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EQUIVALENCE PROBLEM AND AUTOMORPHISM GROUPS

OF CERTAIN COMPACT RIEMANN SURFACES

By

Makoto Namba

Introduction.

Let V be the compact Riemann surface defined by the equation:

Vn=f(x),

where n is a positive integer and / is a rationalfunction of x. For such V, there

is a conjecture:

Conjecture : The moduli of such V can be determined by the branch locus of

the map (x,y)e F-^eP1.

Here, P1 is the complex projective line. The purpose of this paper is to give

affirmative answers to the conjecture under various conditions. It is separated

into 3 parts.

In Part 1, we assume that n=p is a prime number and obtain a result.

Recently, Kato [2] has improved this result extensively.

In Part 2, we assume that f(x) is a polynomial of degree p with p a prime

number, and obtain a result.

In Part 3, we assume:

f(x) = (x ―ai)---(x-an),

where au---,an are mutually distinct complex numbers, and obtain an affirmative

answer to the conjecture. In this case, the result can be extended to the case of

non-singular hypersurfaces in Pr+1, the (r+l)-dimensional complex projective space.

Corresponding to each case, we naturally obtain information on the automor-

phism group Aut(F) of V.

We note such compact Riemann surfaces were treated by Picard [8],Lefschetz

[4], Shimura [9] and Kuribayashi [3] in connection with the study of Jacobian

varietiesand the concrete construction of some modular fuctions of several variables.

We thank the referee for his valuable advice, according to which the version

of Part 3 has been revised.
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Part 1.

1.1. Reduction of the Problem.

Let p be a prime number. Let V be the compact Rieman surface defined by

the equation:

V:y*=f(x).

The precise meaning of this is that V is a non-singular model of the closure in

P'xP1 of the affine curve: yp=f(x). We write the rational function f(x) as

follows:

(1) f(x) = c(x-ai)ki-(x~am)k ,

where c is a non-zero constant, au---,am are mutually distinct complex numbers

and ki,---,km are integers. We may assume that c=l and

&i*0, ■･-,km^0 (modp).

In fact,if ki=k/p, then V and

Vi: yp=(x-az)ki-ix~an)k^

are conformally equivalent (i.e.,biholomorphic) under the birationaltransformation:

(x, y)eV ― (x, y!{cu^x-a^'))£ F,.

Moreover, it is easy to see that if

ki=jr,---,km =;TO(mod p),

then the compact Riemann surfaces V and

V : yp=(x-ai)h―{x-am)j^

are conformally equivalent. Now, in (1),one of the following cases occurs:

(i) &, + ―+£≫=()(mod£),

(ii) kt + ---+km^O (modp).

In the case (i),the point infinity,oo, is not a branch point of the meromorphic

function

x:(x,y)eV―* xsP1.

Hence, by the Riemann-Hurwitz formula (see, e.g.,Griffiths-Harris[1, p. 219]), the

genus of V is (p―l)(m ―2)/2. In the case (ii),oo is a branch point of x. The

genus of V in this case is (p―l)(m―1)/2.

In the case (i),we associate V with the divisor
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on P1 and write V=V(D). Here, we denote by (a) the point divisor on P1 corre-

sponding to the complex number a.

In the case (ii),we associate V with the divisor

D=&!Oi)H hkm(am)+km+i(oo)

on P1 and write V―V{D), where km+i satisfies

ki-＼ h^m+^m+i=0 (mod/>).

(km+i is determined up to modulo p.)

Now, we fix a positiveinteger m (^2) and consider the set

Q―{D=kl(al)-＼ hkm(am)＼av 1Pi are mutually distinct,k^0(modp)

for any v and I^L !&,=() (mod j!>)}.

We introduce an equivalence relation ~ in Q by

^i(ai)+ ―+Ma≫Wi(ai)H H;'i≫(aTO)

if ki=ju―,km=jm (mod/?). Put

n: i2 ― F, the canonical projection.

If D-~Df, the compact Riemann surfaces V(D) and F(Z)')are conformally equivalent

as noted above. Hence we may define V(x(D)). By abuse of notation, we idendify

n(D) with D and write V{D) instead of V(n(D)).

The multiplicative group (Z//>Z)*=Z//>Z―{0} acts on T as follows:

(r,D) (Z//>Z)* XT ―>rD£r.

Note that V(D) and F(^Z>) are conformally equivalent. In fact, the following

transformation is birational:

(x, y)e V(D) ― (a?,yr)eV(rD).

The automorphism group Aut (P1) of P1 also acts on F as follows:

(B,D) = (B,k1(al) + -+km(am)) Aut(Pl)xF

B(D) = klB(al)+ -+kmB(am)er.

Note that V(B(D)) is conformally equivalent to V(D). In fact, if neither L

nor B(D) contain oo, then the transformation

<pB:(x, y)£V(D) >(B(x), cyl{x-r)k')zV(B{D))

is birational,where c is a suitable non-zero constant, r = i?~1(oo)and k' = (Zkv)lp
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When D (or B{D)) contains oo, a birational transformation of V{D) onto V(B(D))

can. be constructed in a similar way.

Let G be the group of transformations on the set /'generated by (ZlpZ)* and

AutCP1). Note that

r(B(D))=B(rD) for re(Z/^Z)*,-S Aut (P1) and Del'1.

Hence G can be written as

G=(ZlpZ)*-Aut(Pl).

We write D~D' (modG) if there is rBtG such that rB(D) = Df.

1.2. Theorems.

We have shown thatif D~D' (modG), then V(D) and V(D') are conformally

equivalent.

Theorem 1.1. Under the notationsabove,assume m^2p+l. Then V{D) and

V(D') are conformallyequivalentif and onlyif D-^D' (mod G).

Proof. It is enough to show the "only if" part. Put

D=k1(al) + -+km(am),

D'=j0i) + -+jm{pm).

We may assume that neither D nor D' contain oo. Then V(D) and V(Df) are

defined by the equations:

yp-{x-al)ki---{x-amfm, for aueC,

yp=(x-plyu..(x-pmym} for ^gc,

respectively. Assume that there is a birational transformation

<}>:V(D) ―> V{D').

V(D) has the genus g-{p-l){m―2)j2. The assumption that m^2p + l implies

(p―Yf^g―1. Hence, by Namba [7, Corollary 2.4.5],the linear pencil determined

by the meromorphic function x is the unique linear pencil of degree p on V(D).

(Here, we use the assumption that p is prime.) Thus, there is BeAut (P1) such

that the diagram

V(D)

■

I

P1

*

B

V(D')

x

v

P!
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is commutative. Let <p~<J>B-ibe the birational transformation denned in 1.1

Then, the diagram

(2)

V(D) V{B-＼D'))

pi

is commutative. We may write

B-i(D')^jl(a1) + -+jm(am).

Thus V{B-＼D')) is defined by

zp = (x ―ax)ju--(x―am)j .

By the diagram (2), the meromorphic function w = z-<p-<f>on V(D) also satisfies

wp=(x―ai)h--'(x ―amy .

Consider the meromorphic function v―whl＼yhon V(D). It satisfies

(3) vp = (x-a2)*ljWl*2-･-{x-amf^-Mrn .

We show that v is a rational function of x. In fact, otherwise, the subfieldC(x, v)

of the fieldC(V(D)) of all meromorphic functions on V(D) satisfies[C(x,v): C(x)]^.

2. Since

p=[C(V(D)): C(x)]=[C(V(D)): C(x,v)UC(x,v): C(x)],

we have C{x,v)=C(V(D)). But the genus of the compact Riemann surface defined

by (3) in (x,#)-plane is less than (p―l){m―2)/2, a contradiction. Thus v is a

rational function of #. We write v=h(x). Then (3) is written as

h(x)p=(x-a2)k'h^ilC2--ix-amf^-^km .

This implies that

kijo-Jiko^O (mod*),

kijm-jikm=Q (mod/>),

i.e.,

Hence B-＼D')=rD, i.e.,D'=rB(D). This proves the theorem.

Q.E.D.

Theorem 1.2. Let p be a prime number and m^Zp+1. Let Kp be the subgroup
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of the automorphism group Aut(V(D)) of V(D) defined by

Kp={coj: (x,y)■―>(x,a>jy)＼a)=exp27:V^llp, O^j^p~l}.

Let Ld be the subgroup of Aut (P1) defined by

LD={B£&＼it{Vi)＼thereis rsiZjpZ)* such that B(D) = rD}.

Then there is the following exact sequence:

0 ―> Kp ― Aut(V(D)) ―> LD ―> 0 .

Proof. For any <j>£hx＼t(V{D)),there is a unique J5 Aut(P') such that the

diagram:

V{D)

■

I

P'

$

V(D)

I-

pi
B

is commutative. Then

^eAut (F(D)) ―> BzAut (P1)

is a homomorphism. The kernelis clearlyKp. The proof of Theorem 1 shows

that the image is LD.

Q.E.D.

1.3. Examples.

The following examples show that the conjecture in Introduction is affirmative

for n=2 and 3.

Example 1.1. If p=2 and s^5 (s:odd), then

V: yz―{x―ai)---{x―as)

is nothing but a hyperellipticRiemann surface. In this case, Theorems 1.1 and

1.2 are well known.

If p=2 and s=3, then

V: y2= (x ―<xi)(x―azXv-as)

is an ellipticRiemann surface. In this case, it is also well known that the con-

clusion of Theorem 1.1 stillholds, while the conclusion of Theorem 1.2 is clearly

false.

Example 1.2. Put />=3 and m=6. Then the condition m^2p+l in the theorems
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is not satisfied. In this case, the genus of V(D) is 4. Every element of /' is

equivalent modulo G to one of the divisors of the following forms:

(i) £= (or,)+ -+(a6) + (oo),

(ii) jr>=(ai)+ (aa)+ (a.)-(i8,)-(i88)-(i8,).

In general, the canonical curve in Ps of a non-hyperelliptic compact Rieman sur-

face V of genus 4 is the complete intersection of a cubic surface and a quadric

surface. (1) If the quadric surface is a cone, then V has a unique linear system

0s1. (2) If it is non-singular, then V has two gsvs, (see, e.g.,Mumford [6, p. 55]).

The cases (i) and (ii)correspond to (1) and (2),respectively.

In the case (i),the conclusions of Theorems 1.1 and 1.2 hold (by the uniqueness

of osl).

In the case (ii),the conclusion of Theorem 1.2 does not hold. For example,

V:y* =
xs-1

Xs+1

has the following automorphism:

(x,y)―>(―y, ~x).

(The order of Aut(F) is 2-3-12=72.) But, direct calculationssnow that the conclu-

sion nf Thpnrpm 1.1 stillholds,in this rasp.

Example 1.3. Put p=3 and tn= 5. Then every element of F is equivalent

modulo G to the divisor of the following form:

Z?=(0) + (l)+ (ai)+ (≪2)+2(oo).

V= V(D) has the genus 3 and is defined by:

yz=x(x ―Y){x―a＼)(x―az).

This equation defines a non-singular curve of degree 4 in P2. We identify V and

the curve.

In general, a non-singular curve of degree d (d^4) in P2 has a unique linear

system gd2 of degree d and dimeuion 2, which is nothing but the linear system of

the line sections of the curve (see, e.g.,Namba [7, Theorem 5.1.5]).Thus V and

are conformally equivalent if and only if there is reAut(P2) such that t(V)=V.

Direct calculations show that this happens if and only if there is Z?eAut (P1) such

that

{B(0),B(l),B(al),B(a2)＼= {0,l,Pi,fa} and £(oo)= oo,
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i.e., if and only if the divisor (/?i)+ 0S2) is equal to one of the following:

(≪i)+(≪2), (l-orO+a-aj),

(l/ai) + (aa/ai) , (l/as)+ (≪./≪*),

((a,-l)/a,) + ((a,-a2)/ai), ((≪2-l)/≪2) + ((≪2-≪i)/≪2),

(l/(l-a,)) + ((l-a,)/(l-a,)), (l/(l-a,)) + ((l-a,)/(l-art)),

(≪,/(≪,-1)) + ((a, - ≪,)/(≪,-1)), W(ff2 ~1)) + ((a2 - a,)/(a2 -1)),

(ai/(ai―a2)) + ((at ―l)/(≪i-a2)), (≪2/(≪2~≪0) + ((ff2-l)/(≪2 ―≪i)>

Thus the conclusion of Theorem 1.1 still holds in this case.

Part 2.

2.1. Theorems.

The purpose of Part 2 is to prove the following theorems:

Theorems 2.1. Let p be a prime number and n an integer such that n^2p+l

and n^O (modp). Let V and V be the compact Riemann surfaces defined by the

equations:

V:yn=(x-ai)---(x-otp),

Vf:yn=(x-^)-(x-^p),

where ai,---,ap(resp. /?i,---,/3p)are mutually distinctcomplex numbers. Then V and

V are conformally equivalent if and only if there is Z?eAut (C) {the automorphism

group of the complex plane C) such that {B(ai)t･･･,B{ap)}-={fi＼,■■･,pp＼.

Corollary. Let n be an integer such that ri^L and n*?Q (mot 3). Let X and

H be complex numbers differentfrom 0 and 1, and Vi and Vp be the compact Rie-

mann surfaces defined by the equations:

Vx:yn=x{x~l)(x~X),

Vl!:yn=x(x-l)(x-pi).

Then Vx and Vp are conformally equivalent if and only if ptis equal to one of the

following:

x,ijk,i-x, i/(i~x),(x-i)ix, xi(x-i).

Theorem 2.2. Let V be as in Theorem 2.1. Then there is the following exact

sequence:
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0 ―>K ―> Aut (V) ―>L ―> 0,

#={*> Aut (V)＼a: (x, y) ―> O, '£y)

L = {5 Aut(C)|{B(a,),-,5(a1,)} = {a

C = exp27rV ―Ijn o^y^w-i}
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2.2. Proof of the theorems.

Let p, n, V and V be as in Theorem 2.1. The point infinity: 00=(oo, 00) has

a unique place on V, which we denote by 00 again. The genus of V (and V) is

g=(l/2)(p-l)(n―1). As a basis of the space of all holomorphic differentials on V,

we may take:

{xjlyk)dx , 0^j<p,Q<k<n,kp-jn^n+1,

(see, e.g., Shimura [9]). From this, we can easily show that the space of all holo-

morphic differentials w on V such that (<w)^≪(oo) ((a>)is the zero divisor of <o) is

spanned by

(x^yk)dx, 0^j<p,0<k<n,kp-jn^2n + l.

Hence the index of speciality i(n(oo)) of the divisor n(oo) is equal to g―n+l+lnlp],

where [ ] is Gauss' notation. Hence, by Riemann-Roch theorem,

dim L{n(oo))=[n/p]+2,

where L(≪(oo)) is the vector space of all meromorphic functions on V whose polar

divisors are contained in ≪(oo),and 0-function. Hence we may take {1, y, ･･･,2/Cn/p],x)

as a basis of L(n(oo)).

Now, the 'if' part of Theorem 2.1 is clear. We show the 'only if' part

Assume that there is a biholomorphic map A: V ―> V. Then the compositions

z=x-A and w=y-A are meromorphic functions on V and satisfy the equation:

(1) wn=(z-^)-＼z-fip).

The order of the function w is p. Since n^2p+l, we have (p― l)2^g―1. Hence

by Namba [7, Corollary 2.4.5], there are complex numbers c,c',d and d' with cd'―

cfd*?0 such that w=(cy+d)l(c'y+d'). Put Q―A~1(oo). We first assume:

Case 1: Q=oo. In this case, the polar divisor of the function z is ≫(oo), sc

that we can write

(2) z=ao+a1y-＼ ＼-asys+bx,

where s=[n/p] and av and b are complex numbers. Note that b^O, since sp<n
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On the other hand, since

oo = w(oo) = (cy(oo)+ d)l(cfy(oo)+ d')= (coo + d)l(cfoo+ d'),

we have c'=0 (and d'~l),i.e.,

(3) w = cy+d (c*o).

From (2) and (3),(1) becomes

(4) (c#+e?)B = (≪o+#i?/H ＼-a!lys+bx-p1)---(a0+ axy-＼ ＼-atyg+bx-^p).

Since sp<n, thisis an equation of degree n with respect to y, so that this must

coincide with the original equation: yn=(x―ai)-'-(x―ap),up to constant. Arrang-

ing the terms in (4) in the descending degree with respect to x, the coefficientof

xp~lis

bp-1{p(a0+aly + -+asys)-(pl +■■■+$!,)},

which must be a constant (i.e.,(―l)cn(≫H I-≪P)).Thus

so that (4) becomes

(ctf+d)n= (tfo+ 6.i:-j8I)-"(flro+ &a?-0p).

Hence we get d=0, cn=bp and

{al,-,ap} = {(pl-ao)lb,-,(pp-ao)lb}.

Let BeAut(C) be defined by B(t)=bt+a0 for feC. Then

{5(aI),-,5(ap)} = {j81,..-,i3p}.

This proves Theorem 2.1 in this case. Note that, from (2), the following diagram

is commutative:

(5)

V

-
I

P1

A
V

X

＼t

pi
B

Case 2: Q^oo. We show that this case dose not occur. In fact, put Q=

(xo,yo)eC2. Since w=(cy+d)l(c'y+d'), we have

p'Q = Da,(w)=y~＼-dflc').

(DJlw) is the polar divisor of the function w.) Hence yo= ―d'jc'and the equation

for x:



Equivalence problem and automorphism groups

has x0 as the p-p＼eroot,i.e.,

{x-~ai)--'{x―av)~-y0n―(x-Xo)p.

Thus V is defined by

V:y*=(x-xo)p+Von.

Note that yo^0, for, aw-,ap are mutually distinct.

In a similar way, there is (xi,yi) <C2(yi^O) such that F' is defined by

V':y*=(x-xlY+yl".

Let Vo be the compact Riemann surface defined by the equation:

V0:yp=xn-l.

Then the maps

Ao: Vb(x, y) >(yly0>{x-xo)lyo')£Vo,

Ao': V'3(x, y) >(ylylt(x-x^ly/H Vo,

329

are biholomorphic, where yofp=yon and yifp=yin. Then, A0A~xAJ~lis an automor-

phism of Vo, mapping oo to (1,0). But, by Theorem 1.2 in Part 1, every auto-

morphism of Vo can be written as

V0 (x,y) >&x,pkv)eV0,

where C=exp27rV―Ijn, 0^j^n―l,
io=exp27rV―1/p,

O^k^p―1. In particular,

every automorphism of Vo fixes oo,a contradiction. Thus, this does not occur. This

completes the proof of Theorem 2.1.

Theorem 2.2 follows from the above proof of Theorem 2.1. In fact,if we put

Vf=V and associate B to A in (5), then this correspondence gives a homomorphism

of Aut (V) into Aut (C). Its image and kernel are clearly L and K in the theorem,

respectively.

Finally, we show the corollary to Theorem 2.1.

If n^7, then the corollary is a direct consequence of Theorem 2.1 putting p=

3.

If n―5, then the genus of Vx is 4. We may take

{(1/V*)dx,(xly*)dx,aiv*)dx, W)dx}

as a basis of the space of all holomorphic differentialson V*. Thus the canonical

map is

VMx. y) ―> (Za :Z,:Za: Z,)=(l :x:y: y2)eP3.
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where (Zo'. Zi: Z2: Zs) is a homogeneous coordinate system on P3. Hence its image

(the canonical curve) is contained in the quadric cone S:Z22=Z0Z3. In general, a

non-hyper elliptic canonical curve of genus 4 is the complete intersection of a

quadric surface and a cubic surface in P8. In our case, the quadric surface is the

cone S, so that the curve has a unique linear pencil of degree 3. (It is, in fact,

the projection with the center a line on S.) Thus a similar argument to the proof

of Theorem 2.1 shows that the conclusion of the corollary holds for n=5.

If w=4, then the equation: y*~x{x~l)(x―X) defines a non-singular curve of

degree 4 in P2. It is the canonical curve of the non-hyperelliptic Vx of genus 3.

We may identify Vx with the curve. Since the linear system of all line sections

is the canonical linear system, it is the unique linear system of degree 4 and dimen-

sion 2 on Vx. Thus Vx and V,, are biholomorphic if and only if there is rcAut(P2)

such that T(Vx)=Vfl. But direct calculations show that this happens if and only if

there is BeAut (P1) such that {5(0), 5(1), B(X), £(oo)}= {0,1, ft,oo}, (see also Theorem

3.1 below). This shows that the conclusion of the corollary holds for n=A.

If ≪=2, then Vx is an elliptic curve, so that the conclusion of the corollary in

this case is classically well known.

This completes the proof of the corollary.

Part 3.

3.1. Theorems.

Let Pr+1 be the (r-j-l)-dimensionalcomplex projective space and (Xo: ･･･:Xr+＼)

be a homogeneous coordinate system on it. The purpose of Part 3 is to prove the

following theorems:

Theorem 3.1. Let V and W be non-singular hypersurfaces of degree n in Pr+1

defined by the equations:

V:X?+1=F(Xo,-,Xr),

W:X?+l=G(Xo,-,Xr).

Suppose (≪,r)#(4,2). Then V and W are biholomorphic if and only if there is a

23eAut(Pr) mapping the non-singular hypersurfaces {.F=0} in W onto {G=0}.

Corollary. Let V and W be the compact Riemann surfaces defined by the

equations:

V:yn=(x ―ai)---(x―an),

W:ynMx-By.(x-Bn),
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where au-~,an (resp.,Pi,---,f}n)are mutually distinctcomplex numbers. Then V and

W are biholomorphic if and ouly if there is a i?eAut(P') such that{B(ai),■■･,B(an)}

= {j8,,-,j8n}.

Remark. We do not know if the conclusionof Theorem 3.1 stillholds for

(≪,r)=(4,2),i.e.,for non-singularquarticsurfacesin P3.

Let V be a non-singular hypersurface of degree n in Pr+1 denned by the equa-

tion:

V:X?+i+-+Xnk+l=F1(X0,~',Xk), l^k^r.

Assume that V is not biholomorphic to any hypersurface defined by the equation:

(i.e.,k is the least integer such that V is expressed as above). Let a and atj,

k+l^i,j^_r+l, be the automorphisms of V defined by

a:(X0:-:Xr:Xr+1) ―>(X0:-:Xr: CZ-+1), C=exp 2W^lln,

<jij'.(Xo: ･･･:Xi: ･･･:Xj: ･･･:Xr+l) ―> (Xo: ･･･:Xj: ･･･:X%: ･･･:Xr+＼).

Let K be the subgroup of Aut(F), the automorphism group of V, generated by

a and Oij,k+l^i,j^r+l. Its order is (r+1 ―k)lnr+1'k. Let L be the subgroup

of Aut(Pfc) defined by

L={BtA＼it(Pk)＼B({F1=O}) = {F1=0}}.

Theorem 3.2. Let V be as above. Assume that (i)≫^4 if r―＼,(ii) n^3 if

ri^2 and (iii)(≪,r)=＼(4,2).7%ew ifAerezs ^Ae following exact sequence:

0―>iT―>Aut(V)―^L―≫-0.

Let V be a compact Riemann surface as in the corollary to Theorem 3.1. Let

K be the subgroup of Aut (V) generated by

a:(x, y) ―> (x, Cv).

Let L be the subgroup of Aut(P!) denned by

L={B£Aut(P1)＼{B(a1),-,B(an)} = {a1,-,an}}.

Corollary to Theorem 3.2. Let V be as in the corollary to Theorem 3.1

Assume that (i) n^A. and (ii) V is not biholomorphic to the Fermat curve: xn + yn=

1. Then there is the following exact sequence:

0―>K―Aut (7)―>L―>0.
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3.2. Proof of Theorem 3.1.

The 'if part of Theorem 3.1 is trivial. We show the 'only if part. If w=l

or 2, or (n,r) ―(3,l), then Theorem 3.1 is trivial. (Any non-singular curve: t/3=

(x ―cti)(x―a%){x―a%) is biholomorphic to the elliptic curve: ys=x(x ―1).) Hence we

mav q5!!iimp that

(i) n^4, if r=l,

(ii) ≪^3, if r^2, and

(iii) (≫,r)^(4,2).

Then any biholomorphic map of Fonto PFcan be uniquely extended to # Aut(Pr+1)

such that a(V)=W, (see Namba [7, Theorem 5.1.5] for r=l and Matsumula-

Monsky [5] for r^2).

In order to aboid confusion, we prepare another PrM (which is denoted by

Pir+1) with a homogeneous coordinate system (Xof: ･■･:X'r+1) and regard W as a

hypersurface in Pir+1 defined by the equation:

X"+1=G(^Yo', ･･･,Xr).

Now our proof is based on the following two triviallemmas, whose proofs

are omitted.

Poo=(0:-:0:l)ePr+1 and

i7=the hyperplane {Xr+l=0} in Pr+1

Let s and t be complex numbers.

Lemma 1. Let a: Pr+i3(X0: ―:Xr+1) ―≫(Xof: ･･･:X;+1)eP,r+1 ^ a /mear iso-

morphism, mapping P^ and H to (0 :･･･:s:1) and {X/+1=0}, respectively. Then a{V)

is defined by

a(V): X;n+l=F'{Xo', >~,XU Xr'-sX;+1),

where F' is a homopp.neous -holvnnmialof deerp.p.n.

Lemma 2. Let a:W+l ―>■Pir+I be a linear isomorphism, mapping POT and H

to (s: 0:･･･:0:1: t) and {X/ = 0}, respectively. Then a{V) is defined by

o{V): Xr'n=F'(sXr'~Xaf, Xx＼･-, XU tXr'-XUi),

where F' is a homogeneous bolvnomial of degree n.
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Now let FcPr+1 and TFCP/+1 be as above and

o:W+l3(X0: - :Xr+l) ―> (Xof: - Xr'+1)eP,r+1

be a linear isomorphism mapping V onto W. This means that, if a is given by

a non-singular matrix {ajk),i.e.,

then there is a non-zero constant c such that

(1) (SrktlaVr+mXk)n-G{(SrkilaokXlc),-, (Srki^rkXt))= cX?+1-cFXX0, -,Xr).

Let Poo and i7 be as above. Put

Pi=(0: ･■･:():l)eIY+1 and

^ = {Z/+1=0}.

We firstconsider the case:

Case 1: a(H)=FP. This means that Xr+i=0 if and only if X/+,=0. Hence,

by (1),

G((2X=0aofcXfc),･･･,(^o≪r*Xfc))=cF(X0, ~',Xr), on //.

Thus the restrictiona＼H＼H―> II' maps {F=0} onto {G=0}.

Next, we consider the case:

Case 2: a{H)^H'. This case is divided further into the following 2 cases,

depending on the positions of a{P^),Pi,a{H) and H'.

Case 2-i: There is a line I passing through Pi and a{P00) but not H' n o(H).

Put R=＼f]H' and S=＼no{H). Note that Pl$H' and a^P^a^H). We prepare another

Pr+1, which is denoted by P2r+1 and a homogeneous coordinate system (Xo" : ･･■:X/U

on it. Let r be a linear isomorphism of Pir+1 onto P/+＼ mapping Pi,a(Px), R,S,H'

and a(H) to (0: - : 0: s: 1), (0: - : 0:1:0, (0: - : 0:1:0), (0: - : 0:0:1), {^,=0}

and {Xr"=0}, respectively. Then, by Lemma 1, t(W) is denned by

(2) t(W) : X:'Z=F"W, >",Xr'LltXr"-sXr'U),

where F" is a homogeneous polynomial of degree n. On the other hand, r(W)=

zo(V) and za satisfies the condition of Lemma 2, so that za{V) is denned by

(3) va(V): Xr"n = G"(Xo", -, Xr'LuX^-tXr"),

where G" is a homogeneous polynomial of degree n.

By (2) and (3), there is a non-zero constant c such that



334

(4)

Makoto Namba

V-Ao ,･11|AM,Af ―-6.A.r+,;―A.r+l

= cG"(X,n, ･･■,Xr'Li, Xr'ix - tXr")
~
cXf*

In (4),we put Xo" = - = Xr'L^O, Xr" = X and X/i^Y. Then we get

a{X- s Y)n-Yn = cb{Y- tX)n - cX11,

for some constantsa and b. Expanding and comparing terms, we get

(5-1)

(5-2)

(5-3)

(5-4)

a=cb(-l)ntn-c,

(~l)nasn~l = cb,

-as=cb(-l)n-Hn-

asz=-cb{-~l)n-Hn-t,

Now, assume s^fO. Then b*Q. In fact, if &=0, then, by (5-3), a=0. Hence, by

(5-1), c=0, a contradiction. Hence ≪^0, so that b^O. Now, by (5-3), (5-4), ･･･,

(6) a/(cb(-l)n)=tn'lls=tn-zls2 = -".

Note that t^O, for a^O. Since we have assumed w^3, we get st=l by (6). Thus,

by (6) again, cb(―l)ntn=a. Hence, by (5-1), a―a―c, so that c=0, a contradiction.

Consequently, s must be zero. By (5-2), b＼0. Hence, by (5-3), £=0.

Thus we conclude that P£=S, a(Poo)=R and (4) can be written as

Hence there is a homogeneous polynomial K" of Xo", ･･･,X/_, of degree n such

that

(7-1) F"(X0", '･',Xr'LuXr")=K"(X0", -,X;U)-cXr"n,

(7-2) G'W, -,Xr'LuXr'U)=Q.lc)K"(Xo", -.X/^-a/^X/^

Now we define an automorphism 37 of P2r+1 by

. /y" //･ ･ y/' ･ V
//･ Yn ＼___≫.(Y a ･ ･ Y n ･ ,･ Ylf ' Y u＼

7]
.＼j＼0 . ･･･ . Af-i .

-A-r ･ -A-r+i)―~* (,^-0 . ･･･ . Ar_i . 6i^lr+i . A.T ) ,

where dn=l/r. Then ^ maps {C'CXo'', ･･･, Xr'Llt Xr'U)-0} onto {F'^Xo", -,XrfLu Xr'f)

=0}.

Note that, by (2), r maps {G=0} onto {F"=0}. Also, by (3), to maps {F=0} onto

{G"=0}.

Thus, l=T~xrfa is a linear isomorphism of Prl! onto Pir+I mapping /f to /f,

and {F=0} onto {G=0}.

C≪se 2―11: P^oiPoc) and the line I connecting them intersects with IF (＼g(H).



Equivalence problem and automorphism groups 335

We show that this case does not occur. Put R=lnH'f]a(H). Note that neither

PJ> nor a(Peo) belongs to HfK)o{H). Let P2r+1 and (Xo" :･･･: Xj'+l) be as above. Let

r be a linear isomorphism of Pir+1 onto P2r+＼ mapping P£,o(Poo),R,H' and o(H)

to (0 :0: - : 0: s: 1), (1:0: - : 0: s: 1), (1:0: - : 0), {^,=0} and {Xr"=0}, respec-

tively. Note that s*0.

By Lemma 1, r(W) is defined by

(8) t(W) : X&=F"W,.-., Xr'Lu X/'-sXr'U),

where F" is a homogeneous polynomial of degree n. On the other hand, v{W)―

zo(V) and to satisfies the condition of Lemma 2, so that ra{V) is defined by

(9) ta{V): Xr"n=G"(Xr"-sXo", Xi"-,Xr'Ll, X/'-sX^),

where G" is a homogeneous polynomial of degree n. By (8) and (9), there is a

non-zero constant c such that

(10)

=cG"(Xr"-~sX0",Xi",-

y/'n

Ji.r―i, Ji-r S-Aj-+i) CJi-r

Put Xl" = -=Xr'Li=O, X0"=X, Xr"-sX0"= Y and Xr"-sX;'+l=Z. Then (10) can

be written as

(11) a0Xn + a1Xn-lZ+- + anZn-(l!sn)( Y-Z+sX)n

= cb0Yn+cblYn-lZ+- + cbnZn - c(sX+ Y)n ,

where ao,---,an,bo,---,bnare complex numbers. In (11), put X―Q. Then

cb0Yn + cb1Yn'1Z+- + cbnZn = anZn + cYn-(llsnXY-Z)n.

Substituting this into (11), we get

(12) a0Xn+alX'l-lZ+:- + an^XZn-1

= cYn+(llsn)(Y-Z+sX)n-{l/sn)(Y-Z)n-c(sX+ Y)n.

In (12),put F=0. Then

a0Xn+alX*-lZ+-+an-lXZ≫-1

=(llsn)(sX-Z)n-(-lls)nZn-csnXn.

Substitutingthisinto (12),we get

(13) (llsn)(sX-Z)n-(-lls)nZn-csnXn

= cYn+(llsn)(Y-Z+sXT-(llsn)(Y-Z)n-c(sX+ Y)n.

In (13),put Z=0. Then we get

(l-csn)Xn + ((llsn)-c)Yn= (aisn)-c)(sX+ Y)n.
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The left hand side does not have the (Xn-lY)-term. Hence c = l/sn. Thus, by (13),

we get

(14) (Y-Z+ sX)n-(Y-Z)n=(sX-Z)n + (sX+ Y)n-(-l)nZn- Y≫-snXn .

Since n^3, the first term in the left hand side of (14) is expanded as

nsXYn~l~n(n-l)sXYn-2Z+---+snXn,

while the right hand side of (14) does not have the (XF"~2Z)-term, a contradiction.

Hence this case does not occur.

This completes the proof of Theorem 3.1.

3.3. Proof of Theorem 3.2

In the following lemmas, suppose that V is a non-singular hypersurface of

of degree n in Pr+1.

Lemma 3. Let P^ and H be a point in pr+1 ― V and a hyperplane in Pr+1,

respectively, with the following conditions: (i) P^H, (ii) Hf] V is a non-singular

hypersurface in H, and (iii) the line connecting P^ and every point Q of Hf] V meets

V at the unique point Q. Then V is defined by the equation as in Theorem 3.1.

Conversely, if V is defined as in Theorem 3.1, then PM=(0 : ･･･: 0 :1) and H=^{Xr+＼ ―

0} satisfy the above conditions (i)-(iii).

Proof. Take a homogeneous coordinate system (Xo: ･･･:Xr±i) such that P^―

(():･･･:0:1) and //={Xr+1=0}. Let

F(Xo,-,Xr+l)=Ao(X)Xnr,1+Al(X)Xr+＼+- + An(X),

(X=(X0,---,Xr)), be the irreducible homogeneous polynomial of degree n defining

V, i.e., F={F=0}. Every Aj(X) is then a homogeneous polynomial of degree j.

In particular, A0(X)=A0 is a constant, which is non-zero, because P^ V. Now, by

(iii),for any point (X°: 0)=(X0°: ･･･:Xr°: 0) of VnH, the equation for Xr+i:

AoX*+1 + A1(X°)X*?1 + '≫+An(X*)=O

has Xr+i =0 as the w-ple root. Hence

Al(X°)=-"=An(X°)=O.

Since the degree of the non-singular hypersurface Vr＼H in H is n, we have /li=

･..=^n_j=0. Thus

P＼Xo,･■',Xr+l)=A0X"r+i + An(X), Ao^O .

The converse is trivial.

Q.E.D.
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Lemma 4. Suppose ni=2. If the pair (/>≫,H) satisfies same the conditions as the

pair (Pc.H) in Lemma 3, then Pi―P^, i.e.,P^ is unique with respect to H.

Proof. Suppose PJi^P^. Let ＼be the line connecting them. Put Q0=＼V＼H.

Take any point QeVfiH. By the condition (iii)in Lemma 3, the tangent space

TQV to V at Q passes both P^ and PI so that it contains I (and hence Qo). Note

that the tangent space TQ(Vf]H) to Fn#at Q is (TcF)n#, so that it contains

the fixed point Qo. This is impossible, unless VnHis of degree 1.

Q.£.£>.

The following lemma can be shown by a similar argument to Case 2-i in 3.2.

Lemma 5. Let PU and II be as in Lemma 3. Suppose n^3. Then IIis unique

with respect to P^.

Finally we need

Lemma 6. Suppose n^Z. Let (Pr+i,Hr+i),･■-,(Pk+uHkvi) be mutually distinct

pairs satisfying the same conditions as (/*≪,,H) in Lemma 3. Then thereis a homo-

geneous coordinate system (Xo: ･･･:Xr+i) on Pr+1 such that

(i)

(ii)

(iii)

/>*=(() :.-･:
j)
l:-:0), k+l^j^r+1,

Hj={Xj=O}, k+l^j^r+1, and

V:X*+l + -+X&+l = Fi(Xo,-,Xlc).

Proof. A similar argument to Case 2-i in 3.2 shows that PjtHj, ifi^j. This

implies that Hk+u--',Hr^i are in general position. In fact, since fWi, say, is con-

tained in Hk+2n---r＼Hr+i, thislinear subspace is not contained in Hk+i. Thus we

may take a homogeneous coordinate system (Xo: ･･･:Xr+i) satisfying (i) and (ii).

Using (2) and (7-1) (or (3) and (7-2)) in 3.2,an inductive argument shows that V

is defined as in (iii).

Q.E.D.

Now we are ready to prove Theorem 3.2. Let V be as in Theorem 3.2. Put

(i)
Py=(0:-:l:...:0),

ffj={Xj=0},

for k+l^j^r+1. Then every pair (Pj,Hj) satisfiesthe same conditions as (P^H)

in Lemma 3. By the assumption on the integer k, and by Lemma 6, they are all
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the pairs satisfying the same conditions as (P^H) in Lemma 3.

Note that any aeAut(F) can be uniquely extended to aeAut(Pr+!) such that

o(V)= V, as was noted in 3.2. It is clear that a maps {Pn+i, ■■-,Pr+i} and {Hk+i, ･･･,Hr+i}

onto themselves. Hence it maps S=FIk+ir＼---f]Hrii onto itself. The restriction a＼S

then maps {Fi=0} onto itself.

Now the correspondence

Aut (V)Bo ― e＼SeAut (P*)

is a homomorphism, whose image and kernel are clearly L and K in Theorem 3.2,

respectively.

This completes the proof of Theorem 3.2.

3.4. A remark.

In Theorem 3.2,we assumed k^l. If k―0, then we have the Fermat variety:

F(n,r):Xon+-+Xnr+l=O.

A similar argument to the proof of Theorem 3.2 shows that, if (n, r)^(4,2), then

Aut {F{n, s))is generated by a and aijf0^i,j^r+l. Since (X0: ■･･:Xr+i) ―-> (C^o:

･･･:CX-+i) is the identity map, the order of Aut (F(n, r))is(r+2)＼nr+＼a well known

result.
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