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ON THE NULLITIES OF K\"AHLER $C$-SPACES IN $P_{N}(C)$

By
Yoshio KIMURA

Let $M$ be a Kahler C-space which is holomorphically and isometrically imbedded
in an N-dimensional complex projective space $P_{N}(C)$ . Then $M$ is a minimal sub-
manifold of $P_{N}(C)$ . Let $n_{a}(M)$ be the analytic nullity of $M$ which was defined in
[2]. We know that the nullity $n(M)$ of $M$ is equal to $n_{a}(M)$ if $M$ is a Hermitian
symmetric space (Kimura [2]). In this note we prove that $n(M)=n_{a}(M)$ for any
K\"ahler C-space $M$.

By a theorem of Simons [5], the nullity of a K\"ahler submanifold coincides
with the real dimension of the space of holomorphic sections of a normal bundle
of the submanifold. Put $M=G/U$ where $G$ is a complex semi-simple Lie group
and $U$ is a parabolic subgroup of $G$ . By a result of Nakagawa and Takagi [4], we
know that every imbedding of $M$ in $P_{N}(C)$ is induced by a holomorphic linear
representation of $G$ . From this result we see that the normal bundle $N(M)$ over
$M$ is a homogeneous vector bundle.

We prove Theorem 1 which generalizes the generalized Borel-Weil theorem of
Bott [1]. Applying the theorem to calculate the dimension of the space of holo-
morphic sections of $N(M)$ and prove that $n(M)=n_{a}(M)$ .

The auther proved the above result before Proffesor Takeuchi gave another
proof of it. His proof does not use Theorem 1 and is more simple than our proof
(c.f. Takeuchi [6]).

\S 1. The generalization of Bott’s result.

Let $G$ be a simply connected compact semi-simple Lie group with Lie algebra
$\mathfrak{g}$ . Take a Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ . Denoto by $\Delta$ the root system of $\mathfrak{g}$ with respect

to $\mathfrak{h}$ . We fix a linear order on the real vector space spaned by the elements $\alpha\in\Delta$ .
Let $\Delta^{+}$ (resp. $\Delta^{-}$ ) be the set of all positive (resp. negative) roots. Let $\Pi=\{\alpha_{1},\cdots, \alpha_{l}\}$

be the fundamental root system, where $l$ is the rank of $\mathfrak{g}$ and $\Pi_{1}$ be a subsystem

of $\Pi$ . We put

$\Delta_{1}=$ { $\alpha\in\Delta;\alpha=\sum_{i=1}^{l}m\alpha_{i},$ $m_{j}=0$ for any $\alpha_{j}\not\in\Pi_{1}$ }
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$\Delta(\mathfrak{n}^{+})=$ { $\beta\in\Delta;\beta=\sum_{i=1}^{/}m_{i}\alpha_{i},$ $m_{j}>0$ for some $\alpha_{j}\not\in\Pi_{1}$ }

$\Delta(\iota\iota)=\Delta_{1}\cup\Delta(\mathfrak{n}^{+})$ .

Define Lie subalgebras $\mathfrak{g}_{1},$

$\mathfrak{n}^{\vdash}$ and $\iota$ of $\mathfrak{g}$ by

$\mathfrak{g}_{1}=\mathfrak{h}+\sum_{\alpha\in\Delta_{1}}\mathfrak{g}_{a}$

$\mathfrak{n}^{+}=\sum_{\beta\in\Delta(\mathfrak{n})}\mathfrak{g}_{\beta}+$

$\iota\iota=\mathfrak{h}+\sum_{\alpha\in\Delta(u)}\mathfrak{g}_{\alpha}$

where $\mathfrak{g}_{\alpha}$ is the root space corresponding to $\alpha\in\Delta$ . Then $\mathfrak{g}_{1}$ (resp. $\mathfrak{n}^{+}$ ) is a reductive
(resp. nilpotent) subalgebra of $\mathfrak{g}$ and $\iota=\mathfrak{g}_{1}+\mathfrak{n}^{+}$ (semi-direct). Let $U$ be the connected
Lie subgroup of $G$ with Lie algebra $\iota$ . Then $U$ is a parabolic Lie subgroup of $G$ ,

and $M=G/U$ is a K\"ahler C-space.

We denote by $D$ (resp. $D_{1}$ ) the set of dominant integral forms of $\mathfrak{g}$ (resp. $\mathfrak{g}_{1}$ ).

Let $\xi\in D_{1}$ . Then there exists the irreducible representation $(\rho_{-\xi}^{1}, W_{-\xi})$ of $\mathfrak{g}_{1}$ with
the lowest weight $-\xi$ . We extend it to a representation of $\iota\iota$ so that its restriction
to $\mathfrak{n}^{+}$ is trivial, which will be denoted by $(\rho-\xi, W_{-\xi})$ . There exists a representation

of $U$ which induces the representation $(\rho-\xi, W_{-\xi})$ and we denote it by $(\tilde{\rho}_{-\xi}, W_{-\xi})$ .
Let $(\nu, V)$ be a holomorphic representation of $G$ . We denote by $((\nu|_{U})\otimes\tilde{\rho}_{-\xi}, V\otimes W_{-\xi})$

the tensor product of the representations $(\nu|_{U}, V)$ and $(\tilde{\rho}_{-\xi}, W_{-\xi})$ of $U$. We also
denote by $E_{S}$ the holomorphic vector bundle over $M$ associated to the principal

bundle $G\rightarrow M$ by a representation of $U$ on $S$. For a holomorphic vector bundle
$E$ over $M$, we denote by $\Omega E$ the sheaf of germs of local holomorphic sections of
$E$. We shall consider the cohomology groups $H^{j}(M, \Omega E_{V\otimes W-\xi})$ .

Let $W$ be the Weyl group of $\mathfrak{g}$ and $\Delta_{1}^{+}$ the set of all $I^{X}$)$sitive$ roots of $\Delta_{1}$ . We
define a subset $W^{1}$ of $W$ by

$W^{1}=\{\sigma\in W;\sigma^{-1}(\Delta_{1^{+}})\subset\Delta^{+}\}$ .

Let $\delta$ be the half of sum of all positive roots of $\mathfrak{g}$ .

THEOREM 1. Let $\xi\in D_{1}$ and $(\nu, V)$ be a holomorphic representation of G. If
$\xi+\delta$ is not regular, then

$H^{j}(M, \Omega E_{V\otimes W-\xi})=(0)$ for all $j=0,1,$ $\cdots$ .

If $\xi+\delta$ is regular, $\xi+\delta$ is expressed uniquely as $\xi+\delta=\sigma(\lambda+\delta)$ , where $\lambda\in D$ and $\sigma\in W^{1}$ ,

and

$H^{j}(M, \Omega E_{V\otimes W_{-\xi}})=(0)$ for all $j\neq n(\sigma)$ ,
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$H^{n(\sigma)}(M, \Omega E_{V\otimes W-\xi})=V\otimes V_{-\lambda}$ (as G-module),

where $n(\sigma)$ is the index of $\sigma$ and $(\nu_{-\lambda}, V_{-\lambda})$ is the irreducible G-module with the

lowest weight $-\lambda$ .

If $(\nu, V)$ is the trivial representation of $G$ , the theorem coincides with the

generalized Borel-Weil theorem of Bott [1].

We prepare some lemmas to prove this theorem. Let $(f, S)$ be a representation

of $\mathfrak{u}$ and let $H^{j}(\iota^{+}, S)$ be the j-th cohomology group formed with respect to the

representation $f|_{\mathfrak{n}}+of\mathfrak{n}^{+}$ on $S$. We may regard $H^{j}(\mathfrak{n}^{+}, S)$ as $\mathfrak{g}_{1}$ -module in a canoni-
cal way. We denote by $H^{j}(\mathfrak{n}^{+}, S)^{0}$ the subspace of $H^{j}(\mathfrak{n}^{+}, S)$ annihilated by all
$X\in \mathfrak{g}_{1}$ . We may easily get the following lemma from theorems of Bott [1].

LEMMA 1. Let $\lambda\in D$ . Then

the multiplicity of $\nu^{\lambda}$ in $H^{j}(M, \Omega E_{V\otimes W-\xi})$

$=\dim H^{j}(\mathfrak{n}^{+}, Hom(V^{\lambda}, V\otimes W_{-\xi}))^{0}$ for $j=0,1,$ $\cdots$ ,

where $(\nu^{\lambda}, V^{\lambda})$ is an irreducible representation of $\mathfrak{g}$ with the highest weight $\lambda$ .
Since the representation $(\rho_{-\xi}|_{\mathfrak{n}}+, W_{-\xi})$ is trivial, we have

$H^{j}(\mathfrak{n}^{+}, Hom(V^{\lambda}, V\otimes W_{-\xi}))$

$=H^{j}(tt^{+}, V_{-\lambda}\otimes V\otimes W_{-\xi}))$

$=H^{j}(\mathfrak{n}^{+}, V_{-\lambda}\otimes V)\otimes W_{-\xi}$ .

From Schur’s lemma we have

$\dim H^{j}(\mathfrak{n}^{+}, Hom(V^{\lambda}, V\otimes W_{-\xi}))^{0}$

$=the$ multiplicity of $1\prime^{\xi}1$ in $H^{j}(\mathfrak{n}^{1}, V_{-\lambda}\otimes V)$ ,

where $\nu_{1}^{\xi}$ is an irreducible representation of $\mathfrak{g}_{1}$ with the highest weight $\xi$ .

LEMMA 2. Let $\lambda\in D$ . Then

the multiplicity of $\nu^{\lambda}$ in $H^{j}(M, \Omega E_{V\otimes W_{-\xi}})$

$=the$ multiplicity of $\nu_{1}^{\xi}$ in $H^{j}(n^{+}, V_{-\lambda}\otimes V)$ .

Now we recall Kostant’s result of Lie algebra cohomology.

THEOREM OF KOSTANT ([3]). Let $\lambda\in D$ . Then $\mathfrak{g}_{1}$ -module $H^{j}(\mathfrak{n}^{+}, V^{\lambda})$ is decomposed

into direct sums:

$ H^{j}(\mathfrak{n}^{+}, V^{\lambda})=\sum_{\sigma\in W^{1}(j)}\oplus W^{\sigma}(\lambda+\delta)-\delta$
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where $W^{1}(j)=\{\sigma\in W^{1} ; n(\sigma)=j\}$ and $(\nu_{1}^{\mu}, W^{\mu})$ is the irreducible representation of $\mathfrak{g}_{1}$

with the highest weight $\mu$ .

PROOF $O1^{\backslash }$ THEOREM 1. Assume that the multiplicity of $\nu_{1}^{\xi}$ in $H^{j}(\mathfrak{n}^{+}, V^{\gamma}),$ $\gamma\in D$ ,

is not $0$ . By the above theorem there exists an element $\sigma\in W^{1}(j)$ so that $\xi+\delta=$

$\sigma(\gamma+\delta)$ . Since $\gamma+\delta$ is regular, $\xi+\delta$ is also regular. Therefore by Lemma 2 we see
that if $\xi+\delta$ is not regular then $H^{j}(M, \Omega E_{V\otimes W-\xi})=(0)$ for any $j$ .

Assume that $\xi+\delta$ is regular. Then $\xi+\delta$ is expressed uniquely as $\xi+\delta=\sigma(\lambda+\delta)$ ,

where $\lambda\in D$ and $\sigma\in W^{1}$ (Kostant [3]). If $j\neq n(\sigma)$ , we see immedietly that $H^{j}(M$,
$\Omega E_{V\otimes W-\xi})=(0)$ by Lemma 2 and Theorem of Kostant.

Let $G_{u}$ be a maximal compact subgroup of $G$ . Denote by $\chi_{\phi}$ the charactor of
a representation $\phi$ of $G$ . Then by Theorem of Kostant we get the following:

the multiplicity of $\nu^{\xi_{1}}$ in $H^{n()}\sigma(\mathfrak{n}^{+}, V_{-\gamma}\otimes V)$

$=the$ multiplicity of $\nu^{\lambda}$ in $V_{-\gamma}\otimes V$

$=\int_{0_{u}}\overline{\chi}_{\nu}^{\gamma}\cdot\chi_{\nu}\cdot\overline{\chi}_{v^{\lambda}}dg$

$=the$ multiplicity of $\nu^{\gamma}$ in $V\otimes V_{-\lambda}$ ,

where $dg$ is the normalized Haar measure on $G_{u}$ . Therefore by Lemma 2, we get

$H^{n(\sigma)}(M, \Omega E_{V\otimes W-\xi})=V\otimes V_{-\lambda}$ (as G-module). Q.E.$D$.

\S 2. Proof of the main theorem.

We retain the same notations and assumptions introduced in \S 1. Let $\Lambda$ be an
integral form such that $(\Lambda, \alpha_{i})=0$ for $\alpha_{i}\in\Pi_{1}$ and $(\Lambda, \alpha_{j})>0$ for $\alpha_{j}\not\in\Pi_{1}$ . We denote
by $(\tilde{\nu}^{\Lambda}, V^{\Lambda})$ the irreducible representation of $G$ with highest weight $\Lambda$ . Let $P(V^{\Lambda})$

be the complex projective space consisting of all l-dimensional subspace of $V^{\Lambda}$ .
Since the dimension of the weight space (v) in $V^{\Lambda}$ correspanding to the highest
weight $\Lambda$ is equal to 1, (v) is an element of $P(V^{\Lambda})$ . Moreover $G$ acts canonically
on $P(V^{\Lambda})$ via the representation $(\tilde{\nu}^{\Lambda}, V^{\Lambda})$ , and it is known that $U$ coincides with
the isotropy subgroup of $G$ at (v). Therefore we get a G-equivariant imbedding

$f^{\Lambda}$ : $M=G/U\rightarrow P(V^{\Lambda})$ . Since $\tilde{\nu}^{\Lambda}$ is an irreducible representation, $f^{\Lambda}$ is a full im-
bedding. Conversely every full K\"ahler imbedding of a K\"ahler C-space $M$ in $P_{n}(C)$

is obtained in this way (Nakagawa and Takagi [4]).

THEOREM 2. Let $M=G/U$ be a Kahler C-space fully imbedded in $P_{n}(C)$ . Then
the nullity $n(M)$ of $M$ in $P_{n}(C)$ is given by

$n(M)=\dim_{R}\mathfrak{a}(P_{n}(C))-\dim_{R}(M)$ ,
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where $\mathfrak{a}(P_{n}(C))$ (resp. $\mathfrak{a}(M)$ ) is the vector space of all analytic vector fields on $P_{n}(C)$

(resp. $M$).

PROOF. Assume that the imbedding of $M$ in $P_{n}(C)$ is induced by the irredu-
cible representation $(\tilde{\nu}^{\Lambda}, V^{\Lambda}),$ $\Lambda\in D$ and $\dim V^{\Lambda}=n+1$ , of $G$ . Denote by $(h, (v))$ the
representation of $U$ on (v) induced by ,

$\Lambda$ and denote by $(h^{*}, (v)^{*})$ the contragredient
representation of $(h, (v))$ . Then we get the following exact sequence of U-modules:

$0\rightarrow(v)\otimes(v)^{*}\rightarrow V\otimes(v)^{*}\rightarrow V\otimes(v)^{*}/(v)\otimes(v)^{*}\rightarrow 0$ .
It is easy to see that $E_{V\otimes(v)^{*}/(v)\otimes(v)^{*}}=T(P_{n}(C))|_{M}$ . Therefore we get the following

exact sequence of holomorphic vector bundles over $M$ :

$0\rightarrow 1\rightarrow E_{V\otimes(v)^{*}}\rightarrow T(P_{n}(C))|_{M}\rightarrow 0$ ,

where 1 is the trivial line bundle over $M$ Since $M$ is a K\"ahler C-space, $H^{1}(M, \Omega 1)$

$=(0)$ . Therefore we get the following exact esquence of cohomology groups:

$0\rightarrow H^{0}(M, \Omega 1)\rightarrow H^{0}(M, \Omega E_{V\otimes(v)^{*}})\rightarrow H^{0}(M, \Omega(T(P_{n}(C)|_{M}))\rightarrow 0$ .
Since the lowest weight of $(h^{*}, (v)^{*})$ is $-\Lambda$ , it follows, by Theorem 1, that $H^{0}(M$,
$\Omega E_{V\otimes(v)^{*}})=V\otimes V_{-\Lambda}$ as G-modules. It is obvious that $\dim H^{0}(M, \Omega 1)=1$ . Therefore
we get

$\dim H^{0}(M, \Omega(T(P_{n}(C))|_{M}))=(n+1)^{2}-1$ .

Since $\dim_{R}\mathfrak{a}(P_{n}(C)=2\{(n+1)^{2}-1\}$ , we get

(1) $\dim_{R}H^{0}(M, \Omega(T(P_{n}(C))|_{M}))=\dim_{R}\mathfrak{a}(P_{n}(C))$ .
The exact sequence of holomorphic vector bundles over $M$ :

$0\rightarrow T(M)\rightarrow T(P_{n}(C))|_{M}\rightarrow N(M)\rightarrow 0$

and $H^{1}(M, \Omega T(M))=(0)$ (Bott [1]) induce the following exact sequence of cohomology

groups:

(2) $0\rightarrow H^{0}(M, \Omega T(M))\rightarrow H^{0}(M, \Omega(T(P_{n}(C)|_{M}))\rightarrow H^{0}(M, \Omega N(M))\rightarrow 0$ .

Recall that the nullity $n(M)$ of $M$ is given by

(3) $n(M)=\dim_{R}H^{0}(M, \Omega N(M))$

(Kimura [2]). From (1), (2), (3) and $\dim_{R}H^{0}(M, \Omega T(M))=\dim_{R}\mathfrak{a}(M)$ , we get

$n(M)=\dim_{R}\mathfrak{a}(P_{n}(C))-\dim_{R}\mathfrak{a}(M)$

Q.E. $D$ .
From the above theorem and Lemma 3.4 in Kimura [2] we have the following

result.
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COROLLARY. Let $M$ be a Kahler C-space holomorphically and isometrically im-
bedded in $P_{N}(C)$ . Then

$n(M)=n_{a}(M)$ .
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