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A NOTE ON PROVABLE WELL-ORDERINGS IN FIRST ORDER
SYSTEMS WITH INFINITARY INFERENCE RULES

By

Susumu HAYASHI

In [4], Shirai refined the well-known result on the provable well-orderings of

the pure number theory in Gentzen [2] as follows:
Transfinite induction up to $\alpha$ is provable by only the induction rules (VJ-

inferences) with induction formulae which have at most $\rho$ quantifiers if and only

if $\alpha$ represents an ordinal which is smaller than $\omega_{\rho}$ , where $\omega_{0}=\omega,$
$\omega_{n+1}=\omega^{()}\omega n$ .

In this paper we refine the result of Sch\"utte [3] corresponding to the result of

unprovability in Gentzen [2] according to the spirit of Shirai [4] as follows:

If $P$ is an infinitary proof of the transfinite induction up to $\alpha$ , i.e., $\forall x(\forall y\prec$

$xXy\supset Xx)\rightarrow x_{\alpha}$ , and the ordinal number of $P$ is smaller than $\omega\cdot\beta$ , then $\alpha$ repre-

sents an ordinal which is smaller than $B(\beta, n)$ , where $n$ is the maximum length of

the sequences of mutually regulating occurences of quantifiers in the cut formulae

in $P$ and $B$ is the function defined at the beginning of \S 2 below.

In \S 1 we introduce our syntax and prove the reduction theorem which is a
refined version of the Reduktionssatz of Sch\"utte [3]. In \S 2 we prove the upper

bound theorem which is the main result of the present note by the reduction theo-

rem and two lemmata on the structure of the derivations of transfinite induction.

As a corollary of the upper bound theorem we prove a part of the Shirai’s result,

i.e., if the transfinite induction up to $\alpha$ is provable by only the inductions whose

induction formulae have at most $\rho$ quantifiers and $\rho\geq 1$ , then $\alpha$ is smaller than $\omega_{\rho}$ .
The auther would like to thank Professor S. Maehara for pointing out a serious

error in the preliminary version of the present note.

\S 1. Syntax and the Reduction Theorem

We use only two logical symbols $\forall,$ $\supset$ . Let $\Leftrightarrow C$ be a first order language which
has a binary predicate constant $\prec$ at least. Let $\mathfrak{A}$ be a structure of $\not\in C$ in which
$\prec$ is a well-ordering of $|\mathfrak{A}|$ . We introduce a new constant $c_{a}$ for each element
$a\in|\mathfrak{A}|$ . We understand that if $a\neq b$ , then $c_{a}$ and $c_{b}$ are different symbols. We de-
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fine a system $\mathcal{L}(\mathfrak{A}, X)$ from $\mathcal{L},$
$\mathfrak{A}$ and a unary free predicate variable $X$.

DEFINITION $01^{^{\backslash }}\mathcal{L}(\mathfrak{A}, X)$

(i) Formulae and terms are defined from $X,$ $\mathcal{L},$ $\forall,$ $\supset$ and the constants $c_{!4}$

$(a\in|\mathfrak{A}|)$ as usual.
(ii) Let $\Gamma,$ $\Delta$ be finite sequences of formulae. Then $1’\rightarrow\Delta$ is a sequent, where

$\alpha$

$\alpha$ is an ordinal number. The ordinal $\alpha$ is called the ordinal of the sequent.
(iii) $Xs\rightarrow Xt$ is an initial sequent, when $\mathfrak{A}|=7s\prec t$ and $\mathfrak{A}F7s\succ t$ . The no-

$\alpha$

tation $7A$ means the formula $A\supset c\prec c$ , where $c$ is a fixed constant.
(iv) $A_{1},$

$\cdots,$
$A_{m}\rightarrow B_{1},$

$\cdots,$
$B_{n}$ is an initial sequent if $\mathfrak{A}F(A_{1}\wedge\cdots\wedge A_{m})\supset(B_{1}\vee\cdots\vee$

$\alpha$

$B_{n})$ and $A_{1},$
$\cdots,$

$A_{m},$ $B_{1},$
$\cdots,$

$B_{n}$ are formulae which do not contain the free variable
X. The symbols $\wedge,$ $\vee$ are defined from $\supset$ and 7 as usual.

(v) Inference rules of $\mathcal{L}(\mathfrak{A}, X)$ are as follows:
1) Any structural inference of LK is adopted as an inference rule of $\mathcal{L}(\mathfrak{A}, X)$

provided that the ordinal of the upper sequent of the inference is equal to the or-
dinal of the lower sequent of the inference. We use the names: weakning left
(right), exchange left (right), contraction left (right). (See \S 2 of [5].)

2) The rules cut, $\supset$ : left, $\supset$ : right and $\forall$ : left are the same as the ones of
LK (cf. \S 2 of [5]). The rule $\forall$ : right of $\Leftrightarrow C(\mathfrak{A}, X)$ is the following inference rule:

$/\rightarrow\Delta,$ $A(c_{a})$ for all $a\in|\mathfrak{A}|$

$\frac{(\downarrow(\iota}{[}\overline{\rightarrow J}^{-}\overline{\forall xA}_{X}-.$

$\alpha$

The ordinals of the upper sequents of these four inferences must be smaller than
the ordinal of the lower sequent.

(vi) Degree and q-degree of a formula is defined as follows and the degree
and the q-degree of a formula $A$ are denoted by $d(A)$ and $q(A)$ respectively.

1) If $A$ is a prime formula, then $d(A)=q(A)=0$ .
2) If $d(At)=m$ and $q(At)=n$ , then $d(\forall xAx)=m+1$ and $q(\forall xAx)=n+1$ .
3) If $d(A_{i})=m_{i}$ and $q(A_{i})=n_{i}(i=1,2)$ , then $d(A_{1}\supset A_{2})=\max(m_{1}, m_{2})+1$ and

$q(A_{1}\supset A_{2})=\max(n_{1}, n_{2})$ .
(vii) Degree and q-degree of a cut is the degree and the q-degree of the cut

formula of it.
(viii) We define proofs and their degrees inductively. We denote proofs by

$P,$ $P_{0},$
$\cdots,$

$P_{i}$ , $\cdot$ .. and the degree of a proof $P$ by $d(P)$ .
1) An initial sequent is a proof and its degree is zero.
2) If $\Gamma\rightarrow\Delta$ is the lower sequent of an inference whose upper sequents are

$\{l_{\lambda}^{7}\rightarrow\Delta_{\lambda}\}_{\lambda},$

$P_{\lambda}^{\alpha}$ is
$\alpha_{\lambda}$

a proof of $\Gamma_{i}\rightarrow\Delta_{\lambda}\alpha\lambda$ for each $\lambda$ and $d(P_{\lambda})$ is smaller than a natural
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number $n$ for any $\lambda$ , then

$\frac{;P_{\lambda};}{\Gamma\rightarrow\Delta}$

$\alpha$

is a proof and its degree is the maximum of the degrees of the cuts in it.
(ix) If $P$ is a proof, then its q-degree is the maximum of q-degrees of cuts

which appear in the proof $P$. The ordinal of the end-sequent of a proof $P$ is call-
ed the ordinal of $P$.

Now we prove the reduction theorem, which is a refinement of the Reduktions-
satz of Sch\"utte [3]. We use the following lemma without a proof. It is proved by
the same method as in \S 2 of [3].

LEMMA 1. There are seven operations $U_{1},$
$\cdots,$

$U_{7}$ which satisfy the following
conditions respectively:

1) If $P$ is a proof of $\Gamma\rightarrow\Delta,$ $A\supset B$ , then $U_{1}(P)$ is a proof of $A,$ $\Gamma\rightarrow\Delta,$ $B$.
2) If $P$ is a proof of $A\supset^{\alpha}B,$

$\Gamma\rightarrow\Delta\alpha$ then $U_{2}(P)$ is a proof of $B,$ $\Gamma\rightarrow\Delta\alpha_{\alpha}$ and
$U_{3}(P)$ is a proof of $I^{\gamma}\rightarrow\Delta,$ $A$ .

$\alpha$

3) If $P$ is a proof of $l’\rightarrow\Delta((\forall xAx$ and $t$ is a term, lhen $U_{4}(P, t)$ is a proof

of $1’\rightarrow J$ , At.
$4)^{\alpha}$ If $P$ is a proof of $A,$ $1’\rightarrow\lrcorner$ wherc $A$ is a prime formula not containing

the free variable $X$ and $\mathfrak{A}FA,$
$th^{\alpha}enU_{5}(P)$ is a proof of $1’\rightarrow\Delta$ .

$\alpha$

5) If $P$ is a proof of $l’\succ\Delta,$ A
$\overline{\alpha}$

where $A$ is a prime formula not containing

the free variable $X$ and $\mathfrak{A}F7A$ , then $U_{6}(P)$ is a proof of $1’\rightarrow\Delta$ .
$\alpha$

6) If $P$ is a proof of $ l^{1}\rightarrow\Delta\alpha$ and $\alpha\leq\beta$ , then $U_{7}(P, \beta)$ is a proof of $l^{\urcorner}\Delta\vec{\beta}$

REDUCTION THEOREM. There are three operations $R_{1},$ $R_{2},$ $R_{3}$ which satisfy the
following conditions respectively:

1) If $P$ is a proof of $\Gamma\rightarrow\Delta$ , then $R_{1}(P)$ is a proof of $I’\rightarrow\Delta,$ $d(R_{1}(P))\leq d(P)$ ,
$q(R_{1}(P))=q(P)$ and $R_{1}^{d(P)}(P)^{\alpha}has$ no cut formula whose outermost logical symbol is

$ 2\cdot\alpha$

$\supset.1)$

2) If $P$ is a proof of $l’\rightarrow\Delta a$ then $R_{2}(P)$ is a proof of $I^{7}\Delta,$$d(R_{2}(P))\vec{2^{a}}\leq d(P)$

and $q(R_{2}(P))\leq q(P)$ . If $P$ has no cut formula whose outermost logical symbol is $\supset$

and $q(P)\neq 0$ , then $q(R_{2}(P))<q(P)$ .
3) If $P$ is a proof of $\Gamma\rightarrow\Delta$ , then $R_{3}(P)$ is a proof of $\Gamma\rightarrow\Delta,$ $d(R_{3}(P))\leq d(P)$ ,

$\alpha$ $\alpha$

$q(R_{3}(P))\leq q(P)$ and $R_{3}(P)$ has no cut formula which is a prime formula except $Xs$ .

1) If $F$ is an operation, then $F^{n}$ means the operation that is defined inductively by the
equations: $F^{1}=F,$ $F^{n}1=F\circ F^{n}$ .
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PROOF. We define $R_{1},$ $R_{2}$ and $R_{3}$ by the induction of the definition of the proofs.

It is easy to see the conditions are satisfied by those. The proofs are left to readers.
1) $R_{1}$ is defined by the followings:

Case 1) $P$ is an initial sequent $\Gamma\rightarrow\Delta$ . In this case $R_{1}(P)$ is the initial sequent
$\alpha$

$\Gamma\rightarrow\Delta$ .
$ 2\cdot\alpha$

Case 2) $P$ is the following form:

$\Gamma\rightarrow^{P_{1}}\Delta,$

$A\supset B$ $A\supset AB,$
$\Gamma\rightarrow^{P_{2}}\Delta$

$\frac{\alpha_{1}\alpha_{2}}{\Gamma\rightarrow\Delta,\alpha_{3}}$
.

Then $R_{1}(P)$ is the following proof:

$\Gamma\frac{U_{3}\circ R_{1}(P_{2})}{2\cdot\alpha_{2}}\Delta,$ $A$

$\frac{A,\Gamma\frac{U_{1}\circ R_{1^{\circ}}(P_{1}}{2\cdot\alpha_{1}}\Delta,BB,\Gamma\frac{U_{2}\circ R_{1}(P_{2})}{2\cdot\alpha_{2}}\Delta)}{A,\Gamma_{\overline{2\cdot\max(\alpha}_{1}\overline,\alpha_{2})+1}\Delta}$

$\Gamma\rightarrow\Delta$

2. $\alpha_{3}$

Case 3) $P$ is not in the above two cases. Let $P$ be the following:

$\frac{;P_{\lambda};}{I^{7}\rightarrow\Delta,\alpha}$

Then $R_{1}(P)$ is the following proof:

$\frac{;R_{1}(P_{\lambda});}{\Gamma_{\vec{2\cdot\alpha}}\Delta}$
.

2) $R_{2}$ is $defir_{1}ed$ by the followings:
Case 1) $P$ is an initial sequent $\Gamma\rightarrow\Delta\alpha$ In this case $R_{2}(P)$ is the initial sequent

$\Gamma\Delta\vec{2^{\alpha}}$

Case 2) $P$ is the following form:

$\Gamma\rightarrow^{P_{1}}\Delta,$

$\forall xAx$ $\forall xAx,$

$\Gamma\rightarrow^{P_{2}}\Delta$

$\frac{\alpha_{1}\alpha_{2}}{\Gamma\rightarrow\Delta,\alpha_{3}}$
.

In this case $R_{2}(P)$ is constructed by the same methed as in ‘IV. Fall’ of \S 3 of [3]

from $R_{2}(P_{2})$ and $U_{4}(R_{2}(P_{1}), t)$ , where $t$ is a term. The precise definition is left for

readers.
Case 3) $P$ is not in the above two cases. Similarly to Case 3 of the definition of
$R_{1}$ .
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3) $R_{3}$ is defined as follows:
Case 1) $P$ is an initial sequent $\Gamma\rightarrow\Delta\alpha$ Then $R_{3}(P)$ is the initial sequent $\Gamma\rightarrow\Delta\alpha$

itself.
Case 2) $P$ is the following form:

$li\rightarrow^{P_{1}}\Delta,$

A $A,$

$ I^{7}\rightarrow^{P_{2}}\Delta$

$\frac{\alpha_{1}\alpha_{2}}{\Gamma\rightarrow\Delta,\alpha_{3}}$

where $A$ is a prime formula except $Xt$. If $\mathfrak{A}FA$ , then $R_{3}(P)$ is the proof
$U_{7}(U_{5}(R_{3}(P_{2})), \alpha_{3})$ . If $\mathfrak{A}F7A$ , then $R_{3}(P)$ is the proof $U_{7}(U_{6}(R_{3}(P_{1})), \alpha_{3})$ .
Case 3) $P$ is not in the above two cases. Similarly to Case 3 of the definition of
$R_{1}$ .

\S 2. Upper bounds of order types of provable well-orderings

In this section we fix a system $\Leftrightarrow C(\mathfrak{A}, X)$ and its predicate symbol $\prec$ which re-
presents a well-ordering of $|\mathfrak{A}|$ . If $t$ is a term of $\mathcal{L}(\mathfrak{A}, X)$ , then $|t|$ means the or-
dinal $\alpha$ such that $\mathfrak{A}(t)$ is the $\alpha$ -th element of $|A|$ with respect to the well-ordering
$\mathfrak{A}(\prec)$ . $Prog(X)$ means the formula $\forall x(\forall y(y\prec x\supset Xy)\supset Xx)$ . If $\alpha$ is an ordinal and
$n$ is a natural number, then $B(\alpha, n)$ is defined as follows:

$\left\{\begin{array}{l}B(\alpha,0)=\omega\cdot\alpha,\\B(\alpha,n+1)=2^{B(,)}\alpha n\end{array}\right.$

Now we can state the upper bound theorem, which is the principal result of the
present paper.

UPPER BOUND THEOREM. If $P$ is a proof of Prog $(X)\rightarrow Xt,$
$\alpha\alpha<\omega\cdot\beta$ and $q(P)$

$=n$ , then $|t|<B(\beta, n)$ . We may replace $<$ by $\leq$ .
To prove this theorem we introduce a system OC (ordinal calculus) and prove

two lemmata on it.2)

DEFINETION $oI^{\grave{}}$ OC.
(i) If $\Gamma,$ $\Delta$ are finite sequences of ordinals, then $ l^{\urcorner}\rightarrow\Delta\alpha$ is a sequent of OC,

where $\alpha$ is an ordinal.

2) The OC is introduced to make the proof of the theorem intelligible. We can prove
the theorem without OC. Really, the present proof was inspired by a solution of an ex-
ercise on provable well-orderings in Feferman’s lecture [1] where he seemed to claim to
analyze the proofs of transfinite inductions directly. (See the Lemma 6.5 of [1].)
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(ii) The sequent
$\alpha\alpha\vec{\beta}$

is an initial sequent.

(iii) $\Gamma\rightarrow\Delta,$ $0$ is an initial sequent.

(iv)
$Th^{\beta}e$

inferences corresponding to the structural rules and cut of $\mathcal{L}(\mathfrak{A}, X)$

are introduced and called by the same names, e.g.

Weakning left) Cut)

$\Gamma\Delta\vec{\beta}$

$\Gamma\Delta,$
$\alpha\vec{\beta}$

$\alpha,$

$l’\Delta\vec{\gamma}$

$\alpha,$
$\Gamma\rightarrow a$ ’

$\Gamma\Delta\vec{\delta}$

$\gamma$

where $\beta=\gamma$ . where $\max(\beta, \gamma)<\delta$ .

(v) The following structural rule is adopted.

Repetition)

$\Gamma\rightarrow\Delta$

$\frac{\alpha}{\Gamma\Delta\vec{\beta}}$

$(\alpha\leq\beta)$ .

(vi) The following inference is adopted as the only non-structural inference

rule. (Cf. ProgressionsschluB of [3].)

PS)
$I^{\tau}\rightarrow\lrcorner,$ $\beta$ for all $\beta<7^{\prime}$

$\frac{\alpha\rho}{\Gamma\Delta,\gamma\vec{\delta}}$

where $\gamma\neq 0$ and $\alpha_{\beta}<\delta$ for any $\beta<\gamma$ .

LEMMA 2. If Prog$(X)\rightarrow Xt$ is provable in $\mathcal{L}(\mathfrak{A}, X)$ without a cut whose cut
$\alpha$

formula is not the form $Xs$ , $ then\rightarrow|t|\alpha$ is provable in OC.

LEMMA 3. If $\alpha_{1},$ $\cdots,$
$\alpha_{m}\rightarrow\beta_{1},$

$\cdots,$
$\beta_{n}$ (possibly $m=0$ ) is provable in OC and $\{\alpha_{1},$ $\cdots$ ,

$\gamma$

$\alpha_{m}\}\cap\{\beta_{1}, \cdots, \beta_{n}\}=\emptyset$ , then

$\gamma+Card(\{\alpha_{i} \ddagger \alpha_{i}<\min(\beta_{1}, \cdots, \beta_{n})\})\geq\min(\beta_{1}, \cdots, \beta_{n})$ ,

where for any set $S$ Card $(S)$ means the cardinal of $S$.
Before proofs of these lemmata we prove the upper bound theorem by them.

PROOF OF THE UPPER BOUND THEOREM. Let $P$ be a proof of Prog$(X)\rightarrow Xt$ ,
$\alpha$

$d(P)=m$ and $q(P)=n$ . If $\alpha<\omega\cdot\beta$ , then by the reduction theorem we see $ R_{3^{\circ}}(R_{1}^{m}\circ$

$R_{2})^{n}\circ R_{1}^{m}(P)$ is a proof of Prog $(X)\rightarrow Xt$ , where $\gamma<B(\beta, n)$ . It is easy to see that

any cut of the resulting proof has $t^{\gamma}he$ form $Xs$ . By Lemma 2 we see there is a
proof $of\rightarrow|t|$ in OC. By Lemma 3 we see $t\leq\gamma<B_{(}^{\prime}\beta,$ $n$). The present proof holds

$\gamma$
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even if $<$ is replaced by $\leq$ . Hence the upper bound theorem is proved by Lemma

2 and 3.
Now we prove Lemma 2 and 3.

PROOF OF LEMMA 2. Assume $P$ is a proof of Prog $(X)\rightarrow Xt$ and $P$ has no
$\alpha$

cut whose cut formula is not $Xs$ . If we ignore the order of the occurences of for-

mulae, the possible form of sequents in $P$ is the following:

$\Gamma\Delta\vec{\beta}$

where
$l^{1}=Prog(X);\forall y(y\prec s_{1}\supset Xy)\supset Xs_{1},$ $\cdots,$

$\forall y(y\prec s_{l}\supset Xy)\supset Xs_{l}$ ; $Xt_{1},$
$\cdots,$

$Xt_{m}$ ; $u_{1}\prec v_{1},$
$\cdots,$ $u_{n}$

$\prec v_{n}$ ,
$\Delta=\forall y(y\prec w_{1}\supset Xy),$ $\cdots,$

$\forall y(y\prec w_{p}\supset Xy);y_{1}\prec x_{1}\supset Xy_{1},$ $\cdots,$
$y_{q}\prec x_{q}\supset Xy_{q};Xz_{1},$ $\cdots,$

$Xz_{r}$ .

For each
$\Gamma\Delta\vec{\beta}$

of $P$ we assign a sequent
$\Gamma^{*}\Delta^{*}\vec{\beta}$

of OC such that

$\Gamma^{*}=|t_{1}|,$
$\cdots,$

$|t_{m}|$ ,

$\Delta^{*}=|w_{1}|,$ $\cdots,$
$|w_{p}|,$ $|\tilde{y}_{1}|,$

$\cdots,$
$|\tilde{y}_{s}|,$ $|z_{1}|,$

$\cdots,$
$|z_{r}|$

)

where $\tilde{y}_{1},$ $\cdots,\overline{y}_{s}$ is a subsequence of $y_{1},$ $\cdots,$ $y_{q}$ and $y_{i}$ belongs to the subsequence if

and only if $\mathfrak{A}Fyi\prec x_{i}$ .
We define a subtree of $P$, say $P^{\prime}$ , as follows:
1) The end sequent of $P$ belongs to $P^{\prime}$ .
2) Assume a sequent

$\Gamma\Delta\vec{\beta}$
of $P$ belongs to $P^{\prime}$ and $\Gamma\Delta\vec{\beta}$

is not an initial

sequent of $P$.
Case 1) $\Gamma\rightarrow\Delta$ is the lower sequent of a $\forall$ : right. Then the inference has the

following
$fo^{\beta}rm$ :

$\Gamma\rightarrow\Delta^{\prime},$ $c_{\alpha}\prec t\supset X(c_{a})$ for all $a\in|\mathfrak{A}|$

$\beta_{a}$

$\overline{\Gamma\Delta^{\prime},\forall y(y\prec t\supset Xy)\vec{\beta}}$

If $\mathfrak{A}Fc_{\alpha}\prec t$ , then $\Gamma\rightarrow\Delta^{\prime},$ $c_{a}\prec t\supset X(c_{a})$ belongs to $P^{\prime}$ .
$\beta_{a}$

Case 2) $\Gamma\rightarrow\Delta$ is not the lower sequent of a $\forall$ : right. In this case all upper

sequents of the inference whose lower sequent is $\Gamma\rightarrow\Delta$ belong to $P^{\prime}$ .
Replace each sequent $\Gamma\rightarrow\Delta$ of $P^{\prime}$ by the $seque^{\beta}nt\Gamma^{*}\Delta^{*}\vec{\beta}$ We denote the

resulting tree of sequents of
$\beta OC$

by $P^{*}$ . We show $P^{*}$ is a proof of OC.
Case 1)

$\Gamma\Delta\vec{\beta}$
is an uppermost sequent of $P^{\prime}$ . In this case the sequent is upper-

most in $P$ or the lower sequent of a $\forall$ : right whose principal formula (Hauptformel)

is the form $\forall y(y\prec t\supset Xy)$ and $\mathfrak{A}F\forall y(7y\prec t)$ . In the latter case $\forall y(y\prec t\supset Xy)$ is
replaced by $|t|$ . Hence $\Gamma^{*}\Delta^{*}\vec{\beta}$

is an initial sequent of OC. By the definition of
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$P^{\prime}$ we can easily see that if $s\prec t$ appears in the antecedent of a sequent in $P^{\prime}$ , then
$\mathfrak{A}Fs\prec t$. Hence in the former case $\Gamma\rightarrow\Delta$ must be the initial sequent obtained by
the clause (iii) of definition of $\mathcal{L}(\mathfrak{A}, X)^{\beta}$ Hence

$1^{*}\Delta^{*}\vec{\beta}$
is an initial sequent of

$0C$ .

or a $structu^{\beta}ra1$

rule in $P$. Then the inference turns a cut, a structural rule or a
Case 2) $\Gamma\rightarrow\Delta$ is not uppermost in $P^{\prime}$ , and

$\Gamma\Delta\vec{\beta}$
is the lower sequent of a cut

repetition in $P^{*}$ .
Case 3) $\Gamma\rightarrow\Delta$ is the lower sequent of a $\forall$ : right in $P$. Then the $\forall$ : right is
the form of

$\beta the$

figure of 2) of the definition of $P^{\prime}$ . Hence we see the inference
turns to a PS in $P^{*}$ .
Case 4) $\Gamma\rightarrow\Delta$ is the lower sequent of a $\forall$ : left in $P$. Then the inference turns
to a $repetiti_{0}^{\beta}n$ .
Case 5) $\Gamma\rightarrow\Delta$ is the lower sequent of a $\supset$ : right in $P$. Then the $\supset$ : right is
the $following\beta$ form:

$s\prec t,$ $\Gamma\rightarrow\Delta^{\prime},$ $Xs$

$\frac{\alpha}{\Gamma\rightarrow\Delta^{\prime},s\prec t\supset Xs,\beta}$

.

As mentioned above $\mathfrak{A}\models s\prec t$ . Hence this inference turns to a repetition in $P^{*}$ .
Case 6) $\Gamma\rightarrow\Delta$ is the lower sequent of a $\supset$ : left in $P$. Then the $\supset$ : left is the
following $form:\beta$

$\Gamma^{\prime}\rightarrow\Delta,$ $\forall y(y\prec t\supset Xt)$ $Xt,$ $\Gamma^{\prime}\rightarrow\Delta$

$\frac{\beta_{1}\beta_{2}}{\forall y(y\prec t\supset Xt)\supset Xt,l\urcorner\prime\rightarrow\Delta}$ .
$\beta$

This turns to a cut in $P^{*}$ .
Hence we have proved $P^{*}$ is a proof of $\rightarrow|t|\alpha$ in OC. This completes the proof

of Lemma 2.

PROOF OF LEMMA 3. Let $P$ be a proof of the sequent $\alpha_{1},$ $\cdots,$
$\alpha_{m}\rightarrow\beta_{1},$

$\cdots,$
$\beta_{n}$ .

We say a sequent of OC is tautological, when the antecednt and the $suc^{\gamma}cedent$ have
an ordinal in common. We say a sequent in $P$ belongs to $P*if$ and only if there
is no tautological sequent between the sequent and the end-sequent of $P$, including
the sequent and the end-sequent. Note that $\hat{P}^{*}$ is well-founded. We prove the
inequality of Lemma 3 for any sequent $\Gamma\rightarrow\Delta$ in $P*by$ the induction on $\hat{P}^{*}$ .

$\alpha$

Case 1) $\Gamma\rightarrow\Delta$ is an initial sequent in $P$. Since $\Gamma\rightarrow\Delta$ is not tautological, we
$\alpha$

$\alpha$

see $0$ belongs to $\Delta$ . Hence the inequality holds for this sequent.
Case 2) $\Gamma\rightarrow\Delta\alpha$ is the lower sequent of one of structural inferences except the rule
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of weakning right in $P$. Obviously by the induction hypothesis.

Case 3) $\Gamma\rightarrow\Delta$ is the lower sequent of a weakning right in $P$. Then the upper
$\alpha$

sequent belongs to $\hat{P}^{*}$ . Let the inference be the following form:

$\Gamma\rightarrow\Delta^{\prime}$

$\frac{\alpha}{l^{7}\rightarrow\Delta^{\prime},\beta}$

$\alpha$

Then by the induction hypothesis we see
$\alpha+Card(\Gamma\cap\{\delta:\delta<\min(\Delta^{\prime})\})\geq\min(\Delta^{\prime})$ .

Hence if $\beta\geq\min(\Delta^{\prime})$ , then the inequality holds for $\Gamma\rightarrow\Delta^{\prime},$ $\beta$ . Assume $\beta<\min(\Delta^{\prime})$ .
Set $\beta+\gamma=\min(\Delta^{\prime})$ . Evidently there is a natural number $n$ such that

Card $(\Gamma\cap\{\delta:\delta<\beta\})+n=Card(l^{\urcorner}\cap\{\delta:\delta<\beta+\gamma\})$ and $ n\leq\gamma$ .

Hence $\alpha+Card(\Gamma\cap\{\delta:\delta<\beta\})+n\geq\beta+\gamma\geq n$ holds. Since $n$ is a natural number, the

desired inequality $\alpha+Card(\Gamma\cap\{\delta;\delta<\beta\})\geq\beta$ holds.

Case 4) $\Gamma\rightarrow\Delta\alpha$ is the lower sequent of a cut in $P$. Assume the cut is the follow-

ing form:

$\Gamma\rightarrow\Delta,$ $\beta$ $\beta,$
$\Gamma\rightarrow\Delta$

$\frac{\alpha_{1}\alpha_{2}}{\Gamma\rightarrow\Delta}$ .
$\alpha$

Subcase 1) The $\beta$ belongs to $\Delta$ . Since $\min(\Delta, \beta)=\min(\Delta)$ and $\alpha_{1}\leq\alpha$ , we see the

inequality holds for $\Gamma\rightarrow\Delta$ by the induction hypothesis on $\Gamma\rightarrow\Delta,$ $\beta$ .
$\alpha$

$\alpha_{1}$

Subcase 2) The $\beta$ does not belong to $\Delta$ . In the case $\beta\geq\min(\Delta)$ , evidently by the

induction hypothesis on $\beta,$
$\Gamma\rightarrow\Delta$ . Assume $\beta<\min(\Delta)$ . By the induction hypothesis

we see $\alpha_{2}+1+Card(\Gamma\cap\{\gamma:\gamma<^{\alpha_{2}}\min(\Delta)\})\geq\min(\Delta)$ . Since $\alpha_{2}+1\leq\alpha$ , the inequality holds

for $\Gamma\rightarrow\Delta$ .
$\alpha$

Case 5) $\Gamma\rightarrow\Delta$ is the lower sequent of an application of PS in $P$. Assume the
$\alpha$

PS is the following form:

$\Gamma\rightarrow\Delta^{\prime},$ $\beta$ for all $\beta<\gamma$

$\frac{\alpha_{\beta}}{\Gamma\rightarrow\Delta^{\prime},\gamma}$
.

$\alpha$

Subcase 1) In the case $\min(\Delta^{\prime}, \gamma)<\gamma$ . Set $\delta=\min(\Delta^{\prime}, \gamma)$ . Since $\delta\in\Delta^{\prime}$ , the sequent
$\Gamma\rightarrow\Delta^{\prime},$ $\delta$ belongs to $\hat{P}^{*}$ . Hence by the induction hypothesis we see $\alpha_{\delta}+Card(\Gamma\cap$

$\alpha_{\delta}$

$\{\epsilon:\epsilon<\delta\})\geq\delta$ . Since $\alpha>\alpha_{\delta}$ , the inequality holds for $\Gamma\rightarrow\Delta$ .
$\alpha$

Subcase 2) In the case $\min(\Delta^{\prime}, \gamma)=\gamma$ . Let $\delta_{1},$
$\cdots,$

$\delta_{p}$ (possibly $p=0$) be the sequence
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$\Gamma\cap\{\epsilon;\epsilon<\gamma\}$ . Set $\delta_{p11}=\gamma$ . We define a natural number $q(1\leq q\leq p+1)$ such that

$\delta_{q}=\min\{\zeta:\forall\eta(\zeta\leq\eta\leq\gamma\Rightarrow\eta\in\{\delta_{1}, \cdots, \delta_{p1}\})\}$ .
If $\beta<\delta_{q}$ and $\beta\not\in\Gamma$ , then by the induction hypothesis on $f^{1}\rightarrow\Delta^{\prime},$

$\beta$ we see $\alpha_{\beta}+Card$

$\ell(\beta$

$(\Gamma\cap\{\epsilon;\epsilon<\delta_{q}\})+1\geq\beta+1$ . By the definition of $\delta_{q}$ , we see there is no element whose
successor is $\delta_{q}$ in $\Gamma\cap\{\epsilon:\epsilon<\gamma\}$ . Hence $\sup${ $\beta+1:\beta<\delta_{q}$ and $\beta\not\in\Gamma$ } $=\sup\{\beta+1:\beta<\delta_{q}\}$ .
Since $\alpha_{\beta}<\alpha$ for all $\beta<\delta_{q}$ , we see $\alpha+Card(\Gamma\cap\{\epsilon;\epsilon<\delta_{q}\})\geq\sup\{\beta+1:\beta<\delta_{q}\}=\delta_{q}$ . By
the definition of $\delta_{q}$ , we finally see $\alpha+Card(\Gamma\cap\{\epsilon;\epsilon<\gamma\})\geq\gamma$ . This is the desired
inequality.

We have just completed the proof of the upper bound theorem. As a consequence
of the theorem we prove the following corollary.

COROLLARY (Shirai [4]). If $t$ is a closed term for which Prog$(X)\rightarrow Xt$ is $\rho-$

derivable $(\rho\geq 1)$ in the pure number theory of [4], then $|t|<\omega_{\rho}$ , where $\omega_{0}=\omega,$ $\omega_{n+1}=$

$\omega^{()}\omega n$ and $\prec$ is the cannonical ordering up to $\epsilon_{0}$ .
Let $\mathfrak{N}$ be the standard model of the pure number theory. A sequent $S_{1}$ is call-

ed a closed instance of $S_{2}$ , when $S_{1}$ is obtained by substitutions of numerals for all
free individual variables in $S_{2}$ . A closed instance of a formula is defined by the
same manner. To prove the corollary we use the following lemma.

LEMMA 4. If $P$ is a proof of a sequent $S$ in the pure number theory of [4],

then for each closed instance of $S$ we can find a proof $\tilde{P}$ of $\mathcal{L}(\mathfrak{N}, X)$ such that (i)
the end-sequent of $\tilde{P}$ is the given closed instance of $S$, (ii) the ordinal of $\tilde{P}$ is at
most $\omega\cdot n$ , where $n$ is the number of the inferences of $P$, (iii) each cut formula in
$\tilde{P}$ is a closed instance of one of VJ-formulae or cut formulae in $P$.

PROOF. By the induction on $P$. Details are left for readers.

PROOF OF THE COROLLARY. Assume Prog $(X)\rightarrow Xt$ is $\rho$-derivable. As in [4]

we may assume the sequent has a proof $P$ in the pure number theory such that
any formula which is a cut formula or a VJ-formula in $P$ has at most $\rho$ quantifiers.
Hence by Lemma 4 we can find a proof $\tilde{P}$ in $\mathcal{L}(\mathfrak{N}, X)$ such that the q.degree of
$\tilde{P}$ does not exceed $\rho$ and the ordinal of $\tilde{P}$ is smaller than $\omega\cdot\omega$ . Hence by the
upper bound theorem we see $|t|<B(\omega, \rho)$ . In the case $\rho\geq 1$ we see $B(\omega, \rho)=\omega_{\rho}$ .
Hence we have reached the desired conclusion.

REMARK. The results of the present note hold even if Prog $(X)\rightarrow Xt\alpha$ is re-
placed by Prog $(X)\rightarrow\forall x\prec tXxa$ (cf. [3]).
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