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ANALYTIC PROPERTIES OF GENERALIZED
MORDELL-TORNHEIM TYPE OF MULTIPLE
ZETA-FUNCTIONS AND L-FUNCTIONS

By

Takashi M1YAGAWA

Abstract. Analytic properties of three types of multiple zeta
functions, that is, the Euler-Zagier type, the Mordell-Tornheim type
and the Apostol-Vu type have been studied by a lot of authors. In
particular, in the study of multiple zeta functions of the Apostol-Vu
type, a generalized multiple zeta function, including both the Euler-
Zagier type and the Apostol-Vu type, was introduced. In this
paper, similarly we consider generalized multiple zeta-functions and
L-functions, which include both the Euler-Zagier type and the
Mordell-Tornheim type as special cases. We prove the meromorphic
continuation to the multi-dimensional complex space, and give the
results on possible singularities.

1. Introduction

The Euler-Zagier type of multiple zeta-function (g , is defined by

1

gEZ. STy -y 8r) = E S 8% S
l( b bl )) m&‘lmsz...mﬁy
l<m<--<m, 1 2

0 0
= Z Z 51 K3 ! R (1)
2 2l )y )

where s1,52,...,s, are complex variables, and the series (1) is absolutely con-
vergent in the region

{(s1,...,8) e C"|Re(Sy_ps1 + Srp2t+-+s)>k (k=1,2,....r}.
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The Mordell-Tornheim type and Apostol-Vu type of multiple zeta-functions are
defined by

ey S Sy 2
gMT,r(Sla ) S S+1 Z: Z: ) ml 1. +mr)5r+1 ( )
and
1
4 STyoveySp5Sppl) = . 3
avrk D= X O
where s1,...,5, 541 are complex variables. The series (2) and (3) are absolutely
convergent in

{(s1,-++,8,841) € C"T | Re(s;) > 1 (1 <j<r), Re(s11) > 0}. (4)

For the meromorphic continuation to the whole space C" of (1), Akiyama
Egami and Tanigawa [1] and Zhao [11], proved independently of each other.
Matsumoto [5] gave an alternative proof of the analytic continuation using the
Mellin-Barnes integral formula

1 I'(s+z2)I(-2),.

where 5,A€C, |arg | <m, 1#0, and ce R, —Re(s) < ¢ <0 and the path of
integration is the vertical line from ¢ —ioo to ¢+ ico. Also, Matsumoto [4]
proved the meromorphic continuation in the same way for (2) and (3). In
particular, Matsumoto introduced the following function in the process of
proving the meromorphic continuation of (3). Let 1 < j <r, and define

CAV,j,r(Sla cee S Sy e 7sr;sr+l)
1
- Z m - m (my 4 -4 my) S (6)
1<my<--<m, 1 r 1 J
where s1,...,s,,.41 are complex variables. Since ¢ av.r.r = Cay,, and
CAV,l,r(Sl;SZa s asr+1) = CEZ,r(Sl +sr+17s3a s 7SV)7

(6) forms a generalized class including as special cases both the Euler-Zagier
type (1) and the Apostol-Vu type (3). He, through the recursive structure

z.»'AV,r = CAV,r,r - CAV.,rfl,r - CAV-,r72,r — CAV‘IJ’ =gz, (7)

(here A — B means that 4 can be expressed as an integral involving B; see (12),
(17) and (18) below), discussed analytic properties of those functions.
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As an analogue of (6), in this paper we define the following function, and
prove the results on meromorphic continuation and singularities. The results will

be stated in Section 2.

DerFIniTION 1. Let 1 < j <r, and define

fMT,j,r(Sl, sy S Sy - ,Sr+1)
_y oy 1 (8)
= = mj' - .mjsf(ml ) (my A my) ’
where si1,...,5,5.1 are complex variables.
Since ¢ wut.r.r = Cur,r and
EMT.,I,r(Sly-n,Sj;SjH; v Sea1) = Cpz (514 52,83, .0, Sep1),

we see that (8) forms a generalized class including as specal cases both the Euler-
Zagier type (1) and the Mordell-Tornheim type (2), which can be illustrated in
the following figure.

CAV/r CMT/V
CAV,),V CAV.I,HCMT,L; CMT,r,r
gA V,r Z:EZ, r CMT,r

The series (8) is absolutely convergent in the region

Re(Srio—k + Spy3—k + -+ 841) > k
(k=1,2,...,r—}))

Re(sjp1 + 802 + o0+ $p1) > 17—
Re(s)>1 (£=1,2,....))

_ r+1
Rj,r_ (S17...,S,~,Sr+1)ec

therefore ¢ wmr,j,r 18 a regular function in R;,. This fact can be proved by the
evaluation

i: 1 <r‘cm S Ly
mIN)° ")y GeN)T o1 NoT €

m=1

and the result on the absolutely convergent region (4).
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Furthermore, we introduce the following L-function which is a y-analogue
of (8), and we obtain the results on meromorphic continuation and singularities.

The results will be stated in Section 2.

DerINITION 2. Let yy,x, ...,y be Diriclet characters of the same modulus
g (=2). We define

LMT,j,r(Sh e aSj;SjJrla ey S e ’;{r)

_ © 0 1 (ml) .. 'Xr(mr)
_le: Z: ml + - +ml.)fj+1 (ml +‘..+mr)s,l+1 (9)

where 1 <j<r and si,...5,5+4+1 are complex variables. The series (9) is

absolutely convergent in R;,, and so Lyr ;, is a regular function on R; ,.

Definition 2 gives a generalized class which includes both

LEz,r (S5 3 Si X s+ Xr)

_ ® o0 0 (ml) .. 'Xr(mr)
= Z e Z K 52 5 (10)
=1 m=1" (my +mp)” - (my + - +my)
and
PSP+ yi(my) -y, (my)
LMT,I‘(Sly-'-7Srasr+17X17.--7%?‘ Z Z Yl... 5» m1 + - +mr)5r+l (11)

mr_l

as special cases. The series (10) is introduced by Kamano [2], and he proved
the meromorphic continuation to C". Also (11) is introduced by Wu [10] and he
proved some analytic properties (see Theorem 3 in Matsumoto [7]).

REMARK 1. Analytic properties of Apostol-Vu type (3) was also proved by
Okamoto [9], whose method is different from the method of Matsumoto [4]
through the function (6). Okamoto’s method is based on the observation that (3)
has the recursive structure

Cavr = Cavirm1 = Cavip2 — - = Capp — G, (12)

where the right-most { denotes the Riemann zeta-function. Thus, analytic prop-
erties of (3) can be proved without using the function (6) and the recursive
structure (7).
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REMARK 2. Matsumoto and Tanigawa [8] defined the multiple Dirichlet
series

i i ay(my az( 2) - ap(my)
= ey (A m) ™ ()Y
— —

which is a further generalization of (10). They proved its several analytic
properties.

2. Statement of Results

THEOREM 1. For 1 < j<r, we have

(i) the function CAMT‘]‘_’,,(SI,...,S/;Sj+1,...,sr+1) can be continued meromor-
phically to the whole C™'-space,

(i) in the case of j=r —1, the possible singularities of f mT.r—1,r are located
only on the subsets of C'™™' defined by one of the following equations;

Sr+1 = 1,
S+s+sa=1-¢ (1<j<r—1,¢/=-1),

Sjy A Sj, = Sp A S =2-/ (1 Sh<p Sl’—l,/Z—l),

S+ s, S S =r—2-¢
(I<ph<-<jra<r—1¢>=-1),
sSi+-F s +s+sp=r—1—-d (d=-1,0,1,3,57,9,...).

Also, in the cases of 1 < j<r—2, possible singularities of ¢ MT,j,r are
located only on the subsets of C'*' defined by one of the following
equations;

Sp41 = 1,
ss+sa=1-d (d=-1,01,3,5709,...),
S+ 8 +8s41=3—¢ (£ €Np),

Sp—2 + Sp—1 + S + Sp41 =47 (KGNO)a
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Sj+2+Sj+3+"'+sr+sl‘+1:r_j_/ (ZENO),
S S+t s =10 (1<k <j /' >—(r—]),
Sty + Sk FSje1 F s s =24

(1<hki<ky<jt'>—(r—J),

Sk Fo S F st s = - 1=/
(I<ki < <kig <j 0" ==(r—J),
Sl S Ss A S s =70 ({'=—(—))).

(iil) each of these singularities can be canceled by the corresponding linear
factor, and

(iv) ¢ wmt,j,r is of polynomial order with respect to |Im(sy;1)|-

THEOREM 2. For 1 < j<r, we have

(i) the function LMTL,;,,(sl,...,s,;s,+1,...,s,4+1;)(1,...)(,.) can be continued
meromorphically to the C™'-space.
(i) If none of the characters y,,...,y, are principal, then I:MT, j.r is entire.

If 100, A<t <<t <j)and y, 4,.... 0y 1<d <---<
dy < r— j) are principal character and other characters are non-principal,
in the case of j =r— 1, then possible singularities are located only on the
subsets of C"™™ defined by one of the following equation;

Sty TS Fs1=1-¢ (1 <u(l) <k, /= —6,),
Stuyy F Stypy TS TS =24 (1 <u(l) <u2) <k,/>-6),
(13)
Sty T Sy FSF S =k =14
(1 <u(l) < <ulk—1) <k /> -5,
Syt s +Sst+sa=k—¢ (/= —0,),
where

5 — 1 (y, is principal)
" L0 (x is non principal)’
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also in the cases of 1 < j <r—2, then possible singularities are located
only on the subsets of C'™' defined by one of the following equation;

S—di41 +Sr—aqpp2 + -+ s =di +1 =4 (4 €Ny),

Sr—dyil + Sr-dpi2 o F S =dp+ 1 =4y (4o € No),
Sty TS s s =1-0" (1<u(l) <k /' = -Ay),
Sty St TS F s s =2/

(I <u(l) <u) <k,!' =-A),

Suy +o o Sueny S+ s s =110
I<ul)<---<u(j-1) <k =-A),

Sttt sttt =-0" ('=-A),

where Aj =06, +0,_1 +---+0J,—;. Moreover, if y, is principal character,
then

Sp41 = 1

is a possible singularity in addition to the above possible singularities (13)
and (14).

(i) each of these singularities can be canceled by the corresponding linear
factor, and

(iv) Larj.r is of polynomial order with respect to [Im(s,1)|.

REMARK 3. In both Theorem 1 and Theorem 2, the case j = r is known (see
Theorem 4 and Theorem 5 below). It is interesting that the feature of possible
singularities in the case j = r — 1 is different from that in the cases 1 < j <r — 2.

3. Proof of Theorem 1

The proof of Theorem 1 and Theorem 2 is similar to the argument of

Matsumoto [3], [4], [5], [6], [7]. The basic point is the use of the following integral
representation.
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LEmMMA 3. We have

CMT,j,r(Sla ce eSSy aShSH-l)

_LJ D1 +2)I'(=2)
2mi (c) F(Sr+1)

X CAMT,_/,r—l(Sla e S Sy ey Sr—15, S + Sr1 + Z)g(—Z) dz (15)

and

Lyt jr(S15 o SiSjats oo s S li X1s - -5 Xr)

1 L(sy01 +2)(-2)
J(c)

" 2 T(5r41)
X szT,j,rfl(sh EERPR 2 /A PRI Vo PR + 841 + 2V 4TERE 7%)‘—1)
x L(—z,y,) dz, (16)

where L(—z,y,) is the Dirichlet L-function attached to x., 1<j<r—1 and
—Re(sy41) <c< -1

PROOF OF LEMMA 3. We prove only for Lyr,;,. Using the Mellin-Barnes
integral formula (5) for the multiple sum (9) with A =m,/(m; + -+ m,_;), we
can formally obtain

LMT,_/',r(Sly R L ER ERRRER S B 4 PR aXr)

_ i z”: x1(ma) - - x,(my)
m,:lmfl .. 'mjsj(ml 4+t mj)f/‘ﬂ v (my -+ mr,l)s"ﬂ”l

m, —Sr+1
X(1+—
( m1+“'+mr—1>
_ i”: i x1(mu) - - x,(my)
8 ...m;/'(ml +...+mj)5j\l o (my + - —l—mr,l)s"ﬂ”'

= Mot 290D (Y

I'(sr41) my 4+ m

_ 1 J I(sy41+2)[(—-2)
© [ (s41)
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Tt ) EAEREE
m=1 m,_1=1 m] mj (ml + +m]) (ml + +m771)

1 J [ (541 +2)0(~2)
2mi (¢) F(Sr_,_l)

X LMT,j,I‘*l(Slv ce s S Sy ey Sr—1, 8 + Sk +Z;Xla s 7X1‘71)L(727Xr) dz.

Now, we prove that > - | and J"((?) can be exchanged. Put z=c+iw
(—oo < w < o). It is enough to prove that

xi(m) -y, (my)

my=1 'm,:I —® mf] o 'mjsj(ml +eee mj)sHl T (ml +oet n’lrfl)srJrerrl
8 ( m, ) (01 4 ¢+ iw)D(—c — iw) i
my+ -+ m_y ' (sr41)

= CMT,j,rfl(O-h ce+30750j415+-+,0r-1,0r + 041 + C)C(_C)

1 0
X mj [T(Se41 + ¢ + W) (—c — iw)| dw
r+

— 0

is bounded for each (si,$2,...,8+41) € R;,. By using the Stirling’s formula we
have

[T (841 + ¢ + iw)T(—c — iw)|

=V2n

1
exp{ <s,.+1 +c+iw— 2) log(s-41 + ¢+ iw)}‘

< Jexp(—=s,1 — ¢ — w)[(1+ O(Iw| ) (Iw] — o0)

— V27 exp{—w arg(s.;1 + ¢ + iw) }O(|w| 7+ /)

ofen(-34)

J IT(sp41 + ¢ + w)[(—c — iw)| dw = O(1).

— o0

hence

This implies the assertion.
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These integral representations (15), (16), give the following inductive

structure;

Cur,jir = Curjir—1 = Curjir2 — - = Cur it = Curjj = Cur,jy (17)
Ly j,r — Lur jro1 = Lz jr2 — -+ = Ly i — Ly, .y = Lyt (18)
TueoreM 4 (K. Matsumoto [4]). (i) The function {yr ,(S1,...,8;841) can

be meromorphically continued to the whole C™'-space.

(ii) The possible singularities of {yr, . are located only on the subsets of cr!
defined by one of the following equations;,

S+s=1—-¢ (1<j<r/eNy),

S +8p s =2-¢ (1<ji<j<r/eNy),

S+t s =r—1—-¢ (1<j<---<j1 <r,/eNy),
S8+ S Sy =

where Ny denotes the set of non-negative integer.
(i) Each of these singularities can be cancelled by the corresponding linear

factor.
(iv) Cyr,r is of polynomial order with respect to |Im(s,y1)l.

PrOOF OF THEOREM 1. When j = r the assertion is Theorem 4. If j=r—1,

(15) implies

é/MT,I'—lA,r(Sh s ,Sr_l;Sr,Sr_;_l)

1 F(SrJrl + Z)r(—Z)
=— 11y eSS+ 8 +2)0(—=2) dz (19
sy st s 4 ) (19

where —Re(s,+1) < ¢ < —1. By Theorem 4, the poles of (yz ,—i(s1,...,8_1;
Sy + 841 +2z) as in a z-plane are

z=—si—8—Sp+1—¢ (I1<j<r—1,/eNy),

== =8, =S —S+2—7 (1< j<p<r—1,/eNy),
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=8 = =S, =S =S tr—2-/
(1<ji<--<jr1 <r—1,/eNy),

Z= =S — =S =S = S 1= 1

all of which are located to the left of Re(z) = ¢. The other poles of the integrand
on the right-hand side of (19) are z= —s,.1 —n (neNy), z=n (neNy) and
z=—1. We shift the path of integration to the right to Re(z) = N —¢, where
N is a positive integer. Because (pr,1(s1,...,5-1;5,) is of polynomial order
with respect to |Im(s,)|, using Stirling’s formula we obtain

JN£+iT (41 4 2)[(=2)

c+iT r(5r+1)

ot r—1(S15 ooy Sr—15 8 + Syt +2){(—2) dz
«<g(Te ™ (T — ),

where ¢ is a certain polynomial. Hence, the shift of the path of integration is
possible, and we obtain

CMT,V—I,I‘(S17"'7Sr—l;sl"sl‘+l)
1
= ﬁCMT,r—l(sla e Se—13 S+ S — 1)
r+1 —
1
*ECMT,Fl(Sl,--~,Sr—1;Sr+Sr+1)
(N/2]

—Sr+1
+ ; <2n _+1 )ZMT,}'I(SI; ey Sp—158r F St +2n — 1)C(1 _ 2}’1)

iy [(sa1 + 2)T(=2)
2mi (N—¢) F(Sr+1)

X CMT,r—l(Sb ceey Sp—15 8 + Sr+1 + Z)C<_Z) dz. (20)

The poles of the integrand of the last integral term is listed above, and hence we
see that this integral is holomorphic at any points satisfying all of the following
inequalities;

Re(sr+1) > =N +g,

Re(sj + s +841) >1—N+e,
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RC(S/I +Sj2+S,'+Sr+1) >2-N+e¢ (I1<ji<p<r—1),

Re(s, +---+s8,,+8+841)>r—2—N+e (I1<ji<---<jra<r—1),

Re(si+ - +s-1+8+s4)>r—1—-N+e
Since N can be taken arbitrarily large, (20) implies the meromorphic continuation
of f mT,r—1,, to the whole C’H-space. The first, the second and the third terms on

right-hand side of (20) have a possible singularities that are located only on the
subsets of C'! defined by one of the following equations;

Si+s+sat+d=1-¢ (1<j<r—1,/>0),

s +Ssp+s+sa+d=2—-¢ (1<j<p<r—1,/>0),

St st tsatd=r—2-/ (1<j<-<j2<r—1/20),
sttt St st s td=r—1,

where d = —1,0,1,3,5,7,... (-1 <d <N —1). Here, we note that {/+ d |/ € Ny,
d=-1,0,1,3,5,..}y={/€Z|/ >=—1}. Since N can be arbitrarily large, we
obtain the result in the case of j=r—1 in (ii).

When j=r—2 in (15), and we shift the path of integration to the right to
Re(z) = N — ¢ to obtain

CMT,FZ,/‘(Sla cee 75r72;sr7135rasr+1)
1 o
= 1 CMT.rfl,r(Slv ey 823 81, Sy + S+l — 1)
Sp+1 —
14
=5 Cr 1, (St 8281587+ Sp41)

Wa N
+ ; (znsfll )CMT,rl,r(Sly ey S5 S, Sp T Skl T n)C(l _ 2”)

LJ L(sp1 +2)I'(=2)
2ni (N—¢) F(Sr+l)

X CAMTJ‘—I,V(SIJ ey Sr=23 81,8 + Spy1 + Z)C(_Z) dz. (21)
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The possible singularities on the right-hand side of (21) are
Srp1 = 1,
S, +840+n=1,
Si+S1+S+spa+n=1-¢ (1<j<r-2,/>-1),

S+ 8, FS 1+ s+ +n=2—-¢ (I1<j<p<r—2,/=-1),

Si+ s S S S tn=r—-3-7
(I<j<-<j3<r=2/>=-1),

Si+ S ot s +Ss s +trn=r—2-—d,
where n,d = —1,0,1,3,5,7,... (-1 <n < N). Since
{{+d|te{-1}UNy,d=-1,0,1,3,5,..} ={/e€Z|/ > -2},
{d+n|d,;n=-1,0,1,3,5,... (-1<n<N)}={/eZ|l/= -2},
the above possible singularities can be rewritten as follows;
s =1,
S+ 841 =1—n,
Si+sa+s+sa=1-¢ 1<j<r—-2,/(>-2),

Sjy =+ S, + Sp—1 + S+ S =2-7 (1 </ <j2£r—2,/2—2),

Sjy s st s A sp=r—3-7
I<ji<-<jra<r—2/(>-2),

sttt S atsa+Ss+sp=r—2—-¢ (£=-=2).

Since N can be taken arbitrarily large, we obtain the results of (ii) in the case of
j=r—2.
Let k=r—j (k = 2). Assume that the assertion of Theorem 1 is true in the

case of r— j=2,3,...,k— 1, and we prove by induction the assertion in the case
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of r—j=2. By Lemma 3, we obtain

CAMT,rfk,r(sla sy Sr—ky Sr—k4 1y - ;Srvsl‘Jrl)
_ L[ Mw+ori=s
2mi (c) F(Sr+1)
X 5MT,r7k,r71(Sla ey Sk Sr—k+1y - - o3 Sr—1,5r + Sp41 + Z)C(_Z) d27 (22)

where 1 <j<k—1, —Re(s,41) <c < —1. By assumption of induction, we
find that the possible singularities of Cpr g o1 (153 Sr—k3 Sy—ktls - - -5 Sr—1,
Sy + 841 +2z) as a function in z are

Z=—8 —S41+ 17
z=—§_1—8—Sa+2—-d (d=-1,0,1,3,57,...),

z=—8§ 2—8S1—S—8s1+3—¢ (£eNy),

Z=—Sp2——S-1—S—St1+k—1—¢ (£eNy),

Z= =S — Syl — = Sl — S — S+ 1=
(l<j<r—k/t >-k+2),

Z= =8 =S — Skl — =S — S — S +2 =/

(I<ph<p<r—kt >-k+2),

Z=78) T TS T Skl T T S T S T Sl +V—k—/,
(I<j<-<jrka<r—k! =-k+2),
Z= S S = Skl = S = S — S T — kA 1=/
(¢ = —k+2),
all of which are located to the left of Re(z) = ¢. The other poles of the integrand
on the right-hand side of (22) are z= —s,.1 —n (neNy), z=n (neNy) and
z = —1. We shift the path of integration to the right to Re(z) = N — ¢, where N

is a positive integer. Since the shift of the path of integration is possible as before,
we obtain
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ot r—ker (St ooy Sp ks Sr—k 1+ -+ 5 Srp1)
1 .
= Mt r—te =1 (ST5 - o oy S s Sr—ket 1y o+ 5 Sr— 1,8 + 81 — 1)
Spp1 — 1
1.
- ECMT,rfk,rfl(sla ey Srky Sr—kA 1y e oy Sr—1, 8 + SH-I)

(V/2]
—Sri1 \ 2
+ Z (2}1 r_+1 >CMT‘)‘IC,}’1(S17' s Spok Sk 1y - s Sr— 1, S T Spp1 + 2n — 1)

n=1
x {(1 — 2n)
0 | [(s,1 +2)T(=2)
270 ) (n—) T(sr41)
X EMTJ_,“_] (STy e ey Srmky Sr—ltls -« -y Sr—1,8r + Spp1 + 2){(—2) dz. (23)

The first, the second and the third terms on right-hand side of (23) have a
possible singularities that are located only on the subsets of C'™! defined by one
of the following equations;

Si‘+1:1a
Sp+ 81 +n=1,
S—1+ 8 +8s+n=2-d (d=-1,0,1,3,57,...),

S+ 81+ 8+ s +n=3—-7 (£ eNy),

Srkp2 F S a3t A St tn=k—1-7 (/eNy),
St Skt St tn=1-¢" (1<j<r—k/! >—-(k-1)), (24)
Sj + 8+ Skt o s s =21

(I<h<p<r-k/'=-(k-1)),

St S Skt S S tn=r—k—-1-=/"
(I<ji < <jraxa <r—k /! =—(k-1)),

St Sk TS s s tn=r—k=0" (/' =—(k-1)),
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where n=-1,0,1,3,5,7,... (1 <n< N —1). The last integral of (23) is hol-
omorphic at any satisfying all of the following inequalities;

Re(s;11) > —N +¢,
Re(s, +s41) > 1 —N+e¢,

Re(s,—1 + 5+ 841) >2— N +¢,

Re(s, ks2 + S hs3+ -+ 8 +841) >k—1-N+e,
Re(sj, +Srwp1+-+8+850)>k—N+e (1 <ji<r—k),

(25)
}{e(Sj1 + 8, + Sp—kr1 + - +Sr+S,~+1) >k+1—-N-+e¢

(13j1<]'2Sr—k)a

Re(s, + -+, o +Shp1+ - +8+841)>r—2—N+e
I<h< < Jrko=<r—k),

Re(si+ -+ Sk + Spp1 +- -+ S +841) >r—1—N+e

Since N can be taken arbitrarily large, (25) implies the meromorphic continuation
of ¢ wmT.—k,» to the whole C™! space. By the method similar to that as in the
case of j=r—2, we obtain the result in the case of 2 < j <r in (ii).

Let

(I)r—k,r,N(Slv' ey Sk Sr—k41y - - - asl‘+l)
= (se1—1) H (sr + 541 —2+d)
—1<d<N-1
d:0 or odd
N
X H{(Sr—l + 8 + Sr+1 — 3- /)(S)‘—Z + Sr—1 + 8, +Sr+l —4 - /)
/=0

X"'X(Sr—k+1+"'+sr+sr+l_k_1+/)}

N r—k
X H { H(‘Sfl Skt S s — 1 +//)

~.
|
—_
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r—k
x H (Sj1+sj2 +sr7k+1+"'+sr+sr+l_1"_//)

1<ji<ph<r—k

r—k
X X H (‘Sj/l+".+‘s/r—/c—l
1<ji<<jrg—1 <r—k

+ S g1+ s s — 1+
X (Sl+"'+Sr7k+srfk+l+"'+Sr+sr+l _r+k+/l)}

where N is positive integer. By (23) and (ii),
CMT,r—kﬁr(Sly sy Sk Sr—k 415+ - - 7Sr+1>q)r7k,r,N(Sla sy Sk Sr—k415 - - - 7Sl‘+l)

is shown to be holomorphic, to obtain (iii). Finally we can also prove (iv) also by
the induction assumption on the order {yr ,_ ,—1 and Stirling’s formula. Hence
the proof of Theorem 1 is complete. O

4. Proof of Theorem 2

THEOREM 5 (Wu [10]). The function Ly ,(S1,. .., 858413 X155 Xr) can be
meromorphically continued to the C'™*'-space. If none of the characters y,. ...y,
are principal, then Lyt , is entire. If there are k principal characters y,,...,x,
among them, then possible singularities are located only on the subsets of C'*!
defined by one of the following equations;

Sty tSr41 = 1-7¢ (1 <u(l) <k,/eNo),

Sty TSt T8 =24 (1 <u(l) <u(2) <k,/eNy),

Sty +oee Stuge-ry + S = k—1-¢

(I<u(l)y<---<ulk—1)<k,/eNp),
k
S[1+Sf2+"'+ka+Sr+1:k—/<1—|:r:|> (/EN()),

where 1 <h<k, 1 <u(l)<---<u(h) <k, £/€N,.
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Proor oF THEOREM 2. For (iii) and (iv) the method is exactly the same as
in the proof of Theorem 1. When j = r the assertion is nothing but Theorem 5.
If j=r—1, (16) implies

LT v 1,0 (ST, oy Sr—158my Sr 13 K1+ -2 2r)
— LJ L1 +2)I'(=2)
27i (c) F(SH_] )

X LMT.r—l(s17 ceey Sp—158y Sl + V4TERE 7%1‘—1)1’(727%;’) dz (26)

where —Re(s,41) < ¢ < —1, and L(-,x,) is Dirichlet L-function. By Theorem 3,
the poles of

Lyt r—1(Sty ooy 8158+ 801+ 250050 Xe1)

as in the z-plane are located to the left of Re(z) = c¢. The other poles of the
integrand on the right-hand side of (26) are z= —s,.1 —n (neNy), z=n
(n € Np). Also, when y, is principal, z= —1 is a simple pole. We shift the path
of integration of (26) to the right to Re(z) = N —¢, to obtain

Lt r—1, 0 (St e oy Sr 1580y Sr 5 X1 -+ 5 Xy)

1
= LMT,V—](SI,---,Sr_l;S,~+Sr+1 — l;}{h"'?)(r—l) . (p(q) .5
S — 1 —(]

r

N-1

s

+ Z( ; >LMT,r1(Sl» eSSy S I K )L(=n, 1)
n=0

s J [(s,1 +2)T(~2)
270 ) (g [ (s41)
X Lagr,r—1(S1, -« Sec138 + St + 25005 -+ X1 ) L(—2, 1) dz (27)
where 6, is defined in the statement of Theorem 2. Futher, if y,,...,x,

(1<t <--- <t <r—1) are principal and the others are non-principal, possible
singularities of (27) are

Styqy T Sr T 81 = 1-¢ (1<u(l)<k,/=>-0),

Sty t St t S 81 =24 (I<u(l)<u) <k, /=-9),
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Sty Tt Sy TSt =k—1-4
(I<sull)<---<ulk-1)<k, (= —0,),

Syt Fsy s +sa=k—¢ (£=-90,), (28)

moreover, if y,,...,x, (1<t <---<t <r—1) and g, are principal and the

others are non-principal, then

Spr1 = 1

is also a possible singularity. Proof in the case of 1 < j <r — 2 is the same as the

proof of Theorem 1; we can prove the assertion using the induction on k with

k=r—j. Also, how to deal with Dirichlet characters is similar to the case of
j=r—1 U
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