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EQUIVALENCE PROBLEM AND AUTOMORPHISM GROUPS
OF CERTAIN COMPACT RIEMANN SURFACES

By
Makoto NaMBA

Introduction.
Let V be the compact Riemann surface defined by the equation:

y'=f(x),

where # is a positive integer and f is a rational function of . For such V, there
is a conjecture:

CoNJECTURE . The moduli of such V can be determined by the branch locus of
the map (x,y)e V—xeP

Here, P! is the complex projective line. The purpose of this paper is to give
affirmative answers to the conjecture under various conditions. It is separated
into 3 parts.

In Part 1, we assume that #=p is a prime number and obtain a result.
Recently, Kato [2] has improved this result extensively.

In Part 2, we assume that f(x) is a polynomial of degree p with p a prime
number, and obtain a result.

In Part 3, we assume:

f@)=(@—a)(r—az),

where ai, -+, a, are mutually distinct complex numbers, and obtain an affirmative
answer to the conjecture. In this case, the result can be extended to the case of
non-singular hypersurfaces in P+, the (r+1)-dimensional complex projective space.

Corresponding to each case, we naturally obtain information on the automor-
phism group Aut (V) of V.

We note such compact Riemann surfaces were treated by Picard [8], Lefschetz
[4], Shimura [9] and Kuribayashi [3] in connection with the study of Jacobian
varieties and the concrete construction of some modular fuctions of several variables.

We thank the referee for his valuable advice, according to which the version
of Part 3 has been revised.
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Part 1.
1.1. Reduction of the Problem.

Let p be a prime number. Let V be the compact Rieman surface defined by
the equation :

Viy?=f(x).

The precise meaning of this is that V is a non-singular model of the closure in
P'xP' of the affine curve: y?=f(z). We write the rational function f(x) as
follows :

) f@)=c(z—a))br--(z—an)m,
where ¢ is a non-zero constant, a, ---, @» are mutually distinct complex numbers
and ki, -+, by, are integers. We may assume that ¢=1 and

k%0, -, kn=0 (mod p).
In fact, if £,=Fk/p, then V and
ViiyP=(x—az)fs-(x—ap)tm
are conformally equivalent (i.e., biholomorphic) under the birational transformation :
@, y)eV — (2, y/(c"(z—a)")e V..
Moreover, it is easy to see that if
k=g, kn=jn (mod p),
then the compact Riemann surfaces V and
V' iy =(z—a)it (2 —am)in
are conformally equivalent. Now, in (1), one of the following cases occurs:
(i) ki+-+k.=0 (modp),
(i) Ait-+Enx0 (modp).

In the case (i), the point infinity, oo, is #of a branch point of the meromorphic
function

z:(x,y)eV —> xeP'.

Hence, by the Riemann-Hurwitz formula (see, e.g., Griffiths-Harris [1, p. 219]), the
genus of V is (p—1)Ym—2)/2. In the case (ii), co is a branch point of z. The
genus of V in this case is (p—1)m—1)/2.

In the case (i), we associate V with the divisor
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D:kl((11)+ R +km(am)

on P' and write V=V(D). Here, we denote by (a) the point divisor on P! corre-
sponding to the complex number a.
In the case (ii), we associate V with the divisor

D:kl(a1)+"‘+km(am)+km+l(oo)
on P! and write V=V(D), where k,., satisfies
kit + kR =0 (mod p) .

(Bm+1 is determined up to modulo p.)
Now, we fix a positive integer m (=2) and consider the set

Q={D=k(ar)++knlam)la,eP! are mutually distinct, &,%0(mod p)
for any v and 2™ ,k,=0 (mod p)}.

We introduce an equivalence relation ~ in 2 by

ki(ar)+ -+ +km(am)~fi(a) + - +fm(@m)
if ki=jy, -, kn=jn (mod p). Put

r=g/~,

7:82 —> I', the canonical projection.

If D~D’, the compact Riemann surfaces V(D) and V(D’) are conformally equivalent
as noted above. Hence we may define V(z(D)). By abuse of notation, we idendify
n(D) with D and write V(D) instead of V(x(D)).

The multiplicative group (Z/pZ)*=7/pZ—10} acts on I" as follows:

(r, DYe(ZIPpZ)* X" — vDel .

Note that V(D) and V(D) are conformally equivalent. In fact, the following
transformation is birational:

(@, )e V(D) — (@, v")e V(D).
The automorphism group Aut (P') of P! also acts on I" as follows:

(B, D)=(B, ka )+ +Enlan))e Aut (PYXI"
—> B(D)=FkB(a,)+ -+ +knBlan)el’ .

Note that V(B(D)) is conformally equivalent to V(D). In fact, if neither D
nor B(D) contain oo, then the transformation

¢5: (2, y)e V(D) — (Bx), cy/(x—1)*)e V(B(D))

is birational, where ¢ is a suitable non-zero constant, y=B"'(c0) and &'=(Zk,)/p.
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When D (or B(D)) contains co, a birational transformation of V(D) onto V(B(D))
can be constructed in a similar way.

Let G be the group of transformations on the set /' generated by (Z/pZ)* and
Aut(P'). Note that

r(B(D))=B(rD) for re(Z/pZ)*, BeAut(P') and Del’.

Hence G can be written as
G=(Z|pZ)*-Aut (P").

We write D~D’ (mod G) if there is vBeG such that »B(D)=D".

1.2. Theorems.

We have shown that if D~D’ (mod G), then V(D) and V(D'’) are conformally
equivalent.

THEOREM 1.1. Under the notations above, assume m=2p+1. Then V(D) and
V(D) are conformally equivalent if and only if D~D’ (mod G).

Proor. It is enough to show the “only if” part. Put
D=k](a1)+--- +km(a’m) )
D' =5(B1)+ - +juBn) -
We may assume that neither D nor D’ contain oco. Then V(D) and V(D') are
defined by the equations:
yY=(w—a)t(x—an)m, for a,cC,
yP=(x— B (. — Bm)'m, for B.eC,
respectively. Assume that there is a birational transformation
¢: V(D) —> V(D).
V(D) has the genus g=(p—1)m—2)/2. The assumption that m=2p+1 implies
(p—1=g—1. Hence, by Namba [7, Corollary 2.4.5], the linear pencil determined
by the meromorphic function z is the wnmique linear pencil of degree p on V(D).

(Here, we use the assumption that p is prime.) Thus, there is BeAut (P') such
that the diagram

VD) —2 vy
z lx
B
P! P!
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is commutative. Let ¢=¢z- be the birational transformation defined in 1.1.
Then, the diagram

VD) —22 s D)
@ \ /
Pl

is commutative. We may write
BHD)=ja)+ +jmlan) .
Thus V(B-(D")) is defined by
2P =(x—a;)lt-(x—am)m.
By the diagram (2), the meromorphic function w=z-¢-¢ on V(D) also satisfies
WP =(z— ot (% — )i .
Consider the meromorphic function v=w*/y”t on V(D). It satisfies
(3) VP = (3 — @a) oIk (g — gy orIm~ m

We show that v is a rational function of z. In fact, otherwise, the subfield C(zx, v)
of the field C(V(D)) of all meromorphic functions on V(D) satisfies [C(x, v) : Clx)]=
2. Since

p=[C(V(D)) : C(x)]=[C(V(D)) : Cz, )]-[C(x, v) : C(=)],
we have C(z,v)=C(V(D)). But the genus of the compact Riemann surface defined

by (3) in (x,v)-plane is less than (p—1)m—2)/2, a contradiction. Thus v is a
rational function of x. We write v=%4(x). Then (3) is written as

h(x)pz (.77 _az)hfz*hkz. e (.’E — a’m)k‘jm“j‘km .
This implies that
kij2—7:k:=0 (mod p),

Rijm—Jikn=0 (mod p),
ie.,
Jilki=jolke="-=jn|kmn=7e(ZIPZ)* .
Hence B~(I)=vD, ie., D'=yB(D). This proves the theorem.
Q.E.D.

THeoreM 1.2. Let p be a prime number and m=2p+1. Let K, be the subgroup
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of the automorphism group Aut (V(D)) of V(D) defined by

Ky={o: (%,9) — (z, 0’y)lo=exp2zv =1jp, 0=j=p—1}.
Let Lp be the subgroup of Aut (P') defined by

Lp={BeAut (P")|ihere is re(Z[pZ)* such that B(D)=rD}.

Then there is the following exact sequence :

0 — Ky — Aut(V(D))

>L1)————90.

Proor. For any ¢eAut (V(D)), there is a unique BeAut(P') such that the
diagram:

vy —2 V(D)
P! 2 P

is commutative, Then
geAut (V(D)) —> BeAut (P)

is a homomorphism. The kernel is clearly K, The proof of Theorem 1 shows
that the image is Lp.
Q.E.D.

1.3. Examples.
The following examples show that the conjecture in Introduction is affirmative
for =2 and 3.
ExampLE 1.1. If p=2 and s=5 (s:o0dd), then
ViyP=(x—a))--(x—as)

is nothing but a hyperelliptic Riemann surface. In this case, Theorems 1.1 and
1.2 are well known.
If p=2 and s=3, then
Viyt=(z—a)(x—az)(x—as)

is an elliptic Riemann surface. In this case, it is also well known that the con-
clusion of Theorem 1.1 still holds, while the conclusion of Theorem 1.2 is clearly
false.

ExampLE 1.2. Put p=3 and m=6. Then the condition m=2p+1 in the theorems
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is not satisfied. In this case, the genus of V(D) is 4. Every element of /' is
equivalent modulo G to one of the divisors of the following forms:

(i) D=(a)+: +(as)+(0),
(i) D=(a)+(a2)+{as)—(B)—(B)—(Bs).

In general, the canonical curve in P?® of a non-hyperelliptic compact Rieman sur-
face V' of genus 4 is the complete intersection of a cubic surface and a quadric
surface. (1) If the quadric surface is a cone, then V has a unique linear system
gs'. (2) If it is non-singular, then V has two gs's, (see, e.g., Mumford [6, p. 55]).
The cases (i) and (ii) correspond to (1) and (2), respectively.

In the case (i), the conclusions of Theorems 1.1 and 1.2 hold (by the uniqueness

of g5').
In the case (ii), the conclusion of Theorem 1.2 does not hold. For example,
zt—1
e 08—
Viy o

has the following automorphism :
(@, 9) —> (~y, —=).

(The order of Aut (V) is 2-3-12=72.) But, direct calculations snow that the conclu-
sion of Theorem 1.1 still holds in this case.

ExampLE 1.3. Put p=3 and m=5. Then every element of I is equivalent
modulo G to the divisor of the following form :

D=(0)+(1)+(a1)+(az) +2(c0) .
V=V(D) has the genus 3 and is defined by :
V=zr(x—-1)rz—aXz—a,).
This equation defines a non-singular curve of degree 4 in P2 We identify V and
the curve.
In general, a non-singular curve of degree d (d=4) in P? has a unique linear

system g¢4° of degree d and dimeuion 2, which is nothing but the linear system of
the line sections of the curve (see, e.g., Namba [7, Theorem 5.1.5]). Thus V and

V'iy*=a(z—1)x—B)z—pF)

are conformally equivalent if and only if there is reAut (P?) such that «(V)=V".
Direct calculations show that this happens if and only if there is BeAut (P!) such
that

{B(0), BQL), B(a), Blax)}={0,1, 81, fz} and B(co)=co,
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i.e., if and only if the divisor (8.)+(8:) is equal to one of the following :
(a4 (@), Q—a)+(1—as),
o) +(aofes) ,  (Loz)+(anfar),
((ar=Dfa)+{(ar—az)far), (@e—Daz)+(az—as)/az),
AA=a)+({(~a)/(I1—ay)), HA—a))+({(A—a)/(l-a2),
(arf(an =1+ (@1 —ar)/(a1=1)), (azf(@z—1))+ (@2 —1)/(a2—1)),
(arf(ar—a2)) + (s =Dl — ), (aef(az— 1))+ (a2 —D)f(az—ar)).
Thus the conclusion of Theorem 1.1 still holds in this case.

Part 2.
2.1. Theorems.

The purpose of Part 2 is to prove the following theorems:

THEOREMS 2.1. Let p be a prime number and n an integer such that n=2p+1

and n=0 (mod p). Let V and V' be the compact Riemann surfaces defined by the
equations:

Viy=(@z—a)(z—ap),
V'iy"=(x—pi)(x—Bp),

where ay, -, ap (resp. i, -+, Bp) are mutually distinct complex numbers. Then V and
V' are conformally equivalent if and only if there is BeAut (C) (the automorphism
group of the complex plane C) such that {B(a,), -, Blap)=1{1, -, Bp}

COROLLARY. Let n be an integer such that n=2 and n=0 (mot3). Let 1 and
o be complex numbers different from 0 and 1, and V, and V, be the compact Rie-
mann surfaces defined by the equations:

Viiyt=z(z—1)(x—21),
Veiyr=z(z—1)z—p).

Then V, and V, are conformally equivalent if and only if p is equal to one of the
Jollowing :

2,12,1-2,1/1—2), A—1)/2,2/(2—1).

THEOREM 2.2. Let V be as in Theorem 21. Then there is the following exact
sequence:
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0 —K— Aut(V)— L—0,

where

K={oleAut (V)io: (z,y) — (2,0y), C=exp2zv/=1/n, 0=j=n—1},
L={BeAut (O)/{B(evs), -, Blap) ={as, -, ag}} .

2.2. Proof of the theorems.

Let p,n, V and V’ be as in Theorem 2.1. The point infinity : oco=(oo, co) has
a unique place on V, which we denote by co again. The genus of V (and V7) is
9=(1/2)(p—1)n—1). As a basis of the space of all holomorphic differentials on V,
we may take:

(@ y®)dz, 0=j<p,0<k<n,bp—in=n+1,

(see, e.g., Shimura [9]). From this, we can easily show that the space of all holo-
morphic differentials @ on ¥ such that (w)=#n(co) ((w) is the zero divisor of ) is
spanned by

(ily®)dz, 0=j<p,0<k<n, kp—jn=2n+1.

Hence the index of speciality i(n(c0)) of the divisor n(oo) is equal to g—n+1+[n/p],
where [ ] is Gauss’ notation. Hence, by Riemann-Roch theorem,

dim L(n(c0))=[n/p]+2,

where L(n(co)) is the vector space of all meromorphic functions on ¥ whose polar
divisors are contained in #(co), and O-function. Hence we may take {1, y, -, ™7, 1}
as a basis of L(n(co)).

Now, the ‘if " part of Theorem 2.1 is clear. We show the ‘only if’ part.
Assume that there is a biholomorphic map A:V — V’. Then the compositions
z=z-A and w=y-A are meromorphic functions on ¥ and satisfy the equation :

@ w"=(z—p1)-(z2— ) .

The order of the function w is p. Since n=2p+1, we have (p—1)*<g—1. Hence,
by Namba [7, Corollary 2.4.5], there are complex numbers c,¢’,d and d’ with cd’—
¢’d*0 such that w=(cy+d)/(c'y+d’). Put R=A""(c0). We first assume:

Case 1: Q=oo. In this case, the polar divisor of the function z is n(co0), so
that we can write

) z=avt+ay+-+aytt+bz,

where s=[n/p] and a, and b are complex numbers. Note that 5-£0, since sp<n.
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On the other hand, since
oo =w(00) = (cy(o0) +d)/(c'y(o0) +d")=(coo+d)[(¢'c0+d"),
we have ¢’=0 (and Jd’=1), ie,
3) w=cy+d (cx0).
From (2) and (3), (1) becomes
4) (cy+d)*=(a+ay+ - +ay +bz—pF1)-(t+ay+-+ay*+bx—fy) .

Since sp<n, this is an equation of degree n with respect to y, so that this must
coincide with the original equation: y"=(z—a))---(x—ay), up to constant. Arrang-
ing the terms in (4) in the descending degree with respect to =z, the coefficient of

P! is
b plavtay+-+ay)— (Bt + B},
which must be a constant (i.e., (—1)¢™a,+-++ayp)). Thus
a==qa,=0,

so that (4) becomes

(cy+d)*=(as+bx—p1)(t+bx—Pbp) -
Hence we get d=0, ¢®"=5b? and

{or, -+, ap}={(B1—a0)[b, -+, (fp— a0)/b} .
Let BeAut(C) be defined by B(t)=bt+a, for teC. Then

{Blay), -+, Blap)} ={B1, -+, Bp} -

This proves Theorem 2.1 in this case. Note that, from (2), the following diagram
is commutative :

% A p
5) .z'J( xl
p 5 P

CASE 2: @Q++co. We show that this case dose not occur. In fact, put Q=
(0, ¥0)eC?.  Since w=(cy+d)/(c’y+d’), we have

P Q=Du(w)=y~(—=d'[c").

(Do{w) is the polar divisor of the function w.) Hence y,=—d’/c’ and the equation
for = :
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(=) (z—ap)—yo"=
has xz, as the p-ple root, ie.,
(2~ )@ —ap) =y =(z—20)".
Thus V is defined by
Viyr=(x—x,)"+y.".

Note that y,0, for, i, -, a, are mutually distinct.
In a similar way, there is (2, ¥:)€C? (y:%0) such that V7 is defined by

V' iy =(z—x)?+y,".

Let V, be the compact Riemann surface defined by the equation :

Then the maps
AO : Va(xr ’_l/) I (y/yﬂy (.’L“"‘.’L‘o)/yg,)G VD »
A V'3(2, ) — (Wlyn, (x— )]y )e Vs,

are biholomorphic, where y,/?=y," and v,/?=y,*. Then, A,A~'A,/ is an automor-
phism of V5, mapping oo to (1,0). But, by Theorem 1.2 in Part 1, every auto-
morphism of V, can be written as

Voe(z, y) — (=, o*y)eVy,

where (=exp2zv —1/n, 0=j=n—1, p=exp2tv/—1/p, 0=k=p—1. In particular,
every automorphism of V, fixes oo, a contradiction. Thus, this does not occur. This
completes the proof of Theorem 2.1.

Theorem 2.2 follows from the above proof of Theorem 2.1. In fact, if we put
V’=V and associate B to A in (5), then this correspondence gives a homomorphism
of Aut(V) into Aut(C). Its image and kernel are clearly L and K in the theorem
respectively.

Finally, we show the corollary to Theorem 2.1.

If »=7, then the corollary is a direct consequence of Theorem 2.1 putting p=

H

If »—5, then the genus of V, is 4. We may take
{Ay)dz, (zly*)dx, 1]y*)dz, 1]y?)dz}

as a basis of the space of all holomorphic differentials on V,. Thus the canonical
map is

Vis(w,y) —(Z0: 211 Z,: Z) =L : m y 1 yH)eP?,
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where (Zo:Z,:Z»: Zs) is a homogeneous coordinate system on P°. Hence its image
(the canonical curve) is contained in the quadric cone S:Zy*=Z,Zs. In general, a
non-hyperelliptic canonical curve of genus 4 is the complete intersection of a
quadric surface and a cubic surface in P*. In our case, the quadric surface is the
cone S, so that the curve has a umigue linear pencil of degree 3. (It is, in fact,
the projection with the center a line on S.)) Thus a similar argument to the proof
of Theorem 2.1 shows that the conclusion of the corollary holds for n=5.

If n=4, then the equation: y*==z(z—1)(z—2) defines a non-singular curve of
degree 4 in P It is the canonical curve of the non-hyperelliptic V, of genus 3.
We may identify V, with the curve. Since the linear system of all line sections
is the canonical linear system, it is the unique linear system of degree 4 and dimen-
sion 2 on V.. Thus V, and V, are biholomorphic if and only if there is re Aut (P?)
such that 7(V;)=V,. But direct calculations show that this happens if and only if
there is BeAut (P') such that {B(0), B(1), B(), B(co)}={0, 1, g, oo}, (see also Theorem
3.1 below). This shows that the conclusion of the corollary holds for n=4.

If n=2, then V; is an elliptic curve, so that the conclusion of the corollary in
this case is classically well known.

This completes the proof of the corollary.

Part 3.
3.1. Theorems.

Let P+ be the (r+1)-dimensional complex projective space and (Xo: -1 Xr11)
be a homogeneous coordinate system on it. The purpose of Part 3 is to prove the
following theorems:

TuEOREM 3.1. Let V and W be non-singular hypersurfaces of degree n in P’
defined by the equations :
VX, =FX, -, X)),
W: X;‘+l=G<X0y 0ty Xr) .
Suppose (n,7)>(4,2). Then V and W are biholomorphic if and only if there is «a
BeAut (P) mapping the non-singular hypersurfaces {F=0} in P onto {G=0}.
COROLLARY. Let V and W be the compact Riemann Surfaces defined by the
equations :
Viyt=(z—a)(r—an),
W:yt=(z—p)(x—fa),
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where ay, -, ay (resp., Pi, -+, Ba) are mutually distinct complex numbers. Then V and
W are biholomorphic if and ouly if there is a BeAut (P') such that {B(a,), -+, B(ax)}
={‘811 Tty ﬁn}-

REMARK. We do not know if the conclusion of Theorem 3.1 still holds for
(n,7)=(4,2), i.e., for non-singular quartic surfaces in P2,

Let V be a non-singular hypersurface of degree » in P+ defined by the equa-
tion :
VX 4o+ X0 =F( X, o, Xi), 1=k=r.
Assume that V is not biholomorphic to any hypersurface defined by the equation:
Xint o+ X" =G(Xo, -+, Xi-1)

(i.e., & is the least integer such that V is expressed as above). Let ¢ and o,
k+1=i,j=r-+1, be the automorphisms of V defined by

0 (X1 X 1 X)) —> (Xt 1 X 10Xy, C=exp2zV —1/n,
gt (Xoter it Xyt Xyt X)) — (Xor ot Xyr et X e 0 X))

Let K be the subgroup of Aut(V), the automorphism group of V, generated by
o and 6;5, B+1=i,j=r+1. Its order is (r+1—Fk)w "% Let L be the subgroup
of Aut (P*) defined by

L={BeAut (P*)|B{F,=0})={F,=0}}.
THEOREM 3.2. Let V be as above. Assume that (1) n=4 if r=1, (i) »=3 if
r=2 and (iii) (n,7)x4,2). Then there is the following exact sequence :
0— K— Aut(V) — L —>0.

Let ¥ be a compact Riemann surface as in the corollary to Theorem 3.1. Let
K be the subgroup of Aut (V) generated by

(I:(;L', y) I ("L’,C'_U) .
Let L be the subgroup of Aut(P!) defined by
L= {BEAut (]pl)] {B(al)y Tty B(Cl’n)} = {0.’1, ttty a’n}} .
COROLLARY TO THEOREM 3.2. Let V be as in the covollary to Theorem 3.1

Assume that (1) nz=4 and (ii) V is not bikolomorphic to the Fermat curve: x4y "=
1. Then there is the following exact sequence:

0— K— Aut(V)—L —0.
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3.2. Proof of Theorem 3.1.

The “if’ part of Theorem 3.1 is trivial. We show the ‘only if’ part. If n=1
or 2, or (n,7)=(3,1), then Theorem 3.1 is trivial. (Any non-singular curve: y*=

(z—ai)(x—a:)(x—as) is biholomorphic to the elliptic curve: y*=z(x—1).) Hence we
may assume that

(i) n=4, if r=1,
(ii) »=3, if r=2, and
(iii) (n,7)*x(4,2).

Then any biholomorphic map of ¥ onto W can be uniquely extended to seAut Pr+1)
such that o(V)=W, (see Namba [7, Theorem 51.5] for =1 and Matsumula-
Monsky [5] for r=2),

In order to aboid confusion, we prepare another Pr+' (which is denoted by
P*7) with a homogeneous coordinate system (X,’:--:X%,,) and regard W as a
hypersurface in P,"*! defined by the equation:

Xﬂl:G(X'o’, B Xr,) .

Now our proof is hased on the following two trivial lemmas, whose proofs
are omitted.
Put

Po=0:-:0:1)eP*!' and
H=the hyperplane {X,,;=0} in P,
Let s and ¢ be complex numbers.
LemMmA 1. Let 6:P™13(Xo:: Xopiy) —> (X 1 -1 Xu)eP ! be a linear iso-

morphism, mapping P.. and H to (0: - :s:1) and {X], =0}, respectively. Then a(V)
is defined by

0'( V) H Xrlglel(/Yo,y "0ty Xr’»]v XT,_SXr,H) y
where IV is a homogeneous polynomial of degree n.
LEMMA 2. Let o: P — P! be a linear isomorphism, mapping P. and H
to (s:0:.:0:1:2) and {X,’=0}, respectively. Then a(V) is defined by
J(V) : XflnzF,(SXT,—XDIs Xl,y ) XT’--D ZXT,_—Z r,-H) ’

where F' is a homogeneous polynomial of degree n.
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Now let VcPr+! and WP+ be as above and
. p”la(Xoi eee qu 1) —r (Xo, e Xr'ﬂ)epl"“

be a linear isomorphism mapping V onto W. This means that, if ¢ is given by
a non-singular matrix (), i.e.,

X =ZtanXe,

then there is a non-zero constant ¢ such that
@ (Tphac e Xe)" — G(TitianXe), -+, (SitianXe)=c Xt — cF(Xo, -+, Xy) .
Let P. and H be as above. Put

Pl=0:--:0:DeP/* and

H={X/,,=0}.
We first consider the case:

Case 1: o(H)=F'. This means that X,,,=0 if and only if X/.,=0. Hence,
by (1),
G(Zo ook X), o) (X X)) =cl( KXo, -+, Xy), on [j.

Thus the restriction o¢|H: H— H' maps {F=0} onto {G=0).
Next, we consider the case:

Case 2: o(H)xH. This case is divided further into the following 2 cases,
depending on the positions of o(P.), P, o(H) and H'.

Case 2-i: There is a line | passing through P. and o(P.) but not H No(H).
Put R={NH" and S=1ne(H). Note that P.¢H" and ¢(P.)¢as(H). We prepare another
P+, which is denoted by P,"+! and a homogeneous coordinate system (X"’ : -+ : X/},
on it. Let r be a liuear isomorphism of P,”*! onto P,;"*!, mapping P., ¢(P.), R, S, H'
and o(H) to (0:---:0:5:1), (0:++:0:1:2), (0:---:0:1:0), (0:---:0:0:1), {X},=0}
and {X,”’=0}, respectively. Then, by Lemma 1, «(W¥) is defined by

@) (W) X/n=F" (X, X, X —s X)),

where F'’ is a homogeneous polynomial of degree #». On the other hand, (W)=
(V) and ro satisfies the condition of Lemma 2, so that re(V') is defined by

3 a(V): X/ =G" (X, -, X, XML —tX),

where G’/ is a homogeneous polynomial of degree #.
By (2) and (3), there is a non-zero constant ¢ such that
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4) (X, e, X X s X ) —- X
=cG"( X", -, Xy X — X)) —c X}

In (4), we put X"’ =---=X/,=0, X,”’=X and X/,=Y. Then we get
A X—sY) =Y "=cb(Y—tX)"—cX",

for some constants ¢ and 5. Expanding and comparing terms, we get

(6-1) a=cb(-1)"t"—c,
(5-2) (—Das®—1=cb,
(5-3) —as=cb(—=1)""t*!,
(5-4) as?=cb(—1)""2n-2,

Now, assume sx0. Then bx0. In fact, if b=0, then, by (5-3), ¢=0. Hence, by
(5-1), ¢=0, a contradiction. Hence a=0, so that b0. Now, by (5-3), (5-4), -+,

(6) al(ch(—1)") =1 |s=f"?st=... ,

Note that #=0, for ax0. Since we have assumed n=3, we get st=1 by (6). Thus,
by (6) again, cb(—1)**=q. Hence, by (6-1), a=a—c, so that ¢=0, a contradiction.
Consequently, s must be zero. By (5-2), b%0. Hence, by (5-3), ¢=0.
Thus we conclude that P./=S, ¢(P.)=R and (4) can be written as
FX o, X XY= X =G (X voey X XL L) —c X017
Hence there is a homogeneous polynomial K/ of X,”,--, X,”, of degree # such
that
(7__1) FII(XOII’ e Xr/i“ XT/I):[{I’(XOII’ ey Xy’il)_‘CXr,,n s
(7-2) G X", o, X2, X =1 e)K (X, -+, XY — (1 e) X n
Now we define an automorphism 7 of P,"*! by
(X et XL X XY —— (X e X elXlL X,
where ¢,"=1/c. Then y maps (G"/(X,"’, -+, X"\, X/1)—=0} onto {F(Xo", -, X0, Xi7)
=0)}.
Note that, by (2), = maps {G=0} onto {F"”=0}. Also, by (3), 7o maps {F=0} onto
{G""=0}.
Thus, 2=7"'5r¢ is a linear isomorphism of P7*! onto P,”*' mapping H to H,

and {F=0} onto {G=0}.

Case 2-ii: Plxo(P.) and the line | conneciing them intersects with I Ne(H).
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We show that this case does nof occur. Put R=INH Ne(H). Note that neither
P. nor o(P.) belongs to H'Us(H). Let P+ and (Xy/: - : X)) be as above. Let
v be a linear isomorphism of P,"*' onto P,"*!, mapping P., o(P.), R, H’ and o(H)
to 0:0:-:0:5:1), 1:0:+--:0:5:1), X1:0:++:0), {X/1,=0} and {X,””=0}, respec-
tively. Note that s=0.

By Lemma 1, «(W) is defined by
®) (W) XIa=F"(Xy", -, X, X" —sX /1),

where F'/ is a homogeneous polynomial of degree #». On the other hand, (W)=
zo(V') and 7o satisfies the condition of Lemma 2, so that r¢(V) is defiued by

) co(V): X/ =G X =X/, Ko ooe, XLy X =5 XL,

where G’ is a homogeneous polynomial of degree ». By (8) and (9), there is a
non-zero constant ¢ such that

(10) F’,<X0”y "ty L rliu Xr” - SXr,J:L) _Xr’gll
=CG”(X7” ”_SXOII, Xl", e, szn Xr”—'SXr’il)~CXr”" .

Put Xi"=-.=X",=0, Xy/'=X, X;/'—sX,/’=Y and X,”"—sX/[,=Z. Then (10) can
be written as

(1 WX+ @ XL e 4 @, 20— (Us"Y Y= Z+5X )"
=ch Y "+cb, Y '\ Z+ - +cbpZlt—c(s X+ YY),
where do, ***, @n, bo, -+, b, are complex numbers. In (11), put X=0. Then
b Y +c0 Y1 24+ cbpZ =0 2"+ c Y " —(1s" (Y =2 ).
Substituting this into (11), we get
12) @ X"+a, X 2+ oty X2
=cY"+ /s Y —Z+sX)'— (s Y =Z)"—c(sX+ Y ).
In (12), put Y=0. Then
a X"+ a, X" Z 4t @ X2
=(1/s"(sX—-Z)"—(—=1[s)"Z"—cs" X ™.
Substituting this into (12), we get

13) s s X —-Z)*—(=1[s)"Z™—csmXP
=cY*+1/s" (Y —-Z+sX)—A/s" Y -Z)"—c(sX+ T )".

In (13), put Z=0. Then we get

(I=csmX "+ (/s =) Y =(1/s")—c)sX+ Y )".
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The left hand side does not have the (X*'Y)-term. Hence ¢=1/s". Thus, by (13),
we get
(14) (Y—Z+sX)—(Y-Z)=(sX-Z)+(sX+ YY) —(-1)"2Zr— Y —s" X",
Since #=3, the first term in the left hand side of (14) is expanded as
nsXY " '—un—1)sXY" 22+ - 57 X",

while the right hand side of (14) does not have the (XY "-2Z)-term, a contradiction.
Hence this case does not occur.
This completes the proof of Theorem 3.1,

3.3. Proof of Theorem 3.2

In the following lemmas, suppose that V is a non-singular hypersurface of
of degree n in P+,

LEMMA 3. Let P. and H be a point in P~V and a hyperplane in D,
respectively, with the following conditions: (i) P.4H, (ii) HN\V is a non-singulayr
hypersurface in H, and (iii) the line connecting P., and every point Q of HN V meets
V at the unique point Q. Then V is defined by the equation as in Theovem 3.1.
Conversely, if V is defined as in Theorem 3.1, then Po=0:.--:0:1) and H={X,.,,=
0} satisfy the above conditions (i)-(iii).

Proor. Take a homogeneous coordinate system (Xo,:---: X,,,) such that .=
©O:+:0:1) and H={X,,,=0}. Let
ﬁ(Xo, M) Xr+1)=:Ao(X)fY¥n+Al<)()}a’1{+ +An(X) ’

(X=(Xo, ---, X»)), be the irreducible homogeneous polynomial of degree » defining
V, ie., V={F=0). Every A;X) is then a homogeneous polynomial of degree j.
In particular, A«(X)=A4, is a constant, which is non-zero, because P..¢V. Now, by
(iif), for any point (X°:0)=(X*: -+ : X;°:0) of VN H, the equation for X,.,:
AX7 o+ A(XO)XE -+ An(X9)=0
has X,.;=0 as the n-ple root. Hence
A(X)=--=A(X°)=0.
Since the degree of the non-singular hypersurface VNH in H is #, we have A,=
ve==Ap;=0. Thus
F(Xo, oo, X)) = Ac X+ An(X), Asx0.

The converse is trivial.
Q.E.D.
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Lemma 4. Suppose nz=2. If the pair (P., H) satisfies same the conditions as the
pair (Po, H) in Lemma 3, then P.=P., ie., P. is unique with respect to H.

ProoF. Suppose PixP.. Let ! be the line connecting them. Put Qo=InH.
Take any point QeVNH. By the condition (iii) in Lemma 3, the tangent space
ToV to V at @ passes both P.. and P.J so that it contains ! (and hence @,). Note
that the tangent space To(VNH) to VNH at Q is (ToV)NH, so that it contains
the fixed point @,. This is impossible, unless VN H is of degree 1.

Q.E.D.

The following lemma can be shown by a similar argument to Case 2-i in 3.2.

Lemma 5. Let P, and H be as in Lemma 3. Suppose n=3. Then His unique
with respect to P..
Finally we need

LemMA 6. Suppose n=3. Let (Priy, Hrit), ) (Pis1, Hivi) be mutually distinct
pairs satisfying the same conditions as (P.,H) in Lemma 3. Then there is a homo-
geneous coordinate system (Xo: -1 Xri1) on P4 such that

(7
(i) Pj=0:--:1:-:0), k+l=j=r+1,
(ii) Hj={X;=0}, k+1=j=<r+1, and

(i) VX 4o+ Xp=F(X, -, Xi) .

ProOF. A similar argument to Case 2-i in 3.2 shows that P;eH,, if ixj. This

implies that Hi.., -+, Hy., are in general position. In fact, since Pi.,, say, is con-
tained in Hg+2N -+ N H,., this linear subspace is not contained in H;.,. Thus we
may take a homogeneous coordinate system (Xo:---:X,,,) satisfying (i) and (ii).

Using (2) and (7-1) (or (3) and (7-2)) in 3.2, an inductive argument shows that V'
is defined as in (iii).
Q.E.D.
Now we are ready to prove Theorem 3.2. Let V be as in Theorem 3.2. Put
©))
Pj=@:-:1:--.:0),
FIJZ{X]ZO} ’

for k+1=j=r+1. Then every pair (P;, H,) satisfies the same conditions as (P.,, H)
in Lemma 3. By the assumption on the integer %, and by Lemma 6, they are all
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the pairs satisfying the same conditions as (P., H) in Lemma 3.

Note that any secAut (V) can be uniquely extended to oeAut (P"*') such that
o(V)="V, as was noted in 3.2. It is clear that ¢ maps {Pi+1, -++, Pri1} and {Hysr, -+, Hr i1}
onto themselves. Hence it maps S=Hg: N+~ N H,y, onto itself. The restriction ¢|S
then maps {/,=0} onto itself.

Now the correspondence

Aut (V)36 — g|SeAut (P¥)

is a homomorphism, whose image and kernel are clearly L and K in Theorem 3.2,
respectively.
This completes the proof of Theorem 3.2.

34. A remark.
In Theorem 3.2, we assumed 2=1. If k=0, then we have the Fermat variety :
Fn,v): X"+ + X=0.

A similar argument to the proof of Theorem 3.2 shows that, if (#,7)=(4,2), then
Aut (F(n,s)) is generated by ¢ and a;;, 0=i,j=r+1. Since (Xo:: Xo1) —> (X,
-+ :LX,41) is the identity map, the order of Aut (F(x, 7)) is (r+2)»"*', a well known
result. ‘
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