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A NOTE ON PROVABLE WELL-ORDERINGS IN FIRST ORDER
SYSTEMS WITH INFINITARY INFERENCE RULES

By

Susumu HAavasHI

In [4], Shirai refined the well-known result on the provable well-orderings of
the pure number theory in Gentzen as follows:

Transfinite induction up to « is provable by only the induction rules (V]-
inferences) with induction formulae which have at most p quantifiers if and only
if a represents an ordinal which is smaller than w,, where Wo=@, Wpi1 =7,

In this paper we refine the result of Schiitte [3] corresponding to the result of
unprovability in Gentzen according to the spirit of Shirai as follows:

If P is an infinitary proof of the transfinite induction up to «, ie., Vax(Vy<
xXy>D Xz)—>Xa, and the ordinal number of P is smaller than -8, then « repre-
sents an ordinal which is smaller than B (3, #), where # is the maximum length of
the sequences of mutually regulating occurences of quantifiers in the cut formulae
in P and B is the function defined at the beginning of §2 below.

In §1 we introduce our syntax and prove the reduction theorem which is a
refined version of the Reduktionssatz of Schiitte [3] In §2 we prove the upper
bound theorem which is the main result of the present note by the reduction theo-
rem and two lemmata on the structure of the derivations of transfinite induction.
As a corollary of the upper bound theorem we prove a part of the Shirai’s result,
i.e., if the transfinite induction up to a is provable by only the inductions whose
induction formulae have at most p quantifiers and p>1, then « is smaller than o,.

The auther would like to thank Professor S. Maehara for pointing out a serious
error in the preliminary version of the present note.

§1. Syntax and the Reduction Theorem

We use only two logical symbols V, D. Let £ be a first order language which
has a binary predicate constant < at least. Let U be a structure of _£ in which
< is a well-ordering of |%|. We introduce a new constant ¢, for each element
ae|Al. We understand that if a=b, then ¢, and ¢, are different symbols. We de-
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fine a system (A, X) from _, A and a unary free predicate variable X.

DerFINITION OF (U, X)

(i) Formulae and terms are defined from X, _, ¥V, > and the constants c,
(ae|NA|) as usual.

(ii) Let /7, 4 be finite sequences of formulae. Then /'—-4 is a sequent, where
« is an ordinal number. The ordinal « is called the ordingl of the sequent.

(iii) Xs——>X? is an initial sequent, when Ak 7s<¢t and AE= 7s>¢£  The no-
tation 7 A mgans the formula A>c¢<c, where ¢ is a fixed constant.

(iv) Ay, -, An—> By, -+, B, is an initial sequent if A= (A, A AdAn)D(BV -V
B,) and A,, ---,Am,é:, .-+, B, are formulae which do not contain the free variable
X. The symbols A,V are defined from D and 7 as usual.

(v) Inference rules of (%, X) are as follows:

1) Any structural inference of LK is adopted as an inference rule of (%, X)
provided that the ordinal of the upper sequent of the inference is equal to the or-
dinal of the lower sequent of the inference. We use the names: weakning left
(right), exchange left (right), contraction left (right). (See § 2 of [5].)

2) The rules cut, D: left, D: right and V: left are the same as the ones of
LK (cf. §2 of [6]). The rule V: right of (%, X) is the following inference rule:

I'— 4, A(cq) for all ae|¥|
By LRy P

[44

The ordinals of the upper sequents of these four inferences must be smaller than
the ordinal of the lower sequent.

(vi) Degree and q-degree of a formula is defined as follows and the degree
and the g-degree of a formula A are denoted by d(A) and g(A) respectively.

1) If A is a prime formula, then d(A)=¢(A)=0.

2) If d(At)=m and q(At)=n, then d(VzxAx)=m+1 and g(VzAx)=n+1.

3) If d(Ai)=m; and q(A:s)=n; (i=1,2), then d(A,DA:)=max(m,, m;)+1 and
q(A; D Az)=max(n,, n,).

(vii) Degree and q-degree of a cut is the degree and the g-degree of the cut
formula of it.

(viii) We define proofs and their degrees inductively. We denote proofs by
P, P, -+, P;,--- and the degree of a proof P by d(P).

1) An initial sequent is a proof and its degree is zero.

2) If '—>4 is the lower sequent of an inference whose upper sequents are

(44
{I":—— 4}, P, is a proof of I',——4; for each A2 and d(P,) is smaller than a natural
az a
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number # for any 2, then

s P

i
o

is a proof and its degree is the maximum of the degrees of the cuts in it.

(ix) If P is a proof, then its g-degree is the maximum of g-degrees of cuts
which appear in the proof P. The ordinal of the end-sequent of a proof P is call-
ed the ordinal of P.

Now we prove the reduction theorem, which is a refinement of the Reduktions-
satz of Schiitte [3] We use the following lemma without a proof. It is proved by
the same method as in §2 of [3]

LemMA 1. There ave seven operations U,,---, U; which satisfy the following
conditions respectively :

1) If Pis a proof of I’———»A ADB, then U(P) is a proof of A, I’————»A B.

2) If Pis a proof of A:)B F~—>d then Uy,(P) is a proof of B, I’—w».d and
Us(P) is a proof of I’ >d, A.

3) If Pis a pmofaof '——d, VYV xAx and t is a term, then U P,t) is a proof
of I'——1, At. *

4)a If Pis a proof of A, I'——d where A is a prime formula not containing
the free variable X and Nk A, t/fen Uy P) is a proof of I'——4.

5 If Pis a proof of I'—>4, A wheve A is a prime j%rmula not containing
the free variable X and Wk 7214, then Us(P) is a proof of I'——4d.

6) If Pis a proof of l"TA and a<B, then U.P,p) is ()éz proof of ]"Td.

RepucTiON THEOREM. There ave three operations R,, R., Rs which satisfy the
following conditions respectively :

1) If P is a proof of I"—a—>d, then R.(P) is a proof of 1"-ﬁd, d(Ry(P))<d(P),
q(R(P)=q(P) and R,\*P(P) has no cut formula whose outermost logical symbol is
o.»

2) If Pis a proof of l'—a—n/l, then R.(P) is a proof of l‘—-z—a+A, d(Rx(P))<d(P)
and q(R,(P)<q(P). If P has no cut formula whose outermost logical symbol is D
and q(P)+0, then g(R.(P))<q(P).

3) If Pis a proof of I'——4, then Ry(P)is a proof of I'——4d,d(Rs(P))<d(P),
q(Rs(P))<q(P) and Rs(P) Izasano cut formula which is a primeaformula except Xs.

1) If F is an operation, then F» means the operation that is defined inductively by the
equations: Fl1=F, Frl=FocFn,
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Proor. We define R,, R; and R; by the induction of the definition of the proofs.
It is easy to see the conditions are satisfied by those. The proofs are left to readers.
1) R, is defined by the followings:

Case 1) P is an initial sequent '—4. In this case R,(P) is the initial sequent
[44
I'—— 4.
2-a
Case 2) P is the following form:

P, P
I' =% 4 AoB ADAB, I’ —>4

ay 24

I'—4

ag

Then R,(P) is the following proof :

Uio R o(P) Uso Ry(Pz)
——— - 5

AT 7 4,B BT 5 4
UsoR(Ps) & "Xz
[ —>4, A >
2'6(2 A’FZ'maX(al,az)""ld
I'—4

2'&3
Case 3) P is not in the above two cases. Let P be the following:

ooy Piy oo
I'—4 .
a

Then R,(P) is the following proof :

oy Ri(PY); ..
I'—4
2-a

2) R, is defimed by the followings:
Case 1) P is an initial sequent I'——4. In this case R,(P) is the initial sequent
[24

F—Z—R—PA.
Case 2) P is the following form:
P1 PZ
I' — 4, VzAx VzxAzx, —> 4
(241 [2¢)
I'—4
ag

In this case R,(P) is constructed by the same methed as in ‘IV. Fall’ of §3 of
from Ry(P.) and U (Ry(P)),t), where ¢ is a term. The precise definition is left for
readers.

Case 3) P is not in the above two cases. Similarly to Case 3 of the definition of
R,.
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3) R; is defined as follows:
Case 1) P is an initial sequent /'——4. Then Ry(P) is the initial sequent I'—4

o [24

itself.
Case 2) P is the following form:

P1 P2

I'—d4,A A T'—> 4
ar (24
I'—4 '
asg

where A is a prime formula except Xt. If A=A, then Ry(P) is the proof
Ur(Us(Rs(P2)), as). If A= 7 A, then Ry(P) is the proof U(Us(Rs(Pr)), as).

Case 3) P is not in the above two cases. Similarly to Case 3 of the definition of
R,.

§ 2. Upper bounds of order types of provable well-orderings

In this section we fix a system _£(U, X ) and its predicate symbol < which re-
presents a well-ordering of |N|. If # is a term of _L(NU, X), then [¢| means the or-
dinal a such that %A(#) is the a-th element of |A| with respect to the well-ordering
W(<L). Prog(X) means the formula V x(Vy(y<xDXy)DXz). If « is an ordinal and
#n is a natural number, then B(a,n) is defined as follows:

{B(a, O=w-a,
Bla,n+1)=28"™

Now we can state the upper bound theorem, which is the principal result of the
present paper.

UpPER BounDp THEOREM. If P is a proof of Prog(X)—Xt, a<w-B and g(P)
=n, then |t|<B(B,n). We may replace < by <. :

To prove this theorem we introduce a system OC (ordinal calculus) and prove
two lemmata on it.?

DerINETION OF OC.

(i) If I, 4 are finite sequences of ordinals, then /"——4 is a sequent of OC,
o

where « is an ordinal.

2) The OC is introduced to make the proof of the theorem intelligible. We can prove
the theorem without OC. Really, the present proof was inspired by a solution of an ex-
ercise on provable well-orderings in Feferman’s lecture where he seemed to claim to
analyze the proofs of transfinite inductions directly. (See the Lemma 6.5 of [1])
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(ii) The sequent a——a is an initial sequent.

(iii) I'——4,0 is an initial sequent.

(iv) The inferences corresponding to the structural rules and cut of _L(U, X)
are introduced and called by the same names, e.g.

Weakning left) Cut)
I'—4 F—I-B~+A,a a,l'—4
a,lj——>2— ’ I'—4 ’
7 0
where =jy. where max(3, y) <é.

(v) The following structural rule is adopted.
Repetition)

I'—4

(vi) The following inference is adopted as the only non-structural inference
rule. (Cf. ProgressionsschluB3 of [3])
PS)

I'— 4,5 for all <y

ap

b

F——s——)A,T
where y+#0 and a3<é for any B<y.

LEMMA 2. If Prog(X)— Xt is provable in (N, X) without a cut whose cut
[44
formula is not the form Xs, then ——|t| is provable in OC.
24

LeMMA 3. If ay, -, am—>PB1, -+, Bn (Possibly m=0) is provable in OC and {ai, -+,
am} N {B1, -+, Ba} =0, then

y+Card({a;: a;<min(Bs, -+, Ba)})=min(By, -+, Bn)

where for any set S Card(S) means the cardinal of S.
Before proofs of these lemmata we prove the upper bound theorem by them.

Proor or THE UppeEr BouND THEOREM. Let P be a proof of Prog(X)—> Xt,
d(P)=m and q(P)=n. If a<w-p, then by the reduction theorem we see Rsf(leo
R;)"oR,™(P) is a proof of Prog(X)-—>Xt, where y<B(S,n). It is easy to see that
any cut of the resulting proof has tiile form Xs. By Lemma 2 we see there is a
proof of —T—>|t| in OC. By Lemma 3 we see ¢t<y<B{(B,n). The present proof holds
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even if < is replaced by <. Hence the upper bound theorem is proved by Lemma
2 and 3.
Now we prove Lemma 2 and 3.

PrOOF OF LEMMA 2. Assume P is a proof of Prog(X)— Xt and P has no
o
cut whose cut formula is not Xs. If we ignore the order of the occurences of for-
mulae, the possible form of sequents in P is the following:

I'—4,
where
I'=Prog(X); Vyy<si2Xy)DXsy, -+, Yy(y<s:D Xy) D Xs1; X, -+, Xbm; <01, ", Un
<Un)

A=Vyly<w, D Xy), -, Vyly<Lw,D> Xy); 1:<x1D Xy, -, Yg<L2q D Xyg; X2, ++, X2y

For each F?A of P we assign a sequent 1’*—‘23——»41* of OC such that

Iv*zlt.l!)"" |tmi)
A*=|wlly S ]wllly Igll) ) lgsly |Zl], Ty tz'r!)
where 71, -+, 9s is a subsequence of w,--,¥, and y; belongs to the subsequence if

and only if A=y, <x;.
We define a subtree of P, say F’, as follows:
1) The end sequent of P belongs to F’.
2) Assume a sequent I’—ﬁ—»d of P belongs to P’ and F——ﬂ-ﬁl is not an initial

sequent of P.
Case 1) I'——4 is the lower sequent of a V: right. Then the inference has the

following form:
F—/9——>A’,ca<tDX(ca) for all ae Y|
FTA,’ V y(y<t>Xy)

If AEce<t, then I'— 4", co,<tDX(c,) belongs to P’.
Case 2) I'—4 is ﬁ‘ot the lower sequent of a V: right. In this case all upper
sequents of the inference whose lower sequent is I'—>4 belong to P’.

Replace each sequent I'—>4 of P’ by the sequent I™*——4*. We denote the

resulting tree of sequents of OC by P*. We show P* is a proof of OC.
Case 1) F?A is an uppermost sequent of P’. In this case the sequent is upper-

most in P or the lower sequent of a V: right whose principal formula (Hauptformel)
is the form Vy(y<tDXy) and A= Vy(7y<t). In the latter case Vy(y<t>DXy) is
replaced by |#|. Hence F*—E—»A* is an initial sequent of OC. By the definition of
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P’ we can easily see that if s<¢ appears in the antecedent of a sequent in P’, then
AE=s<¢t. Hence in the former case I'——4 must be the initial sequent obtained by
the clause (iii) of definition of (A, X). Hence I™——-4* is an initial sequent of
OcC. g
Case 2) I'——4 is not uppermost in P’, and I'——4 is the lower sequent of a cut
or a structural rule in P. Then the inference turns a cut, a structural rule or a
repetition in P*,
Case 3) I'——4 is the lower sequent of a V: right in 2 Then the V: right is
the form of the figure of 2) of the definition of P’. Hence we see the inference
turns to a PS in P*.
Case 4) I'——4 is the lower sequent of a V: left in P. Then the inference turns
to a repetition.
Case 5) I'——4 is the lower sequent of a D: right in P. Then the O: right is
the following form:

s<Lt,'— 4", Xs

o

I—4" s<t>Xs
Je

As mentioned above A=s<¢. Hence this inference turns to a repetition in P*.
Case 6) I'——4 is the lower sequent of a O: left in P. Then the D: left is the

following form:

I"— 4, Vyy<to Xt) Xt, I'"—>4

B2

1
Vyy<toXt)oXt, 1" —4
B

This turns to a cut in P*.
Hence we have proved P* is a proof of ——|#| in OC. This completes the proof
(44
of Lemma 2.

Proor orF LEmMmMA 3. Let P be a proof of the sequent ay, -, @an—>B1, -, Bu
We say a sequent of OC is tautological, when the antecednt and the succedent have
an ordinal in common. We say a sequent in P belongs to P* if and only if there
is no tautological sequent between the sequent and the end-sequent of P, including
the sequent and the end-sequent. Note that P* is well-founded. We prove the
inequality of Lemma 3 for any sequent /'——4 in P* by the induction on P*.
Case 1) I'—4 is an initial sequent in I;X Since I'—->4 is not tautological, we
see 0 belong(; to 4. Hence the inequality holds for thisa sequent.

Case 2) F—a->A is the lower sequent of one of structural inferences except the rule
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of weakning right in P. Obviously by the induction hypothesis.
Case 3) I’ ——»A is the lower sequent of a weakning right in P. Then the upper

sequent belongs to P*. Let the inference be the following form:

r—s4

a
I—4', B

«
Then by the induction hypothesis we see
a+Card('N{6: d<min(4’)})=min(d’).

Hence if >min(4’), then the inequality holds for I'——4’,8. Assume S<min(4’).
Set f+y=min(4’). Evidently there is a natural number % such that

Card('n{o: 6<B)+n=Card(I'N{5: 6<p+7}) and n<y.

Hence a+Card(I'N{5: 6<p})+n>B+r>n holds. Since n is a natural number, the
desired inequality a+Card(/I"'N{3: 6<5})=p holds.

Case 4) I'——4 is the lower sequent of a cut in P. Assume the cut is the follow-
ing form: :

I'——4,8 8,1 —4

(4% g
[—4

(44

Subcase 1) The 8 belongs to 4. Since min (4, §)=min (4) and o, <a, we see the
inequality holds for [’——»A by the induction hypothesis on [’—-»A 8-
Subcase 2) The 8 does not belong to 4. In the case ﬁ>m1n(A), evidently by the
induction hypothesis on 3,1’ ——»A Assume B<min(4). By the induction hypothesis
we see az+1+Card(I"N{y: 7<m1n(A)})>m1n(A) Since az+1<a, the inequality holds
for I'—4.
Case S)a I'— >/ is the lower sequent of an application of PS in P. Assume the
PS is the fo?lowing form:

'—4’,5 for all g<y

ag

r—da,y
«

Subcase 1) In the case min (4’,7)<y. Set §=min(4’,7). Since ded’, the sequent
F———»A’ 5 belongs to P*. Hence by the induction hypothesis we see a;+Card (I'N
{e: e<5})>5 Since a>as;, the inequality holds for F——»A

Subcase 2) In the case min(4’,7)=y. Let d;,---,0p (poss1b1y p=0) be the sequence
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I'N{e: e<y}. Set d,.1=y. We define a natural number g (1<g<p+1) such that
f3q=min{C3 V’)(CSUST?UG{BD A 510 1»1}>} .

If <9, and p¢I", then by the induction hypothesis on /'—4’, 3 we see as+Card
(I'N{e: €<8,})+1>p+1. By the definition of §,, we see thgie is no element whose
successor is dq in I'N{e: ¢<y}. Hence sup{f+1: 5<4, and S&I'}=sup{f+1: S<d,).
Since az<a for all <4, we see a+Card(I"'N{e: ¢<d,))>sup{f+1: f<d,}=d, By
the definition of g,, we finally see a+Card(I'N{e: ¢<7})>7. This is the desired
inequality.

We have just completed the proof of the upper bound theorem. As a consequence
of the theorem we prove the following corollary.

CoroLLARY (Shirai [4)). If ¢ is a closed term for which Prog(X)—> Xt is o-
derivable (0>1) in the pure number theory of [4], then |t| <w,, where wo=w, Wni1=
wn> and < is the cannonical ordering up to &,.

Let Tt be the standard model of the pure number theory. A sequent S, is call-
ed a closed instance of S,, when S, is obtained by substitutions of numerals for all
free individual variables in S.. A closed instance of a formula is defined by the
same manner. To prove the corollary we use the following lemma.

LemmMa 4. If P is a proof of a sequent S in the pure number theory of 4],
then for each closed instance of S we can find a proof P of LR, X) such that (i)
the end-sequent of P is the given closed instance of S, (ii) the ordinal of P is at
most w-n, where n is the number of the inferences of P, (iii) each cut formula in
P is a closed instance of one of V]-formulae or cut formulae in P.

Proor. By the induction on P. Details are left for readers.

Proor oF THE COROLLARY. Assume Prog (X )—> Xt is p-derivable. As in [4]
we may assume the sequent has a proof P in the pure number theory such that
any formula which is a cut formula or a V/-formula in P has at most p quantifiers.
Hence by Lemma 4 we can find a proof P in LR, X) such that the g-degree of
P does not exceed p and the ordinal of P is smaller than w-o. Hence by the
upper bound theorem we see || <B(w,p). In the case p>1 we see B(w, 0)=w,.
Hence we have reached the desired conclusion.

ReEMARK. The results of the present note hold even if Prog (X )TXL‘ is re-

placed by Prog (X)—V x<tXzx (cf. [3]).
[44
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