left(\right.$ genus of $\left.W^{\prime} / G^{\prime}\right)-3+\#\left(\right.$ branch points for $\left.W^{\prime} \rightarrow W^{\prime} / G^{\prime}\right)$. Then it follows from [4] that $T(3)^{H}$ is a simply connected submanifold (of $T(3)$) of dimension $d(H)$. Since the genus of $C^{*} / h G_{24}$ (resp. $C^{*} / h H_{24}$) is 0 (resp. 0) and \# (branch points for $C^{*} \rightarrow C^{*} / h G_{24}$ (resp. $\left.C^{*} / h H_{24}\right)$) is 4 (resp. 3), we have by definition that $d\left(M G_{24}\right)=1$ (resp. $d\left(M H_{24}\right)=0$). Thus in particular it follows that $M G_{24}$ is not $\operatorname{Mod}(3)$-conjugate to $M H_{24}$. Since $\operatorname{Mod}(3)$ acts on $T(3)$ properly discontinuously, it follows from the classification (1.1) and (2.1) that $T(3)^{M G_{24}}$ contains an element $\langle W, \alpha\rangle$ such that $\left(W, M_{\alpha}^{-1}\left(M G_{24}\right)\right.$) is an $A M$ Riemann surface in F_{24} up to isomorphisms. Hence by (3.3.2) we have that $M\left(C(a), G_{24}\right)$
is conjugate to $M G_{24}$ for any $A M$ Riemann surface ($C(a), G_{24}$) of F_{24}. Thus we obtain that $M(W, G)$ is $\operatorname{Mod}(3)$-conjugate to either $M G_{24}$ or $M H_{24}$, and that $M(W, G) \sim M G_{24}$ (resp. $M H_{24}$) if and only if (W, G) is an element of F_{24} or $h F_{24}$ (resp. of $h F_{24}^{\prime}$), up to isomorphisms of $A M$ Riemann surfaces.

The above two results completes the proof of (3.1.1).

References

[1] Baker, H.F., Note introductory to the study of Klein's group of order 168, Proceedings of the Cambridge Philosophical Society, 31 (1935), 468-481.
[2] Bers, L., The space of Riemann surfaces, Proc. Intern. Congr., Edinburgh, 1958, 349-361.
[3] Klein, F., Ueber die Transformation siebenter Ordnung der elliptischen Funktionen, Math. Ann. 14 (1879), 428-471.
[4] Kra, I., Canonical mappings between Teichmüller spaces, Bull. Amer. Math. Soc. 4 (1981), 143-179.
[5] Kuribayashi, I., Quartic curves with many automorphisms, (to appear).
[6] Rauch, H.E., A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 71 (1965), 1-39.
[7] Roquette, P., Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z. 117 (1970), 157-163.
[8] Stichtenoth, H., Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik, Archiv der Math. 24 (1973), 527-544.
[9] Teichmüller, O., Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orienterten Riemannschen Flächen, Abh. Preuss. Akad. Wiss. Math. 24 (1943), 1-42.

Institute of Mathematics
University of Tsukuba Ibaraki, Japan

[^0]: Received May 28, 1982.

