A METHOD FOR FINDING A MINIMAL POINT OF THE LATTICE IN CUBIC NUMBER FIELDS

By

Kan KANEKO

Abstract. We give a method for finding a minimal point adjacent to 1 of the reduced lattice in cubic number fields using an isotropic vector of the quadratic form and two-dimensional lattice.

1. Introduction

Let K be a cubic algebraic number field of negative discriminant. It is known that to find all the minimal points of a reduced lattice \mathscr{R} of K, it is sufficient to know how to find a minimal point adjacent to 1 in any reduced lattice of K (refer to Definition 1.1 for a rigorous definition). Williams, Cormack and Seah [6] utilized the two-dimensional lattice obtained from a reduced lattice \mathscr{R} to find a minimal point adjacent to 1 in \mathscr{R} (the definition of such a two-dimensional lattice is forthcoming in Section 2). Moreover, Adam [1] utilized an isotropic vector of the quadratic form obtained from a basis of reduced lattice \mathscr{R} (the definition of such a quadratic form is forthcoming in Section 4). Later, Lahlou and Farhane [5] generalise the Adam's method.

In this paper, we shall prove six theorems which give candidates of a minimal point adjacent to 1 in a reduced lattice \mathscr{R} . In each case of the theorems, the maximum number of candidates $\varphi \in \mathscr{R}$ such that we must check whether $F(\varphi) < 1$ or not is at most four. Also, such six theorems contain all the occurring cases.

DEFINITION 1.1. (1) Let $1, \beta, \gamma \in K$ be independent over **Q**. We say that $\Re = \langle 1, \beta, \gamma \rangle = \mathbf{Z} + \mathbf{Z} \cdot \beta + \mathbf{Z} \cdot \gamma$ is a *lattice* of K with basis $\{1, \beta, \gamma\}$.

Revised November 26, 2013.

AMS 2010 Mathematics Subject Classification: 11R16, 11R27. Key words and phrases: cubic fields, Voronoi algorithm, fundamental units. Received August 5, 2013.

- (2) For $\alpha \in \mathcal{R}$ we define $F(\alpha) = \frac{N_K(\alpha)}{\alpha} = \alpha' \alpha''$, where N_K denotes the norm of K over \mathbf{Q} , and α' and α'' the conjugates of α .
- (3) Let \mathscr{R} be a lattice of K, and let $\varphi(>0) \in \mathscr{R}$. We say that φ is a *minimal* point of \mathscr{R} if for all α in \mathscr{R} such that $0 < \alpha < \varphi$ we have $F(\alpha) > F(\varphi)$.
- (4) Let \mathscr{R} be a lattice of K and $\varphi, \psi \in \mathscr{R}$ be a minimal point. We say that ψ is a minimal point adjacent to φ in \mathscr{R} if $\psi = \min\{\alpha \in \mathscr{R}; \varphi < \alpha, F(\varphi) > F(\alpha)\}.$
- (5) If \mathcal{R} is a lattice of K in which 1 is a minimal point, we call \mathcal{R} a reduced lattice.

2. Basis of Reduced Lattice (I)

Definition 2.1. Let $\alpha \in K$. We define $Y_{\alpha} := Re \ \alpha', \ Z_{\alpha} := Im \ \alpha', \ X_{\alpha} := \alpha - Y_{\alpha}$. Let $\lambda \in K$, $\mu \in K \setminus \mathbf{Q}$. We define $\omega_1(\lambda, \mu) := -(Z_{\lambda}/Z_{\mu}), \ \omega_2(\lambda, \mu) := -Y_{\lambda} - \omega_1(\lambda, \mu) Y_{\mu}$.

Remark. In [6] $Y_{\alpha} = Im \alpha', Z_{\alpha} = Re \alpha'.$

Proposition 2.2. Let $\alpha \in K$, $c \in \mathbb{Z}$. Then

- (1) $F(\alpha) = Y_{\alpha}^2 + Z_{\alpha}^2$.
- (2) $\alpha \notin \mathbf{Q} \Rightarrow Y_{\alpha}, X_{\alpha} \in K \mathbf{Q}, Z_{\alpha} \notin \mathbf{Q}.$
- (3) $K \ni 1, \lambda, \mu$ are independent over $\mathbf{Q} \Rightarrow \omega_1(\lambda, \mu) \notin \mathbf{Q}$.
- (4) $K \ni 1, \lambda, \mu$ are independent over $\mathbf{Q} \Rightarrow 1, X_{\lambda}, X_{\mu}$ are independent over \mathbf{Q} .
- (5) $K \ni 1, \lambda, \mu$ are independent over $\mathbf{Q} \Rightarrow \det \begin{pmatrix} X_{\lambda} & X_{\mu} \\ Z_{\lambda} & Z_{\mu} \end{pmatrix} \neq 0$.
- (6) Let $\alpha \notin \mathbf{Q}$. Then
- (i) $-1 < Y_{\alpha+c} < 1 \Leftrightarrow c = [-Y_{\alpha}] \text{ or } [-Y_{\alpha}] + 1$,
- (ii) $Y_{[-Y_{\alpha}]+\alpha} < 0$, $Y_{[-Y_{\alpha}]+1+\alpha} > 0$,
- (iii) $|Y_{[-Y_{\alpha}]+\alpha}| < 1/2$ or $|Y_{[-Y_{\alpha}]+1+\alpha}| < 1/2$.

PROOF. (3) Let $K = \mathbf{Q}(\theta)$ and $\lambda = a_0 + a_1\theta + a_2\theta^2$ $(a_i \in \mathbf{Q}), \ \mu = b_0 + b_1\theta + b_2\theta^2$ $(b_i \in \mathbf{Q})$. Then we have

$$Z_{\lambda} = \frac{1}{2i} (\lambda' - \lambda'') = \frac{1}{2i} \{ a_1 (\theta' - \theta'') + a_2 (\theta'^2 - \theta''^2) \}$$

$$= \frac{1}{2i} (\theta' - \theta'') \{ a_1 + a_2 (\theta' + \theta'') \} = Z_{\theta} \{ a_1 + (T_{K/\mathbb{Q}} \theta) a_2 - a_2 \theta \} \quad (i^2 = -1).$$

Similarly we have $Z_{\mu} = Z_{\theta} \{b_1 + (T_{K/\mathbb{Q}}\theta)b_2 - b_2\theta\}$. Suppose that

$$\omega_1(\lambda, \mu) = -\frac{Z_{\lambda}}{Z_{\mu}} = -\frac{a_1 + pa_2 - a_2\theta}{b_1 + pb_2 - b_2\theta} = r \in \mathbf{Q} \quad (p = T_{K/\mathbf{Q}}\theta).$$

Then we have

$$r(b_1 + pb_2 - b_2\theta) = -(a_1 + pa_2 - a_2\theta), \quad rb_1 + rpb_2 + a_1 + pa_2 - (rb_2 + a_2)\theta = 0.$$

Hence $rb_2 + a_2 = 0$, $rb_1 + a_1 = 0$, so $a_0 + rb_0 - \lambda - r\mu = 0$.

Since 1, λ , μ are independent over **Q**, we have reached a contradiction. Therefore we have $\omega_1(\lambda, \mu) \notin \mathbf{Q}$.

(5) Since 1, λ , μ are independent over \mathbf{Q} , by algebraic number theory $\det\begin{pmatrix} 1 & \lambda & \mu \\ 1 & \lambda' & \mu' \\ 1 & \lambda'' & \mu'' \end{pmatrix} \neq 0$. Moreover, $\det\begin{pmatrix} 1 & \lambda & \mu \\ 1 & \lambda' & \mu' \\ 1 & \lambda'' & \mu'' \end{pmatrix} = 2i(X_{\lambda}Z_{\mu} - X_{\mu}Z_{\lambda})$.

Therefore we have $X_{\lambda}Z_{\mu} - X_{\mu}Z_{\lambda} \neq 0$.

Otheres are easily deduced from definitions.

DEFINITION 2.3. Let \mathcal{R} be a reduced lattice of K. For $\mathcal{R} \ni \alpha$ we define

$$\alpha_{(1)} := [-Y_\alpha] + \alpha, \quad \alpha_{(2)} := [-Y_\alpha] + 1 + \alpha, \quad \alpha_{(3)} := \left\{ \begin{aligned} \alpha_{(1)} & \text{if } |Y_{\alpha_{(1)}}| < 1/2 \\ \alpha_{(2)} & \text{if } |Y_{\alpha_{(2)}}| < 1/2 \end{aligned} \right.,$$

 $\alpha_{(0)} := \alpha - [\alpha]$, where [...] is the greatest integer function.

Note that $|Z_{\alpha}| < \sqrt{3}/2 \Rightarrow F(\alpha_{(3)}) < 1$.

Let $\mathscr{R} = \langle 1, \beta, \gamma \rangle$ be a reduced lattice of K. Let $\tau : K \to \mathbb{R}^2$ be the **Q**-linear map defined by $\alpha^{\tau} = (X_{\alpha}, Z_{\alpha})$. Note that for $\alpha_1, \alpha_2 \in \mathscr{R}$, $\alpha_1^{\tau} = \alpha_2^{\tau} \Leftrightarrow$ there exists some $c \in \mathbb{Z}$ such that $\alpha_2 = c + \alpha_1$. Let $L := \mathscr{R}^{\tau} = \langle \beta^{\tau}, \gamma^{\tau} \rangle$. By Proposition 2.2,(5) L is a two-dimensional lattice. Moreover, by Proposition 2.2,(3)(4) L has the following property (Δ) :

(
$$\Delta$$
) $L \cap (\{0\} \times \mathbf{R}) = L \cap (\mathbf{R} \times \{0\}) = \{(0,0)\}.$

Now we prepare two lemmas about the two-dimensional lattice which has property (Δ) from Delone's supplement I in [2].

DEFINITION 2.4. Let $L(\subset \mathbb{R}^2)$ be a two-dimensional lattice which has property (Δ) . (1) For $\mathbb{R}^2 \ni S = (S_u, S_v) \neq (0, 0)$ we define $C(S) := \{(u, v) \in \mathbb{R}^2; |u| < |S_u|, |v| < |S_v|\}$. Then we say that $S \in L$ is a minimal point of L if

 $L \cap C(S) = \{(0,0)\}$. The system of all the minimal points of L we denote by M(L). We put $M(L)_{>0} := \{P \in M(L); P_u > 0\}$.

(2) Let $S(S_u > 0)$, $Q(Q_u > 0) \in L$ be a minimal point of L. We say that Q is a minimal point adjacent to S in L if $Q_u = \min\{P_u; P \in L, S_u < P_u, |S_v| > |P_v|\}$.

LEMMA 2.5. Let $L(\subset \mathbb{R}^2)$ be a two-dimensional lattice which has property (Δ) . Let $L \ni S, Q$ $(S_u > 0, Q_u > 0)$. Then Q is a minimal point adjacent to S in L if and only if $L = \langle S, Q \rangle$, $S_u < Q_u$, $|S_v| > |Q_v|$, $|S_v Q_v| < 0$.

PROOF. From Theorem XI,XII,XIII in [2, p. 467–469]. (cf. Theorem 4.1 in [9]). \Box

LEMMA 2.6. Let $L(\subset \mathbf{R}^2)$ be a two-dimensional lattice which has property (Δ) and let $E, G, H \in L$. We assume that G is a minimal point adjacent to E and that E is a minimal point adjacent to E. Then we have $E = E + [-E_v/G_v]G$.

Proof. From supplement I, Section 3, 34 in [2, p. 470].

PROPOSITION 2.7. Let \mathcal{R} be a reduced lattice of K, and let $L := \mathcal{R}^{\tau}$. Then there exists a basis $\{1, \lambda, \mu\}$ of \mathcal{R} such that λ^{τ} is a minimal point adjacent to μ^{τ} in L, $0 < X_{\lambda}$, $F(\lambda_{(3)}) < 1$, $F(\mu_{(3)}) > 1$.

PROOF. Let $\mathscr{R}=\langle 1,\beta,\gamma\rangle$. For $\varepsilon>0$, we shall consider a rectangular neighbourhood of (0,0), i.e. $W(\varepsilon,\sqrt{3}/2)=\{(u,v)\in\mathbf{R}^2;|u|<\varepsilon,|v|<\sqrt{3}/2\}$. By Minkowski's convex body theorem, there exists $\varepsilon>0$ such that $L\cap W(\varepsilon,\sqrt{3}/2)\neq\{(0,0)\}$. We take such a $\varepsilon>0$ and fix it. We put $W=W(\varepsilon,\sqrt{3}/2)$. Then there exists $Q=(Q_u,Q_v)\in L\cap W$ such that $Q_u=\min\{P_u;P\in L\cap W,0< P_u\}$. Note that such a $Q\in L$ is uniquely-determined. We have $L\cap C(Q)=\{(0,0)\}$. Hence Q is a minimal point of L. There exists $S\in L$ such that Q is a minimal point adjacent to S in L. By Lemma 2.5, $\{S,Q\}$ is a basis of L. Since both $\{S,Q\}$ and $\{\beta^\tau,\gamma^\tau\}$ are a basis of L, there exists $\begin{pmatrix} p&q\\r&s\end{pmatrix}\in GL_2(\mathbf{Z})$ such that $(Q\ S)=(\beta^\tau\ \gamma^\tau)\begin{pmatrix} p&q\\r&s\end{pmatrix}$. We have $Q=p\beta^\tau+r\gamma^\tau=(p\beta+r\gamma)^\tau$. Similarly, we have $S=(q\beta+s\gamma)^\tau$. We define $\lambda,\mu\in K$ by $(\lambda\ \mu)=(\beta\ \gamma)\begin{pmatrix} p&q\\r&s\end{pmatrix}$. Then we have $\mathscr{R}=\langle 1,\lambda,\mu\rangle,\ Q=\lambda^\tau,\ S=\mu^\tau.$ Since $Q=(Q_u,Q_v)=\lambda^\tau=(X_\lambda,Z_\lambda),$ from $|Z_\lambda|<\sqrt{3}/2,$ we have $F(\lambda_{(3)})<1$. From this, if we put $\mathscr{R}_F:=\{\alpha\in\mathscr{R};\alpha^\tau\in M(L)_{>0},F(\alpha_{(3)})<1\}$, then $\mathscr{R}_F\neq\emptyset$. Let $W(\varepsilon,1):=\{(u,v)\in\mathbf{R}^2;|u|<\varepsilon,|v|<1\}$. As

 $W(\varepsilon,\sqrt{3}/2)\subset W(\varepsilon,1)$, we have $1<|\mathscr{R}_F^{\tau}\cap W(\varepsilon,1)|<\infty$. Hence there exists $\lambda^{\tau}\in\mathscr{R}_F^{\tau}\cap W(\varepsilon,1)$ such that $X_{\lambda}=\min\{X_{\alpha};\alpha^{\tau}\in\mathscr{R}_F^{\tau}\cap W(\varepsilon,1)\}$. Since $F(\alpha_{(3)})<1\Rightarrow |Z_{\alpha}|<1$, it is easily seen that $X_{\lambda}=\min\{X_{\alpha};\alpha^{\tau}\in\mathscr{R}_F^{\tau}\cap W(\varepsilon,1)\}=\min\{X_{\alpha};\alpha^{\tau}\in\mathscr{R}_F^{\tau}\}=\min\{X_{\alpha};\alpha\in\mathscr{R}_F\}$. For this λ , there exists $\mu\in\mathscr{R}$ such that λ^{τ} is a minimal point adjacent to μ^{τ} in L. Moreover, for such a μ we have $F(\mu_{(3)})>1$.

REMARK. Such a basis in Proposition 2.7 is easily found by modified version of Algorithm (A) in [6, p. 581].

DEFINITION 2.8. Let \mathscr{R} be a reduced lattice of K, and let $L := \mathscr{R}^{\tau}$. We say that $\lambda \in \mathscr{R}$ is a F-point of $M(L)_{>0}$ if $\lambda \in \mathscr{R}_F$, $X_{\lambda} = \min\{X_{\alpha}; \alpha \in \mathscr{R}_F\}$.

LEMMA 2.9. Let \mathcal{R} be a reduced lattice of K. If $0 < X_{\lambda}$, $F(\lambda_{(3)}) < 1$, then we have $0 < \lambda_{(1)}$.

PROOF. We assume that $0 < X_{\lambda}$, $F(\lambda_{(3)}) < 1$. From $0 < X_{\lambda} = X_{\lambda_{(2)}} = \lambda_{(2)} - Y_{\lambda_{(2)}}$, we have $\lambda_{(2)} > Y_{\lambda_{(2)}} > 0$. Hence we have $\lambda_{(2)} > 0$. Suppose that $\lambda_{(1)} < 0$. We have $0 < \lambda_{(2)} = \lambda_{(1)} + 1 < 1$, so $-1 < \lambda_{(1)} < 0$. Since \mathscr{R} is a reduced lattice of K, we have $F(\lambda_{(2)}) > 1$. Hence we have $\lambda_{(3)} = \lambda_{(1)}$, so $F(\lambda_{(1)}) < 1$. From this, $F(-\lambda_{(1)}) < 1$. Since \mathscr{R} is a reduced lattice of K, we have reached a contradiction. Therefore, we have $\lambda_{(1)} > 0$.

THEOREM 2.10. Let \mathcal{R} be a reduced lattice of K. Then there exists a basis $\{1, \lambda, \mu\}$ of \mathcal{R} such that

- (a) $0 < \lambda < 1, -1/2 < \mu, F(\mu) > 1, 2|Y_{\mu}| < 1, 0 < X_{\mu} < X_{\lambda}, 0 < \omega_1(\lambda, \mu) < 1,$
- (b) $\omega_2(\lambda,\mu) > 0$,
- (c) $F([\omega_2] + \lambda) < 1$ or $F([\omega_2] + 1 + \lambda) < 1$.

PROOF. By Proposition 2.7, we can take a basis $\{1, \lambda, \mu\}$ of \mathcal{R} such that λ^{τ} is a minimal point adjacent to μ^{τ} in L, $0 < X_{\lambda}$, $F(\lambda_{(3)}) < 1$, $F(\mu_{(3)}) > 1$, λ is a F-point of $M(L)_{>0}$. Clearly, $\mathcal{R} = \langle 1, \lambda_{(0)}, \mu_{(3)} \rangle$.

- (a) Clearly we have $0 < \lambda_{(0)} < 1$, $F(\mu_{(3)}) > 1$, $2|Y_{\mu_{(3)}}| < 1$, $0 < X_{\mu_{(3)}} = X_{\mu} < X_{\lambda_{(0)}} = X_{\lambda}$. From $0 < X_{\mu} = X_{\mu_{(3)}} = \mu_{(3)} Y_{\mu_{(3)}}$, we have $-1/2 < \mu_{(3)}$. From Remark 2.11 bellow, we have $0 < \omega_1(\lambda, \mu) < 1$. Since $\omega_1(\lambda_{(0)}, \mu_{(3)}) = -(Z_{\lambda_{(0)}}/Z_{\mu_{(3)}}) = -(Z_{\lambda}/Z_{\mu}) = \omega_1(\lambda, \mu)$, we have $0 < \omega_1(\lambda_{(0)}, \mu_{(3)}) < 1$.
 - (b) Proof of " $\omega_2(\lambda_{(0)}, \mu_{(3)}) > 0$ ".

_

- (i) The case $\lambda_{(1)} = [-Y_{\lambda}] + \lambda > 1$. $\lambda_{(1)} = [-Y_{\lambda}] + \lambda = [-Y_{\lambda_{(0)}}] + \lambda_{(0)} > 1$. Hence $-Y_{\lambda_{(0)}} > 1$. From this and from $0 < \omega_1 < 1$, $|Y_{\mu_{(3)}}| < 1/2$ we have $\omega_2(\lambda_{(0)},\mu_{(3)}) = -Y_{\lambda_{(0)}} \omega_1(\lambda_{(0)},\mu_{(3)})Y_{\mu_{(3)}} > 0$.
- (ii) The case $\lambda_{(1)} = [-Y_{\lambda}] + \lambda < 1$. By Lemma 2.9, we have $\lambda_{(1)} > 0$. From $0 < \lambda_{(1)} < 1$, we have $F(\lambda_{(1)}) > 1$ because \mathscr{R} is a reduced lattice of K. Therefore we have $F(\lambda_{(2)}) < 1$. Since $F(\lambda_{(1)}) > 1$, we have $Y_{\lambda_{(1)}} < -1/2$. Note that $\lambda_{(1)} = \lambda_{(0)}$. Hence from $Y_{\lambda_{(0)}} = Y_{\lambda_{(1)}} < -1/2$ and from $0 < \omega_1 < 1$, $|Y_{\mu_{(3)}}| < 1/2$ we have $\omega_2(\lambda_{(0)}, \mu_{(3)}) = -Y_{\lambda_{(0)}} \omega_1(\lambda_{(0)}, \mu_{(3)}) Y_{\mu_{(3)}} > 0$.
 - (c) Proof of " $F([\omega_2] + \lambda_{(0)}) < 1$ or $F([\omega_2] + 1 + \lambda_{(0)}) < 1$ ".
- (i) The case $Y_{\mu_{(3)}} < 0$. Since $\omega_2 (-Y_{\lambda_{(0)}}) = -\omega_1 Y_{\mu_{(3)}} > 0$, we have $-Y_{\lambda_{(0)}} < \omega_2$. From this and $|-\omega_1 Y_{\mu_{(3)}}| < 1/2$, we have $[\omega_2] = [-Y_{\lambda_{(0)}}]$ or $[-Y_{\lambda_{(0)}}] + 1$. Note that $[\omega_2] = [-Y_{\lambda_{(0)}}] + 1 \Rightarrow 0 < [-Y_{\lambda_{(0)}}] + 1 (-Y_{\lambda_{(0)}}) < 1/2 \Rightarrow 0 < Y_{\lambda_{(2)}} = [-Y_{\lambda_{(0)}}] + 1 + Y_{\lambda_{(0)}} < 1/2$. Hence if $[\omega_2] = [-Y_{\lambda_{(0)}}] + 1$, then we have $\lambda_{(3)} = \lambda_{(2)}$. Therefore, we have " $[\omega_2] + \lambda_{(0)} = [-Y_{\lambda_{(0)}}] + \lambda_{(0)} = \lambda_{(1)}$, $[\omega_2] + 1 + \lambda_{(0)} = \lambda_{(2)}$ " or " $[\omega_2] + \lambda_{(0)} = [-Y_{\lambda_{(0)}}] + 1 + \lambda_{(0)} = \lambda_{(2)}$, $F(\lambda_{(2)}) < 1$ ".
- (ii) The case $Y_{\mu_{(3)}} > 0$. Since $\omega_2 (-Y_{\lambda_{(0)}}) = -\omega_1 Y_{\mu_{(3)}} < 0$, we have $-Y_{\lambda_{(0)}} > \omega_2$. From this and $|-\omega_1 Y_{\mu_{(3)}}| < 1/2$, we have $[\omega_2] = [-Y_{\lambda_{(0)}}]$ or $[-Y_{\lambda_{(0)}}] 1$. Note that $[\omega_2] = [-Y_{\lambda_{(0)}}] 1 \Rightarrow 0 < -Y_{\lambda_{(0)}} [-Y_{\lambda_{(0)}}] < 1/2 \Rightarrow -1/2$ $< Y_{\lambda_{(1)}} = [-Y_{\lambda_{(0)}}] + Y_{\lambda_{(0)}} < 0$. Hence if $[\omega_2] = [-Y_{\lambda_{(0)}}] 1$, then we have $\lambda_{(3)} = \lambda_{(1)}$. Therefore we have " $[\omega_2] + \lambda_{(0)} = [-Y_{\lambda_{(0)}}] + \lambda_{(0)} = \lambda_{(1)}$, $[\omega_2] + 1 + \lambda_{(0)} = \lambda_{(2)}$ " or " $[\omega_2] + 1 + \lambda_{(0)} = \lambda_{(1)}$, $F(\lambda_{(1)}) < 1$ ".

Remark 2.11. Let $\mathcal{R} = \langle 1, \beta, \gamma \rangle$, $0 < X_{\gamma} < X_{\beta}$. Then γ^{τ} is a minimal point adjacent to β^{τ} in $L \Leftrightarrow 0 < \omega_1(\beta, \gamma) < 1$.

3. Basis of Reduced Lattice (II)

DEFINITION 3.1. Let \mathcal{R} be a lattice of K, and let $\{1, N, M\}$ be a basis of \mathcal{R} . We say that $\{1, N, M\}$ is *normalized* provided that

$$0 < X_M < X_N$$
, $|Z_M| > 1/2$, $|Z_N| < 1/2$, $Z_M \cdot Z_N < 0$.

We quote Williams [9], Theorem 8.1 as Theorem 3.2 for our convenience.

THEOREM 3.2 (Williams [9], Theorem 8.1). Let \mathcal{R} be a reduced lattice with the normalized basis $\{1, N, M\}$. If $\theta_g = x + yN + zM$ $(x, y, z \in \mathbb{Z})$ is the minimal point adjacent to 1, then $(y, z) \in \{(1, 0), (0, 1), (1, 1), (1, -1), (2, 1)\}$.

In this paper, θ_g denotes the minimal point adjacent to 1 of any reduced lattice \mathcal{R} . We shall consider the relationship between F-point and the normalized basis.

THEOREM 3.3. Let \mathscr{R} be a reduced lattice with the normalized basis $\{1, N, M\}$. If $\mathscr{R} = \langle 1, \lambda, \mu \rangle$, λ^{τ} is adjacent to μ^{τ} , λ is a F-point of $M(L)_{>0}$ $(L = \mathscr{R}^{\tau})$, then λ^{τ} must be one of N^{τ} , $(N - M)^{\tau}$, M^{τ} . Moreover,

- (1) The case $\lambda^{\tau} = (N M)^{\tau}$: $N^{\tau} = (d + 1)\lambda^{\tau} + \mu^{\tau}$, $M^{\tau} = d\lambda^{\tau} + \mu^{\tau}$,
- (2) The case $\lambda^{\tau} = M^{\tau}$: $N^{\tau} = d\lambda^{\tau} + \mu^{\tau}$, where $d = d(\lambda, \mu) = [1/\omega_1(\lambda, \mu)]$.

PROOF. Recall that $\mathscr{R}_F = \{\alpha \in \mathscr{R}; \alpha^\tau \in M(L)_{>0}, F(\alpha_{(3)}) < 1\}$, $X_\lambda = \min\{X_\alpha; \alpha \in \mathscr{R}_F\}$. By Lemma 2.5 and Definition 3.1, we have $N \in \mathscr{R}_F$. Hence, we have $X_\lambda \leq X_N$. Since $L = \langle N^\tau, M^\tau \rangle = \langle \lambda^\tau, \mu^\tau \rangle$, there exists $a, b \in \mathbf{Z}$ such that $\lambda^\tau = aN^\tau + bM^\tau$.

- (i) The case a < 0. Since $X_{\lambda} > 0$, we have b > 0. Moreover, since $|Z_{\lambda}| = |aZ_N + bZ_M| = |a| \cdot |Z_N| + b \cdot |Z_M| < 1$ and $1/2 < |Z_M|$, we have $b \le 1$. Therefore b = 1. Hence $X_{\lambda} = aX_N + bX_M = aX_N + X_M = X_M |a| \cdot X_N < 0$. Therefore the case (i) is impossible.
- (ii) The case a = 0. Since $X_{\lambda} = aX_N + bX_M = bX_M$, we have b > 0. Since $|Z_{\lambda}| = b|Z_M|$, we have b = 1. [i.e. (a,b) = (0,1)]
- (iii) The case $a \ge 1, b \le 0$. Since $|Z_{\lambda}| = a|Z_N| + |b| \cdot |Z_M| < 1$, we have $|b| \le 1$.
- 1) The case b = -1. Since $X_{\lambda} = aX_N X_M = (a-1)X_N + (X_N X_M)$, if $a \ge 2$, then we have $X_{\lambda} > X_N$, which is impossible. Therefore, we have a = 1. [i.e. (a,b) = (1,-1)]
- 2) The case b = 0. Since $X_{\lambda} = aX_N = (a-1)X_N + X_N$, if $a \ge 2$, then we have $X_{\lambda} > X_N$, which is impossible. Therefore, we have a = 1. [i.e. (a,b) = (1,0)]
- (iv) The case $a \ge 1$, $b \ge 1$. We have $X_{\lambda} = aX_N + bX_M > X_N$, which is impossible. Therefore, the case (iv) is impossible.
 - By (i) to (iv), we conclude that $\lambda^{\tau} = aN^{\tau} + bM^{\tau} = M^{\tau}$ or $(N M)^{\tau}$ or N^{τ} .
- (a) The case $|Z_{\lambda}| < 1/2$. Since $|Z_{\mu}| > \sqrt{3}/2 > 1/2$, we have $\lambda^{\tau} = N^{\tau}$, $\mu^{\tau} = M^{\tau}$.
- (b) The case $|Z_{\lambda}| > 1/2$. Since $\lambda^{\tau} \neq N^{\tau}$, we have $0 < X_{\lambda} < X_{N}$. Hence we have $\lambda^{\tau} = (N M)^{\tau}$ or M^{τ} .
 - (b-1) The case $\lambda^{\tau} = (N M)^{\tau}$. We have
 - $(1.1) X_{\lambda} = X_{N-M} < X_M < X_N.$

Because if $X_M < X_\lambda = X_{N-M} < X_N$, then from $X_M < X_{N-M}$, $|Z_M| < |Z_{N-M}|$, we have $L \cap C((N-M)^{\tau}) = L \cap \{(u,v) \in \mathbf{R}^2; |u| < X_{N-M}, |v| < |Z_{N-M}|\} \ni M^{\tau} \neq (0,0)$. Since $\lambda^{\tau} = (N-M)^{\tau} \in L$ is a minimal point, we have reached a contradiction. Therefore we have $X_\lambda = X_{N-M} < X_M < X_N$. By Remark 2.11 we have $0 < \omega_1(N,M) < 1$. Since $\omega_1(M,N-M) = \frac{1}{\omega_1(N,M)+1}$, we have $0 < \omega_1(M,N-M) < 1$. From this, if $X_{N-M} < X_M$, then M^{τ} is adjacent to $(N-M)^{\tau}$. Note that $\mathscr{R} = \langle 1,M,N-M \rangle$. Hence we have

(1.2) $X_{N-M} < X_M \Leftrightarrow M^{\tau}$ is adjacent to $(N-M)^{\tau}$.

Since M^{τ} is a minimal point adjacent to λ^{τ} , and λ^{τ} is a minimal point adjacent to μ^{τ} , by Lemma 2.6 we have $M^{\tau} = \mu^{\tau} + [-(Z_{\mu}/Z_{\lambda})]\lambda^{\tau}$. We put $d = [-(Z_{\mu}/Z_{\lambda})] = [1/\omega_{1}(\lambda,\mu)]$. We have $M^{\tau} = \mu^{\tau} + d\lambda^{\tau}$. From $\lambda^{\tau} = N^{\tau} - M^{\tau}$, we have $N^{\tau} = \mu^{\tau} + (d+1)\lambda^{\tau}$. Therefore we obtain formulas: $M^{\tau} = d\lambda^{\tau} + \mu^{\tau}$, $N^{\tau} = (d+1)\lambda^{\tau} + \mu^{\tau}$.

(b-2) The case $\lambda^{\tau} = M^{\tau}$.

Since N^{τ} is a minimal point adjacent to λ^{τ} , and λ^{τ} is a minimal point adjacent to μ^{τ} , by Lemma 2.6 we have $N^{\tau} = \mu^{\tau} + [-(Z_{\mu}/Z_{\lambda})]\lambda^{\tau} = \mu^{\tau} + d\lambda^{\tau}$. Therefore we obtain formulas: $M^{\tau} = \lambda^{\tau}$, $N^{\tau} = d\lambda^{\tau} + \mu^{\tau}$.

Corollary 3.4. Let \mathcal{R} be a reduced lattice with basis $\{1,\lambda,\mu\}$ such that λ^{τ} is adjacent to μ^{τ} , λ is a F-point of $M(L)_{>0}$ $(L=\mathcal{R}^{\tau})$. If $\theta_g=x+y\lambda+z\mu$ $(x,y,z\in\mathbf{Z})$, then

the case $\lambda^{\tau} = N^{\tau}$: $(y,z) \in \{(1,0), (1,1), (1,-1), (2,1)\}$, the case $\lambda^{\tau} = (N-M)^{\tau}$: $(y,z) \in \{(1,0), (d,1), (d+1,1), (2d+1,2), (3d+2,3)\}$, the case $\lambda^{\tau} = M^{\tau}$: $(y,z) \in \{(1,0), (d,1), (d+1,1), (2d+1,2), (d-1,1)\}$, where $d = [1/\omega_1(\lambda,\mu)] \ge 1$.

PROOF. From Theorem 3.2.

Remark 3.5. Since $1/(d+1) < \omega_1 < 1/d$, we have $[d\omega_1] = [(d-1)\omega_1] = 0, \quad [(d+1)\omega_1] = 1,$ $1 \le [(2d+1)\omega_1] \le 2, \quad 2 \le [(3d+2)\omega_1] \le 4.$

Theorem 3.6. Let \mathcal{R} be a reduced lattice with basis $\{1, \lambda, \mu\}$ such that $F(\mu) > 1$, $2|Y_{\mu}| < 1$, $0 < X_{\mu} < X_{\lambda}$, $0 < \omega_1(\lambda, \mu) < 1$, $F(\lambda_{(3)}) < 1$.

Then λ^{τ} must be one of N^{τ} , $(N-M)^{\tau}$, M^{τ} . Moreover, if $\lambda^{\tau} = (N-M)^{\tau}$ or M^{τ} , then λ is a F-point of $M(L)_{>0}$ $(L=\mathcal{R}^{\tau})$.

PROOF. At first, we note that λ^{τ} is adjacent to μ^{τ} . Also $\lambda \in \mathcal{R}_F$. From $2|Y_{\mu}| < 1, \ \mu = \mu_{(3)}$.

- (a) The case $|Z_{\lambda}| < 1/2$. Since $F(\mu_{(3)}) = F(\mu) > 1$, we have $|Z_{\mu}| > \sqrt{3}/2 > 1/2$. Hence we have $\lambda^{\tau} = N^{\tau}$, $\mu^{\tau} = M^{\tau}$.
- (b) The case $|Z_{\lambda}| > 1/2$. Let λ^* be a *F*-point of $M(L)_{>0}$. So we have $X_{\lambda^*} \leq X_{\lambda}$. We shall show that $\lambda^{*\tau} = \lambda^{\tau}$. Suppose that $\lambda^{*\tau} \neq \lambda^{\tau}$.
 - (i) The case $\lambda^{\tau} \neq M^{\tau}$. We have
 - (i-1) $X_{\lambda^*} < X_{\mu} < X_{\lambda} < X_M < X_N$.

Since $|Z_{\lambda^*}| > 1/2$, by Theorem 3.3, we have $\lambda^{*\tau} = M^{\tau}$ or $(N-M)^{\tau}$. Hence $\lambda^{*\tau} = (N-M)^{\tau}$. By (1.1) in the proof of Theorem 3.3, we have $X_{\lambda^*} = X_{N-M} < X_M$. From (i-1), we have $X_{\lambda^*} = X_{N-M} < X_{\mu} < X_{\lambda} < X_M < X_N$. Since M^{τ} is adjacent to $(N-M)^{\tau}$, we have reached a contradiction.

(ii) The case $\lambda^{\tau} = M^{\tau}$. Since $\lambda^{*\tau} \neq \lambda^{\tau}$, by Theorem 3.3, we have $\lambda^{*\tau} = (N-M)^{\tau}$. By (1.1) in the proof of Theorem 3.3, we have $X_{\lambda^*} = X_{N-M} < X_M$. Hence we have $X_{\lambda^*} = X_{N-M} < X_{\mu} < X_{\lambda} = X_M < X_N$. Since M^{τ} is adjacent to $(N-M)^{\tau}$, we have reached a contradiction.

By (i)(ii), an assumption $\lambda^{*\tau} \neq \lambda^{\tau}$ lead to a contradiction. Therefore we have $\lambda^{*\tau} = \lambda^{\tau}$.

Finally, if $\lambda^{\tau} = (N - M)^{\tau}$ or M^{τ} , then we must have only the case (b), so λ is a *F*-point of $M(L)_{>0}$.

Remark.
$$F(\lambda_{(3)}) < 1 \Leftrightarrow \exists c \in \mathbb{Z}; \ F(c + \lambda) < 1.$$

Corollary 3.7. Let \mathcal{R} be a reduced lattice with basis $\{1, \lambda, \mu\}$ such that $F(\mu) > 1$, $2|Y_{\mu}| < 1$, $0 < X_{\mu} < X_{\lambda}$, $0 < \omega_{1}(\lambda, \mu) < 1$, $F(\lambda_{(3)}) < 1$. If $\theta_{g} = x + y\lambda + z\mu$ $(x, y, z \in \mathbb{Z})$, then $(y, z) \in \{(1, 0), (1, 1), (1, -1), (2, 1), (d, 1), (d + 1, 1), (2d + 1, 2), (d - 1, 1), (3d + 2, 3)\}$, where $d = [1/\omega_{1}(\lambda, \mu)] \geq 1$.

4. Preliminaries (I)

DEFINITION 4.1. Let \mathscr{R} be a lattice of K. For a basis $\{1, \lambda, \mu\}$ of \mathscr{R} , we define a mapping $F_{\lambda,\mu}: \mathbf{R}^3 \to \mathbf{R}$ by $F_{\lambda,\mu}(x,y,z) = x^2 + (\lambda' + \lambda'')xy + (\mu' + \mu'')xz + (\lambda'\mu'' + \lambda''\mu')yz + \lambda'\lambda''y^2 + \mu'\mu''z^2$. For any $(x,y,z) \in \mathbf{Z}^3$, we have $F_{\lambda,\mu}(x,y,z) = F(x+y\lambda+z\mu)$.

REMARK. $F_{\lambda,\mu}$ is a positive quadratic form with real coefficients of rank 2. $(\omega_2, 1, \omega_1)$ is an isotropic vector of $F_{\lambda,\mu}$.

We quote Lahlou and Farhane [5], Lemma 2.2 as Lemma 4.2 for our convenience. (cf. [1], Lemma 2.2)

LEMMA 4.2 (Lahlou and Farhane [5], Lemma 2.2). Let \mathcal{R} be a lattice of K and let $\{1, \lambda, \mu\}$ be a basis of \mathcal{R} . Then we can write

(1)
$$F_{\lambda,\mu}(x,y,z) = a(z-\omega_1 y)^2 + 2b(z-\omega_1 y)(x-\omega_2 y) + (x-\omega_2 y)^2$$

(2)

$$F_{\lambda,\mu}(x,y,z) = \frac{1}{2}(x - \omega_2 y)^2 + \frac{1}{2}(x - \omega_2 y + 2b(z - \omega_1 y))^2 + (a - 2b^2)(z - \omega_1 y)^2$$
(3)

$$F_{\lambda,\mu}(x,y,z) = \frac{a}{2}(z - \omega_1 y)^2 + \frac{a}{2}\left(z - \omega_1 y + \frac{2b}{a}(x - \omega_2 y)\right)^2 + \left(1 - \frac{2b^2}{a}\right)(x - \omega_2 y)^2$$
with $a = F(\mu)$, $b = Y_{\mu}$.

DEFINITION 4.3. Let \mathscr{R} be a reduced lattice with basis $\{1, \lambda, \mu\}$ such that $\mu > -1/2$, $\omega_2(\lambda, \mu) > 0$, $0 < \omega_1(\lambda, \mu) < 1$. Let $y \in \mathbf{Z}$. Then we define

$$\begin{split} \psi_{1,y} &= [\omega_2 y] - 1 + y\lambda + [\omega_1 y]\mu & \psi_{7,y} &= [\omega_2 y] + 1 + y\lambda + ([\omega_1 y] - 1)\mu \\ \psi_{2,y} &= [\omega_2 y] - 1 + y\lambda + ([\omega_1 y] + 1)\mu & \psi_{8,y} &= [\omega_2 y] + 1 + y\lambda + [\omega_1 y]\mu \\ \psi_{3,y} &= [\omega_2 y] + y\lambda + ([\omega_1 y] - 1)\mu & \psi_{9,y} &= [\omega_2 y] + 1 + y\lambda + ([\omega_1 y] + 1)\mu \\ \psi_{4,y} &= [\omega_2 y] + y\lambda + [\omega_1 y]\mu & \psi_{10,y} &= [\omega_2 y] + 1 + y\lambda + ([\omega_1 y] + 2)\mu \\ \psi_{5,y} &= [\omega_2 y] + y\lambda + ([\omega_1 y] + 1)\mu & \psi_{11,y} &= [\omega_2 y] + 2 + y\lambda + [\omega_1 y]\mu \\ \psi_{6,y} &= [\omega_2 y] + y\lambda + ([\omega_1 y] + 2)\mu & \psi_{12,y} &= [\omega_2 y] + 2 + y\lambda + ([\omega_1 y] + 1)\mu \\ \phi_1 &= \psi_{4,1} &= [\omega_2] + \lambda & \phi_5 &= \psi_{2,1} &= [\omega_2] - 1 + \lambda + \mu & \phi_9 &= 2\lambda + \mu \\ \phi_2 &= \psi_{5,1} &= [\omega_2] + \lambda + \mu & \phi_6 &= \psi_{8,1} &= [\omega_2] + 1 + \lambda & \phi_{10} &= 3\lambda + 2\mu \\ \phi_3 &= \psi_{3,1} &= [\omega_2] + \lambda - \mu & \phi_7 &= \psi_{7,1} &= [\omega_2] + 1 + \lambda - \mu \\ \phi_4 &= \psi_{1,1} &= [\omega_2] - 1 + \lambda & \phi_8 &= \psi_{9,1} &= [\omega_2] + 1 + \lambda + \mu \end{split}$$

REMARK 4.4. (1) If $0 < \mu < 1$, then we have

$$\begin{split} &\psi_{1,y} < \psi_{2,y} < \psi_{4,y}; \quad \psi_{1,y} < \psi_{3,y} < \psi_{4,y}; \quad \psi_{4,y} < \psi_{5,y} < \psi_{6,y} < \psi_{9,y} \\ &\psi_{4,y} < \psi_{5,y} < \psi_{8,y} < \psi_{9,y}; \quad \psi_{4,y} < \psi_{7,y} < \psi_{8,y} < \psi_{9,y} \\ &\psi_{9,y} < \psi_{10,y} < \psi_{12,y}; \quad \psi_{9,y} < \psi_{11,y} < \psi_{12,y} \end{split}$$

(2) If $\mu > 1$, then we have

$$\begin{split} &\psi_{3,y} < \psi_{1,y} < \psi_{4,y}; \quad \psi_{3,y} < \psi_{7,y} < \psi_{4,y}; \quad \psi_{4,y} < \psi_{2,y} < \psi_{5,y} < \psi_{9,y} \\ &\psi_{4,y} < \psi_{8,y} < \psi_{5,y} < \psi_{9,y}; \quad \psi_{4,y} < \psi_{8,y} < \psi_{11,y} < \psi_{9,y} \\ &\psi_{9,y} < \psi_{6,y} < \psi_{10,y}; \quad \psi_{9,y} < \psi_{12,y} < \psi_{10,y} \end{split}$$

Lemma 4.5. Let \mathscr{R} be a reduced lattice with basis $\{1,\lambda,\mu\}$ such that $\mu > -1/2$, $\omega_2(\lambda,\mu) > 0$ and $0 < \omega_1(\lambda,\mu) < 1$. Let $a > \max(1,2b^2,2|b|)$, where $a = F(\mu)$, $b = Y_{\mu}$. Then

- (1) $\theta_g \in \{\psi_{i,v}; y(\neq 0) \in \mathbb{Z}, 1 \leq i \leq 12\}.$
- (2) $\lambda, \mu > 0 \Rightarrow \psi_{i,1} \leq \psi_{i,\nu} \ (y \geq 1)$.
- (3) (i) $b < 0 \Rightarrow F(\psi_{2,y}) > 1$, $F(\psi_{6,y}) > 1$, $F(\psi_{7,y}) > 1$, $F(\psi_{11,y}) > 1$. (ii) $b > 0 \Rightarrow F(\psi_{1,y}) > 1$, $F(\psi_{3,y}) > 1$, $F(\psi_{10,y}) > 1$, $F(\psi_{12,y}) > 1$.
- (4) $F(\psi_{3,1}) > F(\psi_{4,1})$.
- (5) $(0 <)b < 1/2 \Rightarrow F(\psi_{7,1}) > F(\psi_{4,1}).$
- (6) $F(\psi_{5,1}) < F(\psi_{4,1}), \ 0 < b < 1 \Rightarrow F(\psi_{7,1}) > F(\psi_{4,1}).$
- (7) $b > 1 \Rightarrow F(\psi_{7,1}) > 1$.
- (8) b > 0 or $-1/2 < b < 0 \Rightarrow F(\psi_{1,1}) > F(\psi_{4,1})$.
- (9) $F(\psi_{5,1}) > F(\psi_{8,1}), (0 <) b < 1 \Rightarrow F(\psi_{2,1}) > F(\psi_{4,1}).$
- (10) $F(\psi_{4,1}) > F(\psi_{8,1}), b < 0 \Rightarrow c_2 = [\omega_2] \omega_2 < -1/2.$
- (11) $c_1 = [\omega_1] \omega_1 < -1/2, \ b < 0 \Rightarrow F(\psi_{8,1}) > F(\psi_{9,1}).$

(12)
$$[2\alpha] = \begin{cases} 2[\alpha] & \text{if } 0 \le \alpha - [\alpha] < 1/2 \\ 2[\alpha] + 1 & \text{if } 1/2 \le \alpha - [\alpha] \end{cases}$$

PROOF. We put $c_1 = [\omega_1] - \omega_1$, $c_2 = [\omega_2] - \omega_2$. Then $-1 < c_1, c_2 < 0$.

- (1) was proved in Lahlou and Farhane [5], Theorem 2.1.
- (2) obvious
- (3) by Lemma 4.2,(1)
- (4) By Lemma 4.2,(1), $F(\psi_{3,1}) F(\psi_{4,1}) = -2ac_1 + a 2bc_2 = -2ac_1 + a\left(1 \frac{2b}{a}c_2\right) > 0.$

- (5) By Lemma 4.2,(1), $F(\psi_{7,1}) F(\psi_{4,1}) = -2ac_1 + a + 2bc_1 2bc_2 2b + 2c_2 + 1 = (1 2b)(1 + c_2) + a + c_2 2(a b)c_1 > 0.$
- (6) By Lemma 4.2,(1) since $F(\psi_{5,1}) < F(\psi_{4,1})$, $F(\psi_{4,1}) F(\psi_{5,1}) = -2ac_1 a 2bc_2 > 0$. So $-2bc_2 > a(1+2c_1)$. From this and a > 2b, we have $-2bc_2 > 2b(1+2c_1)$, $-c_2 > 1+2c_1$. Hence $-2c_1 > 1+c_2$. By this,

$$\begin{split} F(\psi_{7,1}) - F(\psi_{4,1}) &= -2ac_1 + a + 2bc_1 - 2bc_2 - 2b + 2c_2 + 1 \\ &= (1 - 2b)(1 + c_2) + a + c_2 - 2c_1(a - b) \\ &> (1 - 2b)(1 + c_2) + a + c_2 + (1 + c_2)(a - b) \\ &= (1 - 2b)(1 + c_2) + a - 1 + 1 + c_2 + (1 + c_2)(a - b) \\ &= (2 - 2b)(1 + c_2) + a - 1 + (1 + c_2)(a - b) > 0. \end{split}$$

- (7) If b > 1, then we have a > 2 because a > 2|b|. From this and by Lemma 4.2,(3), we have $F(\psi_{7,1}) > 1$.
 - (8) By Lemma 4.2,(1), $F(\psi_{1,1}) F(\psi_{4,1}) = -2bc_1 2c_2 + 1 > 0$.
- (9) Since $F(\psi_{5,1}) > F(\psi_{8,1})$, we have $F(\psi_{5,1}) F(\psi_{8,1}) = 2ac_1 + a + 2bc_2 2bc_1 2c_2 1 > 0$. From this, $F(\psi_{2,1}) F(\psi_{4,1}) = 2ac_1 + a 2bc_1 + 2bc_2 2b 2c_2 + 1 = (2ac_1 + a + 2bc_2 2bc_1 2c_2 1) + 2 2b > 0$.
- (10) Since $F(\psi_{4,1}) F(\psi_{8,1}) > 0$, we have $bc_1 + c_2 < -1/2$. From this and b < 0, $c_1 < 0$, we have $c_2 < -1/2$.
- (11) By Lemma 4.2,(1), $F(\psi_{9,1}) F(\psi_{8,1}) = 2ac_1 + a + 2b(c_2 + 1) = a(2c_1 + 1) + 2b(c_2 + 1) < 0.$
 - (12) is easily deduced from the definitions. \Box

Some of Lemma 4.5 were proved in Lahlou and Farhane [5], Theorem 2.1.

Remark. a > 1, $2|b| < 1 \Rightarrow a > \max(1, 4b^2) \Rightarrow a > \max(1, 2b^2, 2|b|)$.

5. Preliminaries (II)

In this section, we make the following assumption;

Assumption 5.1. Let $\Re = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that (a) $0 < \lambda < 1, -1/2 < \mu, F(\mu) > 1, 2|Y_{\mu}| < 1, 0 < X_{\mu} < X_{\lambda}, 0 < \omega_{1}(\lambda, \mu) < 1$ (b) $\omega_{2}(\lambda, \mu) > 0$ (c) $F(\phi_{1}) < 1$ or $F(\phi_{6}) < 1$.

By Theorem 2.10, we can take such the basis. So in next section, we shall consider six cases:

$$(1A) \ 0 < \mu < 1, \ \phi_1 > 1$$
 $(2A) \ \mu > 1, \ \phi_1 > 1$

$$(3A) \mu < 0, \phi_1 > 1$$

$$(1B) \ 0 < \mu < 1, \ \phi_1 < 1, \ F(\phi_6) < 1 \ (2B) \ \mu > 1, \ \phi_1 < 1, \ F(\phi_6) < 1$$

$$(3B) \mu < 0, \phi_1 < 1, F(\phi_6) < 1$$

We note that

(A)
$$\phi_1 = [\omega_2] + \lambda > 1 \Leftrightarrow [\omega_2] \ge 1 \Leftrightarrow \omega_2 > 1$$
,

(B)
$$\phi_1 = [\omega_2] + \lambda < 1 \Leftrightarrow [\omega_2] = 0 \Leftrightarrow \omega_2 < 1$$
.

Lemma 5.2. If $\phi_1 < 1$, then

(1)
$$Y_{\lambda} < -1/2$$
 (2) $\omega_2(\lambda, \mu) > 1/2 - \omega_1 Y_{\mu}$.

PROOF. (1) From $\phi_1 = [\omega_2] + \lambda < 1$, we have $[\omega_2] = 0$. By definition $\lambda_{(1)} = [-Y_{\lambda}] + \lambda$, $\lambda_{(2)} = [-Y_{\lambda}] + 1 + \lambda$. Since \mathscr{R} is a reduced lattice, from $\phi_1 < 1$, we have $F(\phi_1) > 1$. Hence, by Assumpsion 5.1,(c), we have $F(\phi_6) < 1$. From $F(\phi_6) = F([\omega_2] + 1 + \lambda) = F(1 + \lambda) < 1$, we have $1 + \lambda = \lambda_{(1)}$ or $\lambda_{(2)}$.

- (i) The case $1 + \lambda = \lambda_{(1)}$. Since $-1 < Y_{\lambda} + 1 = Y_{\lambda_{(1)}} < 0$, we have $-2 < Y_{\lambda} < -1$.
- (ii) The case $1 + \lambda = \lambda_{(2)}$. We have $\lambda = \lambda_{(1)}$. Since $F(\lambda_{(2)}) < 1$, we have $0 < Y_{\lambda_{(2)}} < 1/2$. From this, $0 < Y_{\lambda} + 1 = Y_{\lambda_{(2)}} < 1/2$, so $-1 < Y_{\lambda} < -1/2$.

Finally, from (i)(ii), we have $Y_{\lambda} < -1/2$.

(2) From (1), we have $-Y_{\lambda} > 1/2$. Hence, $\omega_2(\lambda, \mu) = -Y_{\lambda} - \omega_1 Y_{\mu} > 1/2 - \omega_1 Y_{\mu}$.

Corollary 5.3. $Y_{\mu} < 0 \Rightarrow \omega_2(\lambda, \mu) > 1/2$.

By Corollary 3.7 if $\theta_g = x + y\lambda + z\mu$ $(x, y, z \in \mathbb{Z})$, then $(y, z) \in \{(1, 0), (1, 1), (1, -1), (2, 1), (d, 1), (d + 1, 1), (2d + 1, 2), (d - 1, 1), (3d + 2, 3)\}$, where $d = [1/\omega_1(\lambda, \mu)] \ge 1$.

From Remark 3.5 and Corollary 5.3, we make the following tables in which we deside whether the possibility that $\theta_g = \psi_{i,y}$ $(1 \le i \le 10, i = 12)$ exists. Note that $y \ge 1 \Rightarrow [y\omega_2] \ge y[\omega_2]$.

Table 1

(y,z)	$\psi_{1,y} = [\omega_2 y] - 1 + y\lambda + [\omega_1 y]\mu$	$\mu > 0$ $\omega_2 > 1$	$\mu < 0$ $\omega_2 > 1$	$\mu > 0$ $\omega_2 < 1$	$\mu < 0$ $\omega_2 < 1$	No.
(1,0)	$[\omega_2] - 1 + \lambda$			< 1	< 1	(1-1)
(1,1)	$[\omega_2] - 1 + \lambda$	impossible	impossible	impossible	impossible	
(1, -1)	$[\omega_2] - 1 + \lambda$	impossible	impossible	impossible	impossible	
(2, 1)	$[2\omega_2] - 1 + 2\lambda + [2\omega_1]\mu$					(1-2)
(d, 1)	$[d\omega_2] - 1 + d\lambda$	impossible	impossible	impossible	impossible	
(d+1,1)	$[(d+1)\omega_2] - 1 + (d+1)\lambda + \mu$					(1-3)
(2d+1,2)	$[(2d+1)\omega_2] - 1 + (2d+1)\lambda + [(2d+1)\omega_1]\mu$	$> \phi_6$				(1-4)
(d-1,1)	$[(d-1)\omega_2]-1+(d-1)\lambda$	impossible	impossible	impossible	impossible	
(3d + 2, 3)	$[(3d+2)\omega_2] - 1 + (3d+2)\lambda + [(3d+2)\omega_1]\mu$	$> \phi_6$	$> \phi_6$			(1-5)

Table 2. $(\mu > 0)$

(y,z)	$\psi_{2,y} = [\omega_2 y] - 1 + y\lambda + ([\omega_1 y] + 1)\mu$	$\mu > 0$ $\omega_2 > 1$	$\mu > 0$ $\omega_2 < 1$	No.
(1,0)	$[\omega_2] - 1 + \lambda + \mu$	impossible	impossible	
(1,1)	$[\omega_2] - 1 + \lambda + \mu$			(2-1)
(1, -1)	$[\omega_2] - 1 + \lambda + \mu$	impossible	impossible	
(2,1)	$[2\omega_2] - 1 + 2\lambda + ([2\omega_1] + 1)\mu$			(2-2)
(d, 1)	$[d\omega_2] - 1 + d\lambda + \mu$			(2-3)
(d + 1, 1)	$[(d+1)\omega_2] - 1 + (d+1)\lambda + 2\mu$	impossible	impossible	
(2d+1,2)	$[(2d+1)\omega_2] - 1 + (2d+1)\lambda + ([(2d+1)\omega_1] + 1)\mu$	$> \phi_6$		(2-4)
(d-1,1)	$[(d-1)\omega_2] - 1 + (d-1)\lambda + \mu$			(2-5)
(3d+2,3)	$[(3d+2)\omega_2] - 1 + (3d+2)\lambda + ([(3d+2)\omega_1] + 1)\mu$	$> \phi_6$		(2-6)

Table 3

(y,z)	$\psi_{3,y} = [\omega_2 y] + y\lambda + ([\omega_1 y] - 1)\mu$	$\mu > 0$ $\omega_2 > 1$	$\mu < 0$ $\omega_2 > 1$	$\mu > 0$ $\omega_2 < 1$	$\mu < 0$ $\omega_2 < 1$	No.
(1,0)	$[\omega_2] + \lambda - \mu$	impossible	impossible	impossible	impossible	
(1,1)	$[\omega_2] + \lambda - \mu$	impossible	impossible	impossible	impossible	
(1, -1)	$[\omega_2] + \lambda - \mu$			< 1		(3-1)
(2,1)	$[2\omega_2] + 2\lambda + ([2\omega_1] - 1)\mu$	impossible	impossible	impossible	impossible	
(d,1)	$[d\omega_2] + d\lambda - \mu$	impossible	impossible	impossible	impossible	
(d+1,1)	$[(d+1)\omega_2]+(d+1)\lambda$	impossible	impossible	impossible	impossible	
(2d+1,2)	$[(2d+1)\omega_2] + (2d+1)\lambda + ([(2d+1)\omega_1] - 1)\mu$	impossible	impossible	impossible	impossible	
(d-1,1)	$[(d-1)\omega_2] + (d-1)\lambda - \mu$	impossible	impossible	impossible	impossible	
(3d+2,3)	$[(3d+2)\omega_2] + (3d+2)\lambda + ([(3d+2)\omega_1] - 1)\mu$	$> \phi_6$	$> \phi_6$			(3-2)

Table 4

(y,z)	$\psi_{4,y} = [\omega_2 y] + y\lambda + [\omega_1 y]\mu$	$\mu > 0$ $\omega_2 > 1$	$\mu < 0$ $\omega_2 > 1$	$\mu > 0$ $\omega_2 < 1$	$\mu < 0$ $\omega_2 < 1$	No.
(1,0)	$[\omega_2] + \lambda$			< 1	< 1	(4-1)
(1,1)	$[\omega_2] + \lambda$	impossible	impossible	impossible	impossible	
(1, -1)	$[\omega_2] + \lambda$	impossible	impossible	impossible	impossible	
(2, 1)	$[2\omega_2] + 2\lambda + [2\omega_1]\mu$	$> \phi_6$				(4-2)
(d, 1)	$[d\omega_2]+d\lambda$	impossible	impossible	impossible	impossible	
(d + 1, 1)	$[(d+1)\omega_2] + (d+1)\lambda + \mu$	$> \phi_6$				(4-3)
(2d+1,2)	$[(2d+1)\omega_2] + (2d+1)\lambda + [(2d+1)\omega_1]\mu$	$> \phi_6$	$> \phi_6$			(4-4)
(d-1,1)	$[(d-1)\omega_2]+(d-1)\lambda$	impossible	impossible	impossible	impossible	
(3d+2,3)	$[(3d+2)\omega_2] + (3d+2)\lambda + [(3d+2)\omega_1]\mu$	$> \phi_6$	$> \phi_6$			(4-5)

Table 5

(y,z)	$ \psi_{5,y} = [\omega_2 y] + y\lambda + ([\omega_1 y] + 1)\mu $	$\mu > 0$ $\omega_2 > 1$	$\mu < 0$ $\omega_2 > 1$	$\mu > 0$ $\omega_2 < 1$	$\mu < 0$ $\omega_2 < 1$	No.
(1,0)	$[\omega_2] + \lambda + \mu$	impossible	impossible	impossible	impossible	
(1, 1)	$[\omega_2] + \lambda + \mu$				< 1	(5-1)
(1, -1)	$[\omega_2] + \lambda + \mu$	impossible	impossible	impossible	impossible	
(2, 1)	$[2\omega_2] + 2\lambda + ([2\omega_1] + 1)\mu$	$> \phi_6$				(5-2)
(d, 1)	$[d\omega_2] + d\lambda + \mu$	$> \phi_6(d \ge 2)$				(5-3)
(d + 1, 1)	$[(d+1)\omega_2] + (d+1)\lambda + 2\mu$	impossible	impossible	impossible	impossible	
(2d+1,2)	$[(2d+1)\omega_2] + (2d+1)\lambda + ([(2d+1)\omega_1] + 1)\mu$	$> \phi_6$	$> \phi_6$			(5-4)
(d-1,1)	$[(d-1)\omega_2] + (d-1)\lambda + \mu$	$> \phi_6(d \ge 3)$				(5-5)
(3d + 2, 3)	$[(3d+2)\omega_2] + (3d+2)\lambda + ([(3d+2)\omega_1] + 1)\mu$	$> \phi_6$	$> \phi_6$			(5-6)

Table 6. $(\mu > 0)$

(y,z)	$\psi_{6,y} = [\omega_2 y] + y\lambda + ([\omega_1 y] + 2)\mu$	$\mu > 0$ $\omega_2 \le 1$	No.
(1,0)	$[\omega_2] + \lambda + 2\mu$	impossible	
(1,1)	$[\omega_2] + \lambda + 2\mu$	impossible	
(1,-1)	$[\omega_2] + \lambda + 2\mu$	impossible	
(2,1)	$[2\omega_2] + 2\lambda + ([2\omega_1] + 2)\mu$	impossible	
(d, 1)	$[d\omega_2] + d\lambda + 2\mu$	impossible	
(d+1,1)	$[(d+1)\omega_2] + (d+1)\lambda + 3\mu$	impossible	
(2d + 1, 2)	$[(2d+1)\omega_2] + (2d+1)\lambda + ([(2d+1)\omega_1] + 2)\mu$	impossible	
(d-1,1)	$[(d-1)\omega_2] + (d-1)\lambda + 2\mu$	impossible	
(3d+2,3)	$[(3d+2)\omega_2] + (3d+2)\lambda + ([(3d+2)\omega_1] + 2)\mu$	impossible	

Table 7. $(\mu > 0)$

(y,z)	$\psi_{7,y} = [\omega_2 y] + 1 + y\lambda + ([\omega_1 y] - 1)\mu$	$\mu > 0$ $\omega_2 \le 1$	No.
(1,0)	$[\omega_2] + 1 + \lambda - \mu$	impossible	
(1,1)	$[\omega_2] + 1 + \lambda - \mu$	impossible	
(1, -1)	$[\omega_2] + 1 + \lambda - \mu$		(7-1)
(2,1)	$[2\omega_2] + 1 + 2\lambda + ([2\omega_1] - 1)\mu$	impossible	
(d, 1)	$[d\omega_2] + 1 + d\lambda - \mu$	impossible	
(d+1,1)	$[(d+1)\omega_2] + 1 + (d+1)\lambda$	impossible	
(2d+1,2)	$[(2d+1)\omega_2] + 1 + (2d+1)\lambda + ([(2d+1)\omega_1] - 1)\mu$	impossible	
(d-1,1)	$[(d-1)\omega_2] + 1 + (d-1)\lambda - \mu$	impossible	
(3d + 2, 3)	$[(3d+2)\omega_2] + 1 + (3d+2)\lambda + ([(3d+2)\omega_1] - 1)\mu$	$> \phi_6$	

Table 8

(y,z)	$\psi_{8,y} = [\omega_2 y] + 1 + y\lambda + [\omega_1 y]\mu$	$\mu \lessgtr 0$ $\omega_2 \lessgtr 1$	No.
(1,0)	$[\omega_2] + 1 + \lambda$		(8-1)
(1,1)	$[\omega_2] + 1 + \lambda$	impossible	
(1,-1)	$[\omega_2] + 1 + \lambda$	impossible	
(2,1)	$[2\omega_2] + 1 + 2\lambda + [2\omega_1]\mu$	$> \phi_6$	
(d, 1)	$[d\omega_2] + 1 + d\lambda$	impossible	
(d+1,1)	$[(d+1)\omega_2] + 1 + (d+1)\lambda + \mu$	$> \phi_6$	
(2d + 1, 2)	$[(2d+1)\omega_2] + 1 + (2d+1)\lambda + [(2d+1)\omega_1]\mu$	$> \phi_6$	
(d-1,1)	$[(d-1)\omega_2]+1+(d-1)\lambda$	impossible	
(3d+2,3)	$[(3d+2)\omega_2] + 1 + (3d+2)\lambda + [(3d+2)\omega_1]\mu$	$> \phi_6$	

Table 9. $(\mu < 0)$

(y,z)	$\psi_{9,y} = [\omega_2 y] + 1 + y\lambda + ([\omega_1 y] + 1)\mu$	$\mu < 0$ $\omega_2 \lessgtr 1$	No.
(1,0)	$[\omega_2] + 1 + \lambda + \mu$	impossible	
(1,1)	$[\omega_2] + 1 + \lambda + \mu$		(9-1)
(1, -1)	$[\omega_2] + 1 + \lambda + \mu$	impossible	
(2,1)	$[2\omega_2] + 1 + 2\lambda + ([2\omega_1] + 1)\mu$	$> \phi_6$	
(d, 1)	$[d\omega_2] + 1 + d\lambda + \mu$	$> \phi_6(d \ge 2)$	
(d+1,1)	$[(d+1)\omega_2] + 1 + (d+1)\lambda + 2\mu$	impossible	
(2d+1,2)	$[(2d+1)\omega_2] + 1 + (2d+1)\lambda + ([(2d+1)\omega_1] + 1)\mu$	$> \phi_6$	
(d-1,1)	$[(d-1)\omega_2] + 1 + (d-1)\lambda + \mu$	$> \phi_6(d \ge 3)$	
(3d+2,3)	$[(3d+2)\omega_2] + 1 + (3d+2)\lambda + ([(3d+2)\omega_1] + 1)\mu$	$> \phi_6$	

Table 10. $(\mu < 0)$

(y,z)	$\psi_{10,y} = [\omega_2 y] + 1 + y\lambda + ([\omega_1 y] + 2)\mu$	$\mu < 0$ $\omega_2 \lessgtr 1$	No.
(1,0)	$[\omega_2] + 1 + \lambda + 2\mu$	impossible	
(1,1)	$[\omega_2] + 1 + \lambda + 2\mu$	impossible	
(1, -1)	$[\omega_2] + 1 + \lambda + 2\mu$	impossible	
(2,1)	$[2\omega_2] + 1 + 2\lambda + ([2\omega_1] + 2)\mu$	impossible	
(d, 1)	$[d\omega_2]+1+d\lambda+2\mu$	impossible	
(d+1,1)	$[(d+1)\omega_2] + 1 + (d+1)\lambda + 3\mu$	impossible	
(2d + 1, 2)	$[(2d+1)\omega_2] + 1 + (2d+1)\lambda + ([(2d+1)\omega_1] + 2)\mu$	impossible	
(d-1,1)	$[(d-1)\omega_2] + 1 + (d-1)\lambda + 2\mu$	impossible	
(3d+2,3)	$[(3d+2)\omega_2] + 1 + (3d+2)\lambda + ([(3d+2)\omega_1] + 2)\mu$	impossible	

Table 10 (continued)

(y,z)	$\psi_{12,y} = [\omega_2 y] + 2 + y\lambda + ([\omega_1 y] + 1)\mu$	$\mu < 0$ $\omega_2 \lessgtr 1$	No.
(1,0)	$[\omega_2] + 2 + \lambda + \mu$	impossible	
(1,1)	$[\omega_2] + 2 + \lambda + \mu$	$> \phi_6$	
(1, -1)	$[\omega_2] + 2 + \lambda + \mu$	impossible	
(2,1)	$[2\omega_2] + 2 + 2\lambda + ([2\omega_1] + 1)\mu$	$> \phi_6$	
(d, 1)	$[d\omega_2] + 2 + d\lambda + \mu$	$> \phi_6$	
(d + 1, 1)	$[(d+1)\omega_2] + 2 + (d+1)\lambda + 2\mu$	impossible	
(2d + 1, 2)	$[(2d+1)\omega_2] + 2 + (2d+1)\lambda + ([(2d+1)\omega_1] + 1)\mu$	$> \phi_6$	
(d-1,1)	$[(d-1)\omega_2] + 2 + (d-1)\lambda + \mu$	$> \phi_6(d \ge 2)$	
(3d + 2, 3)	$[(3d+2)\omega_2] + 2 + (3d+2)\lambda + ([(3d+2)\omega_1] + 1)\mu$	$> \phi_6$	

6. Main Theorems

THEOREM 6.1A. Let $\Re = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that $0 < \lambda < 1, \ 0 < X_{\mu} < X_{\lambda}, \ 0 < \omega_{1}(\lambda, \mu) < 1, \ \omega_{2}(\lambda, \mu) > 0, a > 1, \ 2|b| < 1, \ 0 < \mu < 1, \ \phi_{1} > 1, \ where \ a = F(\mu), \ b = Y_{\mu}$. Then

- (1) If $F(\phi_1) < 1$:
- (i) if b < 0, then the minimal point adjacent to 1 is ϕ_1 , ϕ_3 or ϕ_4 ;
- (ii) if b > 0, then the minimal point adjacent to 1 is ϕ_1 or ϕ_5 .
- (2) If $F(\phi_1) > 1$, $F(\phi_2) < 1$:
- (i) if b < 0, then the minimal point adjacent to 1 is ϕ_2 ;
- (ii) if b > 0, then the minimal point adjacent to 1 is ϕ_2 or ϕ_5 .
- (3) If $F(\phi_1) > 1$, $F(\phi_2) > 1$, $F(\phi_6) < 1$,

then the minimal point adjacent to 1 is ϕ_6 .

PROOF. Since $\phi_1 = [\omega_2] + \lambda > 1$, we have $[\omega_2] \ge 1$.

- (1) was proved in [5], Theorem 2.1.
- (2) We assume that $F(\psi_{4,1}) > 1$, $F(\psi_{5,1}) < 1$.
- (i) the case b < 0, by Lemma 4.5,(4), we have $\phi_3 = \psi_{3,1} \neq \theta_g$. By Lemma 4.5,(8), we have $\phi_4 = \psi_{1,1} \neq \theta_g$. The others were proved in [5], Theorem 2.1;
 - (ii) The case b > 0. The case were all proved in [5], Theorem 2.1.
 - (3) We assume that $F(\psi_{4,1}) > 1$, $F(\psi_{5,1}) > 1$, $F(\psi_{8,1}) < 1$.

By Lemma 4.5,(1)(2) and Remark 4.4,(1), we have $\theta_g \in \{\psi_{1,y}, \psi_{2,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{6,y}, \psi_{7,y}, \psi_{8,1}\}.$

(i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{8,1}\}$.

Also by Lemma 4.5,(10) we have $c_2 = [\omega_2] - \omega_2 < -1/2$.

- (a) In the case of $\psi_{1,y}$, based on Table 1,
- (1-1) from $\psi_{1,1} = \psi_{8,1} 2$ and $F(\psi_{8,1}) < 1$, we have $F(\psi_{1,1}) > 1$.
- (1-2) by Lemma 4.5,(12), $\psi_{1,2} = [2\omega_2] 1 + 2\lambda + \mu = 2[\omega_2] + 2\lambda + \mu$ or $2[\omega_2] 1 + 2\lambda + \mu$. Since $c_2 < -1/2$, $\psi_{1,2} \neq 2[\omega_2] 1 + 2\lambda + \mu$. Hence $\psi_{1,2} = 2[\omega_2] + 2\lambda + \mu > \psi_{8,1}$.
- (1-3) $d \ge 2 \Rightarrow \psi_{1,d+1} > \psi_{8,1}$. If d = 1, then $\psi_{1,d+1} = \psi_{1,2} = [2\omega_2] 1 + 2\lambda + \mu$. This case is just the same as (1-2).
 - (b) In the case of $\psi_{3,\nu}$, based on Table 3,
 - (3-1) by Lemma 4.5,(4) $\phi_3 = \psi_{3,1} \neq \theta_g$.
 - (c) In the case of $\psi_{4,\nu}$, based on Table 4,
 - (4-1) by the assumption $\psi_{4,1} \neq \theta_q$.
 - (d) In the case of $\psi_{5,\nu}$, based on Table 5,
 - (5-1) by the assumption $\psi_{5,1} \neq \theta_g$.

As a result, $\psi_{8,1}$ remains.

- (ii) The case b > 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{2,y}, \psi_{4,y}, \psi_{5,y}, \psi_{6,y}, \psi_{7,y}, \psi_{8,1}\}$.
 - (a) In the case of $\psi_{2,y}$, based on Table 2,
 - (2-1) by Lemma 4.5,(9), $\psi_{2,1} \neq \theta_g$.
- (2-2) by Lemma 4.5,(12), $\psi_{2,2}=[2\omega_2]-1+2\lambda+\mu=2[\omega_2]+2\lambda+\mu(>\psi_{8,1})$ or $2[\omega_2]-1+2\lambda+\mu$.

The case $\psi_{2,2} = 2[\omega_2] - 1 + 2\lambda + \mu$. If $[\omega_2] \ge 2$, then we have $2[\omega_2] - 1 + 2\lambda + \mu > \psi_{8,1}$. If $[\omega_2] = 1$, then $\psi_{2,2} = 1 + 2\lambda + \mu$. We shall show that $F(1+2\lambda+\mu) > 1$. Since $F(\phi_6) = F(2+\lambda) < 1$, we have $-1 < Y_{2+\lambda} < 1$, so $-3 < Y_{\lambda} < -1$. Suppose that $Y_{\lambda} > -3/2$. Then $Y_{2+\lambda} = 2 + Y_{\lambda} > 1/2$. From this, we have $1/4 + Z_{2+\lambda}^2 < Y_{2+\lambda}^2 + Z_{2+\lambda}^2 < 1$. Hence, $|Z_{2+\lambda}| < \sqrt{3}/2$. Since $Y_{\lambda} > -3/2$ and $Y_{\lambda} < -1$, we have $-1/2 < Y_{1+\lambda} < 0$. Hence, $F(1+\lambda) = Y_{1+\lambda}^2 + Z_{1+\lambda}^2 = Y_{1+\lambda}^2 + Z_{2+\lambda}^2 < 1/4 + 3/4 = 1$. Since $F(\phi_1) = F(1+\lambda) > 1$, we have reached a contradiction. Therefore, we have $Y_{\lambda} < -3/2$. From this, we have $Y_{1+2\lambda+\mu} = 1 + 2Y_{\lambda} + Y_{\mu} < 1 - 3 + Y_{\mu} < -3/2$. Hence, $F(1+2\lambda+\mu) > 1$.

(2-3)
$$d \ge 3 \Rightarrow \psi_{2,d} = [d\omega_2] - 1 + d\lambda + \mu > \psi_{8,1}$$
.

The case d = 1, 2 are just the same as (2-1) or (2-2).

- (2-5) Similar to (2-3).
- (b) In the case of $\psi_{4,v}$, based on Table 4,

- (4-1) by the assumption, $\psi_{4,1} \neq \theta_g$.
- (c) In the case of $\psi_{5,y}$, based on Table 5,
- (5-1) by the assumption $\psi_{5,1} \neq \theta_g$.
- (d) In the case of $\psi_{6,y}$, based on Table 6, no case is included
 - (e) In the case of $\psi_{7,\nu}$, based on Table 7,
 - (7-1) by Lemma 4.5,(5), $\psi_{7,1} \neq \theta_g$.

As a result, $\psi_{8,1}$ remains.

REMARK. From the proof in [5, Theorem 2.1], (1) and (2) don't require the assumption $0 < X_{\mu} < X_{\lambda}$. Moreover, in (1) and (2) (except for the part of ϕ_4), we can weaken the condition from a > 1, 2|b| < 1 to $a > \max(1, 2b^2, 2|b|)$.

Theorem 6.2A. Let $\mathcal{R} = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that $0 < \lambda < 1, \ 0 < X_{\mu} < X_{\lambda}, \ 0 < \omega_{1}(\lambda, \mu) < 1, \ \omega_{2}(\lambda, \mu) > 0, \ a > 1, \ 2|b| < 1, \ \mu > 1, \ \phi_{1} > 1, \ where \ a = F(\mu), \ b = Y_{\mu}.$ Then

- (1) If $F(\phi_1) < 1$:
- (i) if b < 0, then the minimal point adjacent to 1 is ϕ_1 , ϕ_3 or ϕ_4 ;
- (ii) if b > 0, then the minimal point adjacent to 1 is ϕ_1 or ϕ_7 .
- (2) If $F(\phi_1) > 1$, $F(\phi_6) < 1$:
- (i) if b < 0, then the minimal point adjacent to 1 is ϕ_6 ;
- (ii) if b > 0, then the minimal point adjacent to 1 is ϕ_5 or ϕ_6 .

PROOF. Since $\phi_1 = \psi_{4,1} = [\omega_2] + \lambda > 1$, we have $[\omega_2] \ge 1$.

- (1) We assume that $F(\psi_{4,1}) < 1$.
- By Lemma 4.5,(1)(2) and Remark 4.4,(2), we have $\theta_g \in \{\psi_{1,y}, \psi_{3,y}, \psi_{7,y}, \psi_{4,1}\}$.
- (i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,v}, \psi_{3,v}, \psi_{4,1}\}$.
- (a) In the case of $\psi_{1,\nu}$, based on Table 1,
- $(1-1) \psi_{1,1}$.
- $(1-2) \ \psi_{1,2} = [2\omega_2] 1 + 2\lambda + \mu > \psi_{8,1}.$
- (1-3) $\psi_{1,d+1} > \psi_{8,1} > \psi_{4,1}$.
- (b) In the case of $\psi_{3,\nu}$, based on Table 3,
- $(3-1) \psi_{3,1}$

As a result, $\psi_{4,1}$, $\psi_{3,1}$ and $\psi_{1,1}$ remain.

- (ii) The case b > 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{7,v}, \psi_{4,1}\}$.
- (a) In the case of $\psi_{7,\nu}$, based on Table 7,
- $(7-1) \psi_{7,1}$

As a result, $\psi_{4,1}$ and $\psi_{7,1}$ remain.

- (2) We assume that $F(\psi_{4,1}) > 1$, $F(\psi_{8,1}) < 1$.
- By Lemma 4.5,(1)(2) and Remark 4.4,(2), we have $\theta_g \in \{\psi_{1,y}, \psi_{2,y}, \psi_{3,y}, \psi_{4,y}, \psi_{7,y}, \psi_{8,1}\}$.
 - (i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,v}, \psi_{3,v}, \psi_{4,v}, \psi_{8,1}\}$.
 - (a) In the case of $\psi_{1,y}$, based on Table 1,
 - (1-1) from $\psi_{1,1} = \psi_{8,1} 2$ and $F(\psi_{8,1}) < 1$, we have $F(\psi_{1,1}) > 1$.
 - $(1-2) \ \psi_{1,2} = [2\omega_2] 1 + 2\lambda + \mu > \psi_{8,1}.$
 - (1-3) $\psi_{1,d+1} > \psi_{8,1}$.
 - (b) In the case of $\psi_{3,\nu}$, based on Table 3,
 - (3-1) by Lemma 4.5,(4) $\phi_3 = \psi_{3,1} \neq \theta_g$.
 - (c) In the case of $\psi_{4,y}$, based on Table 4,
 - (4-1) by the assumption $\psi_{4,1} \neq \theta_g$.

As a result, $\psi_{8,1}$ remains.

- (ii) The case b > 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{2,v}, \psi_{4,v}, \psi_{7,v}, \psi_{8,1}\}$.
- (a) In the case of $\psi_{2,\nu}$, based on Table 2,
- (2-1) $\psi_{2,1} = [\omega_2] 1 + \lambda + \mu(> \psi_{4,1}).$
- $(2-2) \ \psi_{2,2} = [2\omega_2] 1 + 2\lambda + \mu > \psi_{8,1}.$
- (2-3) $d \ge 3 \Rightarrow \psi_{2,d} = [d\omega_2] 1 + d\lambda + \mu > \psi_{8,1}$.

The cases d = 1, 2 are just the same as (2-1) or (2-2).

- (2-5) Similar to (2-3).
- (b) In the case of $\psi_{4,\nu}$, based on Table 4,
- (4-1) by the assumption $\psi_{4,1} \neq \theta_g$.
- (c) In the case of $\psi_{7,\nu}$, based on Table 7,
- (7-1) by Lemma 4.5,(5) $\psi_{7,1} \neq \theta_g$.

As a result, $\psi_{8,1}$ and $\psi_{2,1}$ remain. \square

THEOREM 6.3A. Let $\Re = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that $0 < \lambda < 1, \ 0 < X_{\mu} < X_{\lambda}, \ 0 < \omega_{1}(\lambda, \mu) < 1, \ \omega_{2}(\lambda, \mu) > 0, \ a > 1, \ 2|b| < 1, \ \mu < 0, \phi_{1} > 1, \ where \ a = F(\mu), \ b = Y_{\mu}.$ Then

- (1) If $F(\phi_1) < 1$:
- (i) if $[\omega_2] \geq 2$, then the minimal point adjacent to 1 is ϕ_1 , ϕ_2 or ϕ_4 ;
- (ii-a) if $[\omega_2] = 1$, $\lambda + \mu < 0$, then the minimal point adjacent to 1 is ϕ_1 or $1 + \phi_0$,
- (ii-b) if $[\omega_2] = 1$, $\lambda + \mu > 0$, then the minimal point adjacent to 1 is ϕ_1 or ϕ_2 .
- (2) If $F(\phi_1) > 1$, $F(\phi_6) < 1$, then the minimal point adjacent to 1 is ϕ_2 , ϕ_6 or ϕ_8 .

PROOF. Since $\mu < 0$ and $0 < X_{\mu}$, we have b < 0 and $-1/2 < \mu$.

From Table 10 and Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{8,y}, \psi_{9,y}\}$.

- (1) We assume that $F(\psi_{4,1}) < 1$.
- (a) In the case of $\psi_{1,v}$, based on Table 1,
- $(1-1) \psi_{1,1}$.
- (1-2) by Lemma 4.5,(12) $\psi_{1,2}=[2\omega_2]-1+2\lambda+\mu=2[\omega_2]+2\lambda+\mu(>\psi_{4,1})$ or $2[\omega_2]-1+2\lambda+\mu$.

The case $\psi_{1,2} = 2[\omega_2] - 1 + 2\lambda + \mu$. If $[\omega_2] \ge 2$, then we have $\psi_{1,2} > \psi_{4,1}$. If $[\omega_2] = 1$, $\psi_{1,2} = 1 + 2\lambda + \mu$.

- (1-3) $d \ge 2 \Rightarrow \psi_{1,d+1} \ge [3\omega_2] 1 + 3\lambda + \mu > \psi_{4,1}$. The case d = 1 is just the same as (1-2).
 - $(1-4) \ \psi_{1,2d+1} > \psi_{4,1}.$
 - (b) In the case of $\psi_{3,\nu}$, based on Table 3,
 - (3-1) $\psi_{3,1} = [\omega_2] + \lambda \mu > [\omega_2] + \lambda = \psi_{4,1}$.
 - (c) In the case of $\psi_{4,v}$, based on Table 4,
 - $(4-1) \psi_{4,1}$.
 - $(4-2) \ \psi_{4,2} = [2\omega_2] + 2\lambda + \mu > \psi_{4,1}.$
 - $(4-3) \ \psi_{4,d+1} > \psi_{4,1}$
 - (d) In the case of $\psi_{5,v}$, based on Table 5,
 - (5-1) $\psi_{5,1} = [\omega_2] + \lambda + \mu$.
 - (5-2) $\psi_{5,2} = [2\omega_2] + 2\lambda + \mu > \psi_{4,1}$.
 - (5-3) $d \ge 2 \Rightarrow \psi_{5,d} \ge [2\omega_2] + 2\lambda + \mu > \psi_{4,1}$.

The case d = 1 is just the same as (5-1).

- (5-5) Similar to (5-3).
- (e) In the case of $\psi_{8,\nu}$, based on Table 8,
- (8-1) $\psi_{8,1} > \psi_{4,1}$.
- (f) In the case of $\psi_{9,\nu}$, based on Table 9,
- (9-1) $\psi_{9,1} = [\omega_2] + 1 + \lambda + \mu > \psi_{4,1}$.

As a result, $\psi_{4,1}$, $\psi_{5,1}$, $\psi_{1,1}$ and $1+2\lambda+\mu$ remain. Moreover, If $[\omega_2] \geq 2$, then we have $\theta_g \neq 1+2\lambda+\mu$. The case $[\omega_2]=1$. Since $\phi_4=\psi_{1,1}=[\omega_2]-1+\lambda=\lambda<1$, we have $\theta_g \neq \psi_{1,1}$. If $\lambda+\mu<0$, then we have $\phi_2=1+\lambda+\mu<1$. If $\lambda+\mu>0$, then we have $1+2\lambda+\mu\neq\theta_g$, because $1+2\lambda+\mu=1+\lambda+(\lambda+\mu)>1+\lambda=\psi_{4,1}$.

(2) We assume that $F(\phi_1) > 1$, $F(\phi_6) < 1$.

We note that by Lemma 4.5,(10), we have $c_2 = [\omega_2] - \omega_2 < -1/2$. So by Lemma 4.5,(12), we have $[2\omega_2] = 2[\omega_2] + 1$.

(a) In the case of $\psi_{1,y}$, based on Table 1,

- (1-1) from $\psi_{1,1} = \psi_{8,1} 2$ and $F(\psi_{8,1}) < 1$, we have $F(\psi_{1,1}) > 1$.
- (1-2) $\psi_{1,2} = [2\omega_2] 1 + 2\lambda + \mu = 2[\omega_2] + 2\lambda + \mu$. If such a $\psi_{1,2}$ exist, then by $[2\omega_1] = 1$, we have $c_1 < -1/2 (\Leftrightarrow [2\omega_1] = 1)$.
 - (i) The case $[\omega_2] \geq 2$. We have $\psi_{1,2} > \psi_{8,1}$.
 - (ii) The case $[\omega_2] = 1$. $\psi_{1,2} = 2 + 2\lambda + \mu > 2 + \lambda + \mu = \psi_{9,1}$.

From Lemma 4.5,(11), we have $F(\psi_{9,1}) < F(\psi_{8,1})$. So we have $F(\psi_{9,1}) < 1$. Therefore, $\psi_{1,2} = 2 + 2\lambda + \mu \neq \theta_g$.

- (1-3) (i) The case $d \ge 2$. We have $\psi_{1,d+1} \ge [3\omega_2] 1 + 3\lambda + \mu \ge [2\omega_2] + [\omega_2] 1 + 3\lambda + \mu = 3[\omega_2] + 3\lambda + \mu > \psi_{8,1}$.
- (ii) The case d = 1. Since $d = 1 \Leftrightarrow [2\omega_1] = 1$, this case is just the same as (1-2).
- $(1-4) \ \psi_{1,2d+1} \ge [3\omega_2] 1 + 3\lambda + 2\mu \ge [2\omega_2] + [\omega_2] 1 + 3\lambda + 2\mu = 3[\omega_2] + 3\lambda + 2\mu > \psi_{8,1}.$
 - (b) In the case of $\psi_{3,\nu}$, based on Table 3,
 - (3-1) by Lemma 4.5,(4) $\phi_3 = \psi_{3,1} \neq \theta_g$.
 - (c) In the case of $\psi_{4,\nu}$, based on Table 4,
 - (4-1) $F(\psi_{4,1}) > 1$.
 - (4-2) $\psi_{4,2} = [2\omega_2] + 2\lambda + \mu = 2[\omega_2] + 1 + 2\lambda + \mu > \psi_{8,1}$.
 - $(4-3) \ \psi_{4,d+1} \ge [2\omega_2] + 2\lambda + \mu > \psi_{8,1}.$
 - (d) In the case of $\psi_{5,\nu}$, based on Table 5,
 - (5-1) $\psi_{5,1} = [\omega_2] + \lambda + \mu$.
 - (5-2) $\psi_{5,2} = [2\omega_2] + 2\lambda + \mu = 2[\omega_2] + 1 + 2\lambda + \mu > \psi_{8,1}$.
 - (5-3) $d \ge 2 \Rightarrow \psi_{5,d} \ge [2\omega_2] + 2\lambda + \mu > \psi_{8,1}$.

The case d = 1 is just the same as (5-1).

- (5-5) Similar to (5-3).
- (e) In the case of $\psi_{8,\nu}$, based on Table 8,
- (8-1) $F(\psi_{8,1}) < 1$.
- (f) In the case of $\psi_{9,\nu}$, based on Table 9,
- (9-1) $\psi_{9,1} = [\omega_2] + 1 + \lambda + \mu$.

As a result, $\psi_{8,1}, \psi_{5,1}$ and $\psi_{9,1}$ remain.

Theorem 6.1B. Let $\mathcal{R} = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that $0 < \lambda < 1, \ 0 < X_{\mu} < X_{\lambda}, \ 0 < \omega_{1}(\lambda, \mu) < 1, \ \omega_{2}(\lambda, \mu) > 0, a > 1, \ 2|b| < 1, \ 0 < \mu < 1, \ \phi_{1} < 1, \ F(\phi_{6}) < 1, \ where \ a = F(\mu), \ b = Y_{\mu}.$ Then

- (1) If $F(\phi_2) < 1$, then the minimal point adjacent to 1 is ϕ_2 .
- (2) If $\phi_2 > 1$, $F(\phi_2) > 1$, then the minimal point adjacent to 1 is ϕ_6 .
- (3) If $\phi_2 < 1$:
- (i) if b < 0, then the minimal point adjacent to 1 is ϕ_6 ;

- (ii-a) if b>0, $2\lambda+\mu<1$, then the minimal point adjacent to 1 is ϕ_6 or ϕ_{10} ,
- (ii-b) if b>0, $2\lambda+\mu>1$, then the minimal point adjacent to 1 is ϕ_6 or ϕ_9 .

PROOF. From the assumption $\phi_1 < 1$, by Lemma 5.2,(1), we have $Y_{\lambda} < -1/2$. By Corollary 5.3, if b < 0, then we have $1 > \omega_2 > 1/2$.

- (1) We assume that $F(\psi_{5,1}) < 1$. Since \mathcal{R} is a reduced lattice, we have $\psi_{5,1} = [\omega_2] + \lambda + ([\omega_1] + 1)\mu = \lambda + \mu > 1$.
- By Lemma 4.5,(1)(2) and Remark 4.4,(1) we have $\theta_g \in \{\psi_{1,y}, \psi_{2,y}, \psi_{3,y}, \psi_{4,y}, \psi_{7,y}, \psi_{5,1}\}$.
 - (i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,v}, \psi_{3,v}, \psi_{4,v}, \psi_{5,1}\}$.
 - (a) In the case of $\psi_{1,\nu}$, based on Table 1,
 - (1-2) since $[2\omega_2] = 1$, we have $\psi_{1,2} = 2\lambda + \mu > \psi_{8,1} > \psi_{5,1}$.
- $(1-3) \ [(d+1)\omega_2] \ge 2 \Rightarrow \psi_{1,d+1} > \psi_{8,1} > \psi_{5,1}. \qquad [(d+1)\omega_2] = 1 \Rightarrow \psi_{1,d+1} = (d+1)\lambda + \mu \Rightarrow Y_{\psi_{1,d+1}} = (d+1)Y_{\lambda} + Y_{\mu} < -1.$
- $(1-4) \ [(2d+1)\omega_2] \ge 2 \Rightarrow \psi_{1,2d+1} > \psi_{8,1} > \psi_{5,1}. \ [(2d+1)\omega_2] = 1 \Rightarrow \psi_{1,2d+1} = (2d+1)\lambda + 2\mu > \psi_{8,1} > \psi_{5,1}.$
- (1-5) from $[(3d+2)\omega_2] \ge 2$, we have $\psi_{1,3d+2} \ge 1 + (3d+2)\lambda + 3\mu > \psi_{8,1} > \psi_{5,1}$.
 - (b) In the case of $\psi_{3,\nu}$, based on Table 3,
 - (3-2) $\psi_{3,3d+2} > \psi_{8,1} > \psi_{5,1}$.
 - (c) In the case of $\psi_{4,\nu}$, based on Table 4,
 - (4-2) since $[2\omega_2] = 1$, we have $\psi_{4,2} = 1 + 2\lambda + \mu > \psi_{8,1} > \psi_{5,1}$.
 - (4-3) $\psi_{4,d+1} > \psi_{8,1} > \psi_{5,1}$.
 - $(4-4) \ \psi_{4,2d+1} > \psi_{8,1} > \psi_{5,1}$
 - (4-5) $\psi_{4,3d+2} > \psi_{8,1} > \psi_{5,1}$.
 - (ii) The case b > 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{2,v}, \psi_{4,v}, \psi_{7,v}, \psi_{5,1}\}$.
 - (a) In the case of $\psi_{2,\nu}$, based on Table 2,
 - (2-1) $\psi_{2,1} = -1 + \lambda + \mu < 1$.
- (2-2) $[2\omega_2] = 0 \Rightarrow \psi_{2,2} = -1 + 2\lambda + \mu \Rightarrow Y_{\psi_{2,2}} = -1 + 2Y_{\lambda} + Y_{\mu} < -1$. $[2\omega_2] = 1 \Rightarrow \psi_{2,2} = 2\lambda + \mu > \psi_{8,1} > \psi_{5,1}$.
- $\begin{array}{ll} (2\text{-}3) \ [d\omega_2] \geq 2 \Rightarrow \psi_{2,d} > \psi_{8,1} > \psi_{5,1}. & [d\omega_2] = 1 \Rightarrow \text{Since} \quad d \geq 2, \quad \psi_{2,d} = \\ d\lambda + \mu > \psi_{8,1} > \psi_{5,1}. & [d\omega_2] = 0 \Rightarrow \psi_{2,d} = -1 + d\lambda + \mu \Rightarrow Y_{\psi_{2,d}} = -1 + dY_{\lambda} + Y_{\mu} < -1. \end{array}$
- $\begin{array}{l} (2\text{-}4) \ [(2d+1)\omega_2] \geq 2 \Rightarrow \psi_{2,2d+1} > \psi_{8,1} > \psi_{5,1}. \ [(2d+1)\omega_2] = 1 \Rightarrow \psi_{2,2d+1} = \\ (2d+1)\lambda + 2\mu > \psi_{8,1} > \psi_{5,1}. \ \ [(2d+1)\omega_2] = 0 \Rightarrow \psi_{2,2d+1} = -1 + (2d+1)\lambda + 2\mu \\ \Rightarrow Y_{\psi_{2,2d+1}} = -1 + (2d+1)Y_{\lambda} + 2Y_{\mu} < -1. \end{array}$

- (2-5) Similar to (2-3).
- $(2-6) \ [(3d+2)\omega_2] \ge 2 \Rightarrow \psi_{2,3d+2} > \psi_{8,1} > \psi_{5,1}. \ [(3d+2)\omega_2] = 1 \Rightarrow \psi_{2,3d+2} = (3d+2)\lambda + 3\mu > \psi_{8,1} > \psi_{5,1}. \ [(3d+2)\omega_2] = 0 \Rightarrow \psi_{2,3d+2} = -1 + (3d+2)\lambda + 3\mu \Rightarrow Y_{\psi_{2,3d+2}} = -1 + (3d+2)Y_{\lambda} + 3Y_{\mu} < -1.$
 - (b) In the case of $\psi_{4,\nu}$, based on Table 4,
- (4-2) $[2\omega_2] = 0 \Rightarrow \psi_{4,2} = 2\lambda + \mu > \psi_{8,1} > \psi_{5,1}$. $[2\omega_2] = 1 \Rightarrow \psi_{4,2} = 1 + 2\lambda + \mu > \psi_{8,1} > \psi_{5,1}$.
 - (4-3) $\psi_{4,d+1} > \psi_{8,1} > \psi_{5,1}$.
 - $(4-4) \ \psi_{4,2d+1} > \psi_{8,1} > \psi_{5,1}.$
 - (4-5) $\psi_{4,3d+2} > \psi_{8,1} > \psi_{5,1}$.
 - (c) In the case of $\psi_{7,y}$, based on Table 7,
 - (7-1) by Lemma 4.5,(5) $\psi_{7,1} \neq \theta_g$.

As a result, $\psi_{5,1}$ remains.

- (2) We assume that $\psi_{5,1} = \lambda + \mu > 1$, $F(\psi_{5,1}) > 1$.
- By Lemma 4.5,(1)(2) and Remark 4.4,(1) we have $\theta_g \in \{\psi_{1,y}, \psi_{2,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{6,y}, \psi_{7,y}, \psi_{8,1}\}$.
- (i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{8,1}\}$.
- (a) In the case of $\psi_{1,y}$, based on Table 1, similar to (1).
- (b) In the case of $\psi_{3,y}$, based on Table 3, similar to (1).
- (c) In the case of $\psi_{4,y}$, based on Table 4, similar to (1).
 - (d) In the case of $\psi_{5,\nu}$, based on Table 5,
 - (5-1) from the assumption, $F(\psi_{5,1}) > 1$.
 - (5-2) $\psi_{5,2} > \phi_6$. (5-3) $\psi_{5,d} > \phi_6 (d \ge 2)$.
 - (5-4) $\psi_{5,2d+1} > \phi_6$. (5-5) $\psi_{5,d-1} > \phi_6(d \ge 3)$.

As a result, $\psi_{8,1}$ remains.

- (ii) The case b > 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{2,y}, \psi_{4,y}, \psi_{5,y}, \psi_{6,y}, \psi_{7,y}, \psi_{8,1}\}$.
- (a) In the case of $\psi_{2,y}$, based on Table 2, similar to (1).
- (b) In the case of $\psi_{4,y}$, based on Table 4, similar to (1).
 - (c) In the case of $\psi_{5,y}$, based on Table 5,
 - (5-1) from the assumption, $F(\psi_{5,1}) > 1$.
 - (5-2) $\psi_{5,2} > \phi_6$. (5-3) $\psi_{5,d} > \phi_6 (d \ge 2)$.

- (5-4) $\psi_{5,2d+1} > \phi_6$. (5-5) $\psi_{5,d-1} > \phi_6(d \ge 3)$.
- (d) In the case of $\psi_{6,y}$, based on Table 6, no case included
- (e) In the case of $\psi_{7,y}$, based on Table 7, similar to (1).

As a result, $\psi_{8,1}$ remains.

- (3) We assume that $\psi_{5,1} < 1$.
- By Lemma 4.5,(1)(2) and Remark 4.4,(1) we have $\theta_g \in \{\psi_{1,y}, \psi_{2,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{6,y}, \psi_{7,y}, \psi_{8,1}\}$.
- (i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{8,1}\}$.
 - (a) In the case of $\psi_{1,\nu}$, based on Table 1,
 - (1-2) $\psi_{1,2} = 2\lambda + \mu$, $Y_{\psi_1} = 2Y_{\lambda} + Y_{\mu} < -1$.
- (1-3) The case $d \ge 3$. $\psi_{1,d+1} > 1 + 4\lambda + \mu > \phi_6$. The case d = 2. $\psi_{1,d+1} = [3\omega_2] 1 + 3\lambda + \mu$. $[3\omega_2] = 2 \Rightarrow \psi_{1,d+1} = 1 + 3\lambda + \mu > \phi_6$. $[3\omega_2] = 1 \Rightarrow \psi_{1,d+1} = 3\lambda + \mu$. $Y_{\psi_{1,d+1}} = 3Y_{\lambda} + Y_{\mu} < -1$.
 - (1-4) The case $d \ge 2$. $\psi_{1,2d+1} > \phi_6$.

The case d=1. $\psi_{1,2d+1}=[3\omega_2]-1+3\lambda+2\mu$. $[3\omega_2]=2\Rightarrow \psi_{1,2d+1}=1+3\lambda+2\mu>\phi_6$. $[3\omega_2]=1\Rightarrow \psi_{1,2d+1}=3\lambda+2\mu$. $Y_{\psi_{1,2d+1}}=3Y_{\lambda}+2Y_{\mu}<-1$.

- (1-5) $\psi_{1,3d+2} > \phi_6$.
- (b) In the case of $\psi_{3,\nu}$, based on Table 3,
- $(3-2) \psi_{3,3d+2} > \phi_6.$
- (c) In the case of $\psi_{4,y}$, based on Table 4,
- $(4-2) \ \psi_{4,2} > \phi_6. \ (4-3) \ \psi_{4,d+1} > \phi_6. \ (4-4) \ \psi_{4,2d+1} > \phi_6. \ (4-5) \ \psi_{4,3d+2} > \phi_6.$
- (d) In the case of $\psi_{5,\nu}$, based on Table 5,
- (5-1) from the assumption, $\psi_{5,1} < 1$. (5-2) $\psi_{5,2} > \phi_6$.
- (5-3) $\psi_{5,d} > \phi_6(d \ge 2)$. (5-4) $\psi_{5,2d+1} > \phi_6$. (5-5) $\psi_{5,d-1} > \phi_6(d \ge 3)$.

As a result, $\psi_{8,1}$ remains.

- (ii) The case b > 0. by Lemma 4.5,(3), we have $\theta_g \in \{\psi_{2,y}, \psi_{4,y}, \psi_{5,y}, \psi_{6,y}, \psi_{7,y}, \psi_{8,1}\}$.
 - (a) In the case of $\psi_{2,\nu}$, based on Table 2,
 - (2-1) $\psi_{2,1} = -1 + \lambda + \mu < 1$.
 - $(2-2) [2\omega_2] = 0 \Rightarrow \psi_{2,2} = -1 + 2\lambda + \mu < \lambda < 1. [2\omega_2] = 1 \Rightarrow \psi_{2,2} = 2\lambda + \mu.$
 - (2-3) The case $[d\omega_2] \ge 2$. $\psi_{2,d} > \psi_{8,1} > \psi_{5,1}$.

The case $[d\omega_2]=1$. We have $d\geq 2\Rightarrow \psi_{2,d}=d\lambda+\mu$. If $d\geq 3$, then we have $Y_{\psi_{2,d}}=dY_\lambda+Y_\mu<-1$. Hence, only when d=2, it is possible to have $\theta_g=\psi_{2,d}=\psi_{2,2}=2\lambda+\mu$. The case $[d\omega_2]=0$. $\psi_{2,d}=-1+d\lambda+\mu$. $Y_{\psi_{2,d}}=-1+dY_\lambda+Y_\mu<-1$.

- $\begin{array}{l} (2\text{-}4) \ \ \text{The case} \ \ [(2d+1)\omega_2] \geq 2. \ \ \psi_{2,2d+1} > \psi_{8,1}. \ \ \text{The case} \ \ [(2d+1)\omega_2] = 1. \\ \psi_{2,2d+1} = (2d+1)\lambda + 2\mu. \ \ \text{If} \ \ d \geq 2, \ \ \text{then we have} \ \ Y_{\psi_{2,2d+1}} = (2d+1)Y_{\lambda} + 2Y_{\mu} \\ < -1. \ \ \text{Hence, only when} \ \ d = 1, \ \ \text{it is possible to have} \ \ \theta_g = \psi_{2,3} = 3\lambda + 2\mu. \\ \text{The case} \ \ \ [(2d+1)\omega_2] = 0. \ \ \psi_{2,2d+1} = -1 + (2d+1)\lambda + 2\mu. \ \ \ Y_{\psi_{2,2d+1}} = -1 + (2d+1)Y_{\lambda} + 2Y_{\mu} < -1. \end{array}$
 - (2-5) Similar to (2-3).
- (2-6) The case $[(3d+2)\omega_2] \ge 2$. $\psi_{2,3d+2} > \psi_{8,1}$. The case $[(3d+2)\omega_2] = 1$. $\psi_{2,3d+2} = (3d+2)\lambda + 3\mu$. $Y_{\psi_{2,3d+2}} = (3d+2)Y_{\lambda} + 3Y_{\mu} < -1$. The case $[(3d+2)\omega_2] = 0$. $\psi_{2,3d+2} = -1 + (3d+2)\lambda + 3\mu$. $Y_{\psi_{2,3d+2}} = -1 + (3d+2)Y_{\lambda} + 3Y_{\mu} < -1$.
 - (b) In the case of $\psi_{4,\nu}$, based on Table 4,
 - $(4-2) [2\omega_2] = 0 \Rightarrow \psi_{4,2} = 2\lambda + \mu. [2\omega_2] = 1 \Rightarrow \psi_{4,2} = 1 + 2\lambda + \mu > \psi_{8,1}.$
- (4-3) The case $[(d+1)\omega_2] \ge 1$. $\psi_{4,d+1} > \psi_{8,1}$. The case $[(d+1)\omega_2] = 0$. $\psi_{4,d+1} = (d+1)\lambda + \mu$. If $d \ge 2$, then we have $Y_{\psi_{4,d+1}} = (d+1)Y_{\lambda} + Y_{\mu} < -1$. Hence, only when d=1, it is possible to have $\theta_g = \psi_{4,2} = 2\lambda + \mu$.
- (4-4) The case $[(2d+1)\omega_2] \ge 1$. $\psi_{4,2d+1} > \psi_{8,1}$. The case $[(2d+1)\omega_2] = 0$. $\psi_{4,2d+1} = (2d+1)\lambda + 2\mu$. If $d \ge 2$, then we have $Y_{\psi_{4,2d+1}} = (2d+1)Y_{\lambda} + 2Y_{\mu} < -1$. Hence, only when d=1, it is possible to have $\theta_g = \psi_{4,3} = 3\lambda + 2\mu$.
- $(4-5) \ [(3d+2)\omega_2] \geq 1 \Rightarrow \psi_{4,3d+2} > \psi_{8,1}. \ [(3d+2)\omega_2] = 0 \Rightarrow \psi_{4,3d+2} = (3d+2)\lambda \\ + 3\mu. \ Y_{\psi_{4,3d+2}} = (3d+2)Y_{\lambda} + 3Y_{\mu} < -1.$
 - (c) In the case of $\psi_{5,\nu}$, based on Table 5,
 - (5-1) from the assumption, $F(\psi_{5,1}) > 1$.
 - $(5\text{-}2)\ [2\omega_2] = 0 \Rightarrow \psi_{5,2} = 2\lambda + \mu.\ [2\omega_2] = 1 \Rightarrow \psi_{5,2} = 1 + 2\lambda + \mu > \psi_{8,1}.$
 - (5-3) The case $[d\omega_2] \ge 1$. $\psi_{5,d} > \psi_{8,1}$.

The case $[d\omega_2]=0$. $\psi_{5,d}=d\lambda+\mu$. If $d\geq 3$, then we have $Y_{\psi_{5,d}}=dY_{\lambda}+Y_{\mu}<-1$. Hence, only when d=2, it is possible to have $\theta_g=\psi_{5,2}=2\lambda+\mu$.

- (5-4) The case $[(2d+1)\omega_2] \ge 1$. $\psi_{5,2d+1} > \psi_{8,1}$. The case $[(2d+1)\omega_2] = 0$. $\psi_{5,2d+1} = (2d+1)\lambda + 2\mu$. If $d \ge 2$, then we have $Y_{\psi_{5,2d+1}} = (2d+1)Y_{\lambda} + 2Y_{\mu} < -1$. Hence, only when d=1, it is possible to have $\theta_g = \psi_{5,3} = 3\lambda + 2\mu$.
- (5-5) The case $[(d-1)\omega_2] \ge 1$. $\psi_{5,d-1} > \psi_{8,1}$. The case $[(d-1)\omega_2] = 0$. $\psi_{5,d-1} = (d-1)\lambda + \mu$. If $d \ge 4$, then we have $Y_{\psi_{5,d-1}} = (d-1)Y_{\lambda} + Y_{\mu} < -1$. Hence, only when d = 3, it is possible to have $\theta_g = \psi_{5,2} = 2\lambda + \mu$.
- (d) In the case of $\psi_{6,y}$ based on Table 6, no case included
 - (e) In the case of $\psi_{7,y}$, based on Table 7,
 - (7-1) By Lemma 4.5,(5) $\psi_{7,1} \neq \theta_g$.

As a result, $2\lambda + \mu$, $3\lambda + 2\mu$ and $\psi_{8,1}$ remain. If $2\lambda + \mu < 1$, then we have

 $2\lambda + \mu \neq \theta_g$. If $2\lambda + \mu > 1$, then we have $3\lambda + 2\mu \neq \theta_g$, because $3\lambda + 2\mu = (2\lambda + \mu) + \lambda + \mu > 1 + \lambda = \psi_{8,1}$.

THEOREM 6.2B. Let $\Re = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that $0 < \lambda < 1, \ 0 < X_{\mu} < X_{\lambda}, \ 0 < \omega_1(\lambda, \mu) < 1, \ \omega_2(\lambda, \mu) > 0, \ a > 1, \ 2|b| < 1, \ \mu > 1,$ $\phi_1 < 1, \ F(\phi_6) < 1, \ where \ a = F(\mu), \ b = Y_{\mu}$. Then the minimal point adjacent to 1 is ϕ_6 .

PROOF. From the assumption $\phi_1 < 1$, by Lemma 5.2,(1), we have $Y_{\lambda} < -1/2$. By Corollary 5.3, if b < 0, then we have $\omega_2 > 1/2$.

By Lemma 4.5,(1)(2) and Remark 4.4,(2) we have $\theta_g \in \{\psi_{1,y}, \psi_{2,y}, \psi_{3,y}, \psi_{4,y}, \psi_{7,y}, \psi_{8,1}\}$.

- (i) The case b < 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,v}, \psi_{3,v}, \psi_{4,v}, \psi_{8,1}\}$.
- (a) In the case of $\psi_{1,\nu}$, based on Table 1,
- (1-1) from $\psi_{1,1} = \psi_{8,1} 2$ and $F(\psi_{8,1}) < 1$, we have $F(\psi_{1,1}) > 1$.
- (1-2) $\psi_{1,2} = 2\lambda + \mu > \psi_{8,1}$. (1-3) $\psi_{1,d+1} > \psi_{8,1}$.
- (1-4) $\psi_{1,2d+1} > \psi_{8,1}$. (1-5) $\psi_{1,3d+2} > \psi_{8,1}$.
- (b) In the case of $\psi_{3,\nu}$, based on Table 3,
- (3-2) $\psi_{3,3d+2} > \psi_{8,1}$.
- (c) In the case of $\psi_{4,v}$, based on Table 4,
- (4-2) $\psi_{4,2} > \psi_{8,1}$. (4-3) $\psi_{4,3} > \psi_{8,1}$.
- (4-4) $\psi_{4,2d+1} > \psi_{8,1}$. (4-5) $\psi_{4,3d+2} > \psi_{8,1}$.

As a result $\psi_{8,1}$ remains.

- (ii) The case b > 0. By Lemma 4.5,(3), we have $\theta_g \in \{\psi_{2,v}, \psi_{4,v}, \psi_{7,v}, \psi_{8,1}\}$.
- (a) In the case of $\psi_{2,\nu}$, based on Table 2,
- (2-1) $\psi_{2,1} = -1 + \lambda + \mu$. $Y_{\psi_{2,1}} = -1 + Y_{\lambda} + Y_{\mu} < -1$.
- (2-2) $\psi_{2,2} = [2\omega_2] 1 + 2\lambda + \mu$. $[2\omega_2] = 0 \Rightarrow \psi_{2,2} = -1 + 2\lambda + \mu$. $Y_{\psi_{2,2}} = -1 + 2Y_{\lambda} + Y_{\mu} < -1$. $[2\omega_2] = 1 \Rightarrow \psi_{2,2} = 2\lambda + \mu > \psi_{8,1}$.
- $(2-3) \ [d\omega_2] \ge 1 \Rightarrow \psi_{2,d} = [d\omega_2] 1 + d\lambda + \mu > \psi_{8,1}. \qquad [d\omega_2] = 0 \Rightarrow \psi_{2,d} = 0$
- $-1 + d\lambda + \mu$. $Y_{\psi_{2,d}} = -1 + dY_{\lambda} + Y_{\mu} < -1$.
 - (2-4) $\psi_{2,2d+1} > \psi_{8,1}$. (2-5) Similar to (2-3).
 - $(2-6) \ \psi_{2,3d+2} > \psi_{8,1}.$
 - (b) In the case of ψ_4 , based on Table 4,
 - (4-2) $\psi_{4,2} > \psi_{8,1}$. (4-3) $\psi_{4,d+1} > \psi_{8,1}$.
 - $(4-4) \ \psi_{4,2d+1} > \psi_{8,1}. \ (4-5) \ \psi_{4,3d+2} > \psi_{8,1}.$
 - (c) In the case of $\psi_{7,v}$, based on Table 7,

$$\psi_{7,1} = 1 + \lambda - \mu < \lambda < 1.$$

As a result, $\psi_{8,1}$ remains.

Theorem 6.3B. Let $\Re = \langle 1, \lambda, \mu \rangle$ be a reduced lattice of K such that $0 < \lambda < 1, \ 0 < X_{\mu} < X_{\lambda}, \ 0 < \omega_{1}(\lambda, \mu) < 1, \ \omega_{2}(\lambda, \mu) > 0, \ a > 1, \ 2|b| < 1, \ \mu < 0, \ \phi_{1} < 1, \ F(\phi_{6}) < 1, \ where \ a = F(\mu), \ b = Y_{\mu}.$ Then

- (1) If $F(\phi_8) < 1$, then the minimal point adjacent to 1 is ϕ_8 .
- (2) If $F(\phi_8) > 1$:
- (i) if $2\lambda + \mu < 0$, then the minimal point adjacent to 1 is ϕ_6 or $\phi_6 + \phi_9$;
- (ii) if $2\lambda + \mu > 0$, then the minimal point adjacent to 1 is ϕ_6 or $1 + \phi_9$.

PROOF. From the assumption $\phi_1 < 1$, by Lemma 5.2,(1), we have $Y_{\lambda} < -1/2$. Since $\mu < 0$ and $0 < X_{\mu}$, we have b < 0. By Corollary 5.3, we have $\omega_2 > 1/2$. From Table 10 and Lemma 4.5,(3), we have $\theta_g \in \{\psi_{1,y}, \psi_{3,y}, \psi_{4,y}, \psi_{5,y}, \psi_{8,y}, \psi_{9,y}\}$.

- (a) In the case of $\psi_{1,\nu}$, based on Table 1,
- (1-2) $\psi_{1,2} = 2\lambda + \mu$. $Y_{\psi_{1,2}} = 2Y_{\lambda} + Y_{\mu} < -1$.
- *(1-3) $d \ge 5 \Rightarrow \psi_{1,d+1} \ge [6\omega_2] 1 + 6\lambda + \mu \ge 2 + 6\lambda + \mu > \psi_{8,1}.$ $d = 1 \Rightarrow \psi_{1,d+1} = 2\lambda + \mu.$ $Y_{\psi_{1,d+1}} = 2Y_{\lambda} + Y_{\mu} < -1.$

Hence, only when $2 \le d \le 4$, it is possible to have $\theta_g = \psi_{1,d+1}$.

*(1-4)
$$d \ge 3 \Rightarrow \psi_{1,2d+1} \ge [7\omega_2] - 1 + 7\lambda + 2\mu \ge 2 + 7\lambda + 2\mu > \psi_{8,1}$$
.

Hence, only when $1 \le d \le 2$, it is possible to have $\theta_g = \psi_{1,2d+1}$.

*(1-5)
$$d \ge 2 \Rightarrow \psi_{1,3d+2} \ge [8\omega_2] - 1 + 8\lambda + 3\mu \ge 3 + 8\lambda + 3\mu > \psi_{8,1}$$
.

Hence, only when d=1, it is possible to have $\theta_q=\psi_{1,2d+1}=\psi_{1,5}$.

- (b) In the case of $\psi_{3,y}$, based on Table 3,
- (3-1) By Lemma 4.5,(4), $\phi_3 = \psi_{3,1} \neq \theta_g$.
- *(3-2) $d \ge 2 \Rightarrow \psi_{3,3d+2} > \psi_{8,1}$. Hence, only when d = 1, it is possible to have $\theta_g = \psi_{3,3d+2} = \psi_{3,5}$.
 - (c) In the case of $\psi_{4,\nu}$, based on Table 4,
 - *(4-2) $\psi_{4,2} = 1 + 2\lambda + \mu$.
 - *(4-3) $d \ge 3 \Rightarrow \psi_{4,d+1} \ge [4\omega_2] + 4\lambda + \mu \ge 2 + 4\lambda + \mu > \psi_{8,1}$.

Hence, only when $1 \le d \le 2$, it is possible to have $\theta_g = \psi_{4,d+1}$.

*(4-4)
$$d \ge 2 \Rightarrow \psi_{4,2d+1} \ge [5\omega_2] + 5\lambda + 2\mu \ge 2 + 5\lambda + 2\mu > \psi_{8,1}$$
.

Hence, only when d = 1, it is possible to have $\theta_g = \psi_{4,2d+1}$.

*
$$(4-5)$$
 $d \ge 2 \Rightarrow \psi_{4,3d+2} \ge [8\omega_2] + 8\lambda + 3\mu \ge 4 + 8\lambda + 3\mu > \psi_{8,1}$.

Hence, only when d=1, it is possible to have $\theta_g = \psi_{4,3d+2}$.

- (d) In the case of $\psi_{5,\nu}$, based on Table 5,
- *(5-2) $\psi_{5,2} = 1 + 2\lambda + \mu$.
- *(5-3) $d \ge 4 \Rightarrow \psi_{5,d} \ge [4\omega_2] + 4\lambda + \mu \ge 2 + 4\lambda + \mu > \psi_{8,1}$. $d = 1 \Rightarrow \psi_{5,d} = \lambda + \mu < 1$.

Hence, only when $2 \le d \le 3$, it is possible to have $\theta_g = \psi_{5,d}$.

*(5-4)
$$d \ge 2 \Rightarrow \psi_{5,2d+1} \ge [5\omega_2] + 5\lambda + 2\mu \ge 2 + 5\lambda + 2\mu > \psi_{8,1}$$
.

Hence, only when d=1, it is possible to have $\theta_g=\psi_{5,2d+1}$.

*(5-5) $d \ge 5 \Rightarrow \psi_{5,d-1} \ge [4\omega_2] + 4\lambda + \mu \ge 2 + 4\lambda + \mu > \psi_{8,1}$. $d = 2 \Rightarrow \psi_{5,d} = \lambda + \mu < 1$.

Hence, only when $3 \le d \le 4$, it is possible to have $\theta_g = \psi_{5,d-1}$.

*(5-6)
$$d \ge 2 \Rightarrow \psi_{5,3d+2} \ge [8\omega_2] + 8\lambda + 3\mu \ge 4 + 8\lambda + 3\mu > \psi_{8,1}$$
.

Hence, only when d=1, it is possible to have $\theta_q = \psi_{5,3d+2}$.

- (e) In the case of $\psi_{8,\nu}$, based on Table 8,
- *(8-1) From the assumption, $F(\psi_{8,1}) < 1$.
- (f) In the case of $\psi_{9,\nu}$, based on Table 9,

*(9-1)
$$\psi_{9,1} = [\omega_2] + 1 + \lambda + \mu$$
.

From described above, we shall select all the elements in each part with asterisk (*), using $1 \le [3\omega_2] \le 2$, $2 \le [4\omega_2] \le 3$, $2 \le [5\omega_2] \le 4$. Then we have the following set

$$\{1 + \lambda, 1 + \lambda + \mu, 1 + 2\lambda + \mu, j + 3\lambda + \mu(0 \le j \le 2),$$

$$j + 3\lambda + 2\mu(0 \le j \le 2), j + 4\lambda + \mu(1 \le j \le 2), j + 5\lambda + \mu(1 \le j \le 3),$$

$$j + 5\lambda + 2\mu(1 \le j \le 3), j + 5\lambda + 3\mu(1 \le j \le 4)\} = \Sigma.$$

Here, we eliminate elements $\psi \in \Sigma$ such that $\psi > \phi_6$ or $Y_{\psi} < -1$. Then we have

$$\Sigma' = \{1 + \lambda, 1 + \lambda + \mu, 1 + 2\lambda + \mu, 1 + 3\lambda + \mu, 1 + 3\lambda + 2\mu, 2 + 5\lambda + 3\mu\}.$$

- (1) We assume that $F(\phi_8) < 1$. Since \mathscr{R} is a reduced lattice, we have $\phi_8 = \psi_{9,1} = 1 + \lambda + \mu > 1$. Hence, we have $\lambda + \mu > 0$. From this, we have $1 + \lambda + \mu < 1 + 2\lambda + \mu$, $1 + 3\lambda + \mu$, $1 + 3\lambda + 2\mu$, $2 + 5\lambda + 3\mu$. Therefore we conclude that $\theta_g = \phi_8 = 1 + \lambda + \mu$ because $\phi_8 < \phi_6 = 1 + \lambda$.
- (2) We assume that $F(\phi_8) > 1$. We note that $d(\lambda, \mu) = 1 \Leftrightarrow 1/2 < \omega_1$. Hence, if d = 1, then by Lemma 4.5,(11), we have $F(\phi_8) < 1$. Therefore we have $d \ge 2$. So we have $\theta_q \ne 1 + 3\lambda + 2\mu$, $2 + 5\lambda + 3\mu$.
 - (i) The case $2\lambda + \mu < 0$. We have $\theta_g = 1 + \lambda$ or $1 + 3\lambda + \mu$.
 - (ii) The case $2\lambda + \mu > 0$. We have $\theta_q = 1 + \lambda$ or $1 + 2\lambda + \mu$.

7. Examples

Voronoi-algorithm:

Let K be a cubic algebraic number field of negative discriminant and let \mathcal{R} be a reduced lattice of K. We define the increasing chain of the minimal points

of \mathcal{R} by:

$$\theta_0 = 1$$
, $\theta_{k+1} = \min\{\gamma \in \mathcal{R}; \theta_k < \gamma, F(\theta_k) > F(\gamma)\}$ if $k \ge 0$.

Then θ_{k+1} is the minimal point adjacent to θ_k in \mathcal{R} .

Let \mathcal{O}_K be the ring of integers in K and $\mathcal{R} = \mathcal{O}_K$. By Voronoi we know that the previous chain is of purely periodic form:

$$1 = \theta_0, \ \theta_1, \dots, \theta_{\ell-1}, \ \epsilon, \ \epsilon \theta_1, \dots, \epsilon \theta_{\ell-1}, \dots,$$

where ℓ denotes the period length and $\epsilon(>1)$ is the fundamental unit of \mathcal{O}_K . To calculate such a sequence, it is sufficient to know how to find the minimal point adjacent to 1 in a lattice \mathcal{R} .

Indeed, let $\theta_g^{(1)}$ be the minimal point adjacent to 1 in $\mathcal{R}_1 = \mathcal{O}_K = \langle 1, \beta, \gamma \rangle$ and $\theta_1 = \theta_a^{(1)}$.

- (i) We choose an appropriate point $\theta_h^{(1)}$ so that $\{1, \theta_q^{(1)}, \theta_h^{(1)}\}$ is a basis of \mathcal{R}_1 .
- (ii) Let $\mathscr{R}_2 = \frac{1}{\theta_g^{(1)}} \mathscr{R}_1$, then \mathscr{R}_2 is a reduced lattice. $\theta_g^{(2)}$ is the minimal point adjacent to 1 in $\mathscr{R}_2 = \frac{1}{\theta_g^{(1)}} \mathscr{R}_1 = \langle 1, 1/\theta_g^{(1)}, \theta_h^{(1)}/\theta_g^{(1)} \rangle$, is equivalent to $\theta_2 = \theta_1 \theta_g^{(2)} = \theta_g^{(1)} \theta_g^{(2)}$ being the minimal point adjacent to θ_1 in \mathscr{R}_1 .

This process can be continued by induction.

Example 7.1. Let $K = \mathbf{Q}(\theta)$ be a cubic number field defined by $\theta^3 - 7\theta - 12 = 0$ ($\theta = 3.2669$). Then $\mathcal{R}_8 = \left\langle 1, -2 + \frac{1}{6}\theta + \frac{1}{6}\theta^2, 2 + \frac{2}{3}\theta - \frac{1}{3}\theta^2 \right\rangle = \langle 1, \lambda, \mu \rangle$.

It is easily seen that $0 < \lambda < 1$, $0 < \mu < 1$.

Since \mathcal{R}_8 is a reduced lattice, we have $a = F(\mu) > 1$.

$$\begin{split} Y_{\theta} &= \frac{1}{2} (T_{K/\mathbf{Q}} \theta - \theta) = -\frac{1}{2} \theta, \quad Y_{\theta^2} = \frac{1}{2} (T_{K/\mathbf{Q}} \theta^2 - \theta^2) = \frac{1}{2} (14 - \theta^2). \\ X_{\theta} &= \frac{1}{2} (3\theta - T_{K/\mathbf{Q}} \theta) = \frac{3}{2} \theta, \quad X_{\theta^2} = \frac{1}{2} (3\theta^2 - T_{K/\mathbf{Q}} \theta^2) = \frac{1}{2} (3\theta^2 - 14). \\ X_{\mu} &= X_{2+(2/3)\theta - (1/3)\theta^2} = \frac{2}{3} X_{\theta} - \frac{1}{3} X_{\theta^2} = \frac{7}{3} + \theta - \frac{1}{2} \theta^2 > 0, \\ X_{\lambda} - X_{\mu} &= -\frac{7}{2} - \frac{3}{4} \theta + \frac{3}{4} \theta^2 > 0. \\ Y_{\mu} &= Y_{2+(2/3)\theta - (1/3)\theta^2} = 2 + \frac{2}{3} Y_{\theta} - \frac{1}{3} Y_{\theta^2} = \frac{1}{6} (-2 - 2\theta + \theta^2), \quad 0 < Y_{\mu} < \frac{1}{2}. \end{split}$$

$$\begin{split} Y_{\lambda} &= \frac{1}{12} (-10 - \theta - \theta^2). \quad \omega_1(\lambda, \mu) = \frac{\theta - 1}{2(\theta + 2)}, \quad 0 < \omega_1 < 1. \\ \omega_2(\lambda, \mu) &= -\frac{1}{12} (-10 - \theta - \theta^2) - \frac{\theta - 1}{2(\theta + 2)} \times \frac{1}{6} (-2 - 2\theta + \theta^2) \\ &= \frac{1}{4} (\theta^2 - 3), \quad [\omega_2] = 1. \\ F([\omega_2] + \lambda) &= F(1 + \lambda) = 1 + \frac{1}{2} (\theta - 3) > 1. \\ F([\omega_2] + \lambda + \mu) &= F(1 + \lambda + \mu) = 2 - 5\theta + \theta^2 + \frac{50}{\theta} > 1. \\ F([\omega_2] + 1 + \lambda) &= F(2 + \lambda) = F\left(\frac{1}{6}\theta + \frac{1}{6}\theta^2\right) = \frac{1}{3\theta^2} (12 + \theta - \theta^2) < 1. \end{split}$$

Therefore, by Theorem 6.1A,(3), we have $\theta_g = [\omega_2] + 1 + \lambda = 2 + \lambda$.

EXAMPLE 7.2. Let $K = \mathbf{Q}(\theta)$ be a cubic number field defined by $\theta^3 - 2\theta - 111 = 0$ ($\theta = 4.9445$). Then

$$\mathcal{R}_7 = \langle 1, (-71 + 15\theta + \theta^2)/98, (-61 - 23\theta + 5\theta^2)/196 \rangle = \langle 1, \lambda, \mu \rangle.$$

It is easily seen that $0 < \lambda < 1$, $\mu < 0$.

Since \mathcal{R}_7 is a reduced lattice, we have $a = F(\mu) > 1$.

$$X_{\theta} = \frac{3}{2}\theta, \quad X_{\theta^2} = \frac{1}{2}(3\theta^2 - 4).$$

$$X_{\mu} = \frac{1}{2c}(15\theta^2 - 69\theta - 20) = 0.0141 > 0 \quad (c = 196).$$

$$X_{\lambda} - X_{\mu} = \frac{1}{2c}(-9\theta^2 + 159\theta + 12) = 1.4748 > 0.$$

$$Y_{\mu} = \frac{1}{2c}(-5\theta^2 + 23\theta - 102) = -0.2819, \quad 0 < |Y_{\mu}| < \frac{1}{2}.$$

$$Y_{\lambda} = \frac{1}{2 \times 98}(-\theta^2 - 15\theta - 138) = \frac{1}{c}(-\theta^2 - 15\theta - 138) = -1.2072.$$

$$\omega_1(\lambda, \mu) = \frac{-2\theta + 30}{5\theta + 23} = 0.4214, \quad 0 < \omega_1 < 1.$$

$$\omega_2(\lambda, \mu) = -Y_{\lambda} - \omega_1 Y_{\mu} = 1.2072 - 0.4214 \times -0.2819, \quad [\omega_2] = 1.$$

(1) $N_{K/\mathbb{Q}}(x + y\theta + z\theta^2) = x^3 + 2 \times 2x^2z - 2xy^2 - 3 \times 111xyz + 2^2xz^2 + 111y^3 - 2 \times 111yz^2 + 111^2z^3$.

(a) By (1),

$$F(\phi_1) = F([\omega_2] + \lambda) = F\left(\frac{1}{98}(27 + 15\theta + \theta^2)\right)$$

$$= \frac{1}{98^2}F(27 + 15\theta + \theta^2) = \frac{1}{98^2}\frac{N_{K/\mathbb{Q}}(27 + 15\theta + \theta^2)}{27 + 15\theta + \theta^2}$$

$$= \frac{1}{98^2}\frac{259308}{27 + 15\theta + \theta^2} = 0.2149 < 1.$$

(b)
$$\lambda + \mu = \frac{1}{c}(7\theta^2 + 7\theta - 203) = \frac{1}{c} \times 2.7480 > 0.$$
 (c) By (1),

$$F(\phi_2) = F([\omega_2] + \lambda + \mu) = F\left(\frac{1}{c}(-7 + 7\theta + 7\theta^2)\right)$$

$$= \frac{1}{c^2}F(-7 + 7\theta + 7\theta^2) = \frac{1}{c^2}\frac{N_{K/\mathbb{Q}}(-7 + 7\theta + 7\theta^2)}{-7 + 7\theta + 7\theta^2}$$

$$= \frac{1}{c^2}\frac{4302592}{-7 + 7\theta + 7\theta^2} = 0.5635 < 1.$$

Therefore, by Theorem 6.3A,(1),(ii-b), we have $\theta_g = \phi_2$.

EXAMPLE 7.3. Let $K = \mathbf{Q}(\theta)$ be a cubic number field defined by $\theta^3 - 77\theta - 513 = 0$ ($\theta = 11.1002$). Then

$$\mathcal{R}_{39} = \langle 1, (-674 - 28\theta + 9\theta^2)/613, (1205 + 121\theta - 17\theta^2)/613 \rangle = \langle 1, \lambda, \mu \rangle.$$

It is easily seen that $0 < \lambda < 1$, $0 < \mu < 1$.

Since \mathcal{R}_{39} is a reduced lattice, we have $a = F(\mu) > 1$.

$$X_{\theta} = \frac{3}{2}\theta, \quad X_{\theta^2} = \frac{1}{2}(3\theta^2 - 154).$$

$$X_{\mu} = \frac{1}{2c}(-51\theta^2 + 363\theta + 2618) = \frac{1}{2c} \times 363.4361 > 0 \quad (c = 613).$$

$$X_{\lambda} - X_{\mu} = \frac{1}{2c}(78\theta^2 - 457\theta - 4004) = \frac{1}{2c} \times 533.9349 > 0.$$

$$Y_{\mu} = \frac{1}{2c}(17\theta^2 - 121\theta - 208) = 0.4433, \quad 0 < Y_{\mu} < \frac{1}{2}.$$

$$\begin{split} Y_{\lambda} &= \frac{1}{2c}(-9\theta^2 + 28\theta + 38) = -0.6200. \quad \omega_1(\lambda, \mu) = \frac{9\theta + 28}{17\theta + 121} = 0.4129, \\ 0 &< \omega_1 < 1. \quad \omega_2(\lambda, \mu) = -Y_{\lambda} - \omega_1 Y_{\mu} = 0.6200 - 0.4129 \times 0.4433, \quad [\omega_2] = 0. \end{split}$$

(a)
$$\phi_2 = \lambda + \mu = \frac{1}{c}(-8\theta^2 + 93\theta + 521) = 0.9259 < 1.$$

(b)
$$2\lambda + \mu = \frac{1}{c}(\theta^2 + 65\theta - 143) = 1.1447 > 1.$$

(1) $N_{K/\mathbb{Q}}(x + y\theta + z\theta^2) = x^3 + 2 \times 77x^2z - 77xy^2 - 3 \times 513xyz + 77^2xz^2 + 513y^3 - 77 \times 513yz^2 + 513^2z^3$.

(c) By (1),

$$\begin{split} F(\phi_6) &= F([\omega_2] + 1 + \lambda) = F\left(\frac{1}{c}(-61 - 28\theta + 9\theta^2)\right) \\ &= \frac{1}{c^2}F(-61 - 28\theta + 9\theta^2) = \frac{1}{c^2}\frac{N_{K/\mathbb{Q}}(-61 - 28\theta + 9\theta^2)}{-61 - 28\theta + 9\theta^2} \\ &= \frac{1}{c^2}\frac{225837169}{-61 - 28\theta + 9\theta^2} = 0.8153 < 1. \end{split}$$

(d) By (1),

$$F(2\lambda + \mu) = \frac{1}{c^2} F(\theta^2 + 65\theta - 143) = \frac{1}{c^2} \frac{N_{K/Q}(\theta^2 + 65\theta - 143)}{\theta^2 + 65\theta - 143}$$
$$= \frac{1}{c^2} \frac{198781801}{\theta^2 + 65\theta - 143} = 0.7538 < 1.$$

Therefore, by Theorem 6.1B,(3),(ii-b), we have $\theta_g = 2\lambda + \mu$.

EXAMPLE 7.4 (Williams and Dueck [8, p. 690]). Let $K = \mathbf{Q}(\theta)$ be a cubic number field defined by $\theta^3 - 68781 = 0$ ($\theta = 40.97221992$). Then

$$\begin{split} \mathscr{R}_{2307} &= \langle 1, \phi, \psi \rangle \\ &= \langle 1, (-72036 + 1809\theta + 2\theta^2) / 126539, (117574 - 2668\theta + 67\theta^2) / 126539 \rangle \\ &= \langle 1, \phi, \psi - 1 \rangle = \langle 1, (-72036 + 1809\theta + 2\theta^2) / 126539, \\ &\qquad \qquad (-8965 - 2668\theta + 67\theta^2) / 126539 \rangle \\ &= \langle 1, \lambda, \mu \rangle. \quad 0 < \lambda < 1, \ \mu < 0. \quad 0 < X_{\mu} < X_{\lambda}. \end{split}$$

Since \mathcal{R}_{2307} is a reduced lattice, we have $a = F(\mu) > 1$.

$$\omega_1(\lambda,\mu) = \frac{-2\theta + 1809}{67\theta + 2668}. \quad Y_{\lambda} = -\frac{1}{2c}(2\theta^2 + 1809\theta + 144072) \quad (c = 126539).$$

$$Y_{\mu} = -\frac{1}{2c}(67\theta^2 - 2668\theta + 17930).$$

$$\omega_1 = 0.31904891. \quad Y_{\lambda} = -0.87541450. \quad Y_{\mu} = -0.08333592.$$

$$\omega_2 = 0.90200274.$$

Hence $[\omega_2] = 0$, $\phi_1 = [\omega_2] + \lambda = \lambda < 1$.

(1)
$$N_{K/\mathbf{O}}(x+y\theta+z\theta^2) = x^3 - 3 \times 68781xyz + 68781y^3 + 68781^2z^3$$
.

(a) By (1),

$$F(\phi_6) = F([\omega_2] + 1 + \lambda) = F(1 + \lambda) = F\left(\frac{1}{c}(54503 + 1809\theta + 2\theta^2)\right)$$

$$= \frac{1}{c^2}F(54503 + 1809\theta + 2\theta^2) = \frac{1}{c^2}\frac{N_{K/\mathbb{Q}}(54503 + 1809\theta + 2\theta^2)}{54503 + 1809\theta + 2\theta^2}$$

$$= \frac{1}{c^2}\frac{528431935430042}{54503 + 1809\theta + 2\theta^2} = 0.25005464 < 1.$$

(b) By (1),

$$F(1+2\lambda+\mu) = F\left(\frac{-26498+950\theta+71\theta^2}{c}\right)$$

$$= \frac{1}{c^2}F(-26498+950\theta+71\theta^2) = \frac{1}{c^2}\frac{N_{K/\mathbb{Q}}(-26498+950\theta+71\theta^2)}{-26498+950\theta+71\theta^2}$$

$$= \frac{1}{c^2}\frac{2102375149688779}{-26498+950\theta+71\theta^2} = 0.99760062 < 1.$$

(c) By (1),

$$F(\phi_8) = F(1+\lambda+\mu) = F\left(\frac{45538 - 859\theta + 69\theta^2}{c}\right)$$

$$= \frac{1}{c^2}F(45538 - 859\theta + 69\theta^2) = \frac{1}{c^2}\frac{N_{K/Q}(45538 - 859\theta + 69\theta^2)}{45538 - 859\theta + 69\theta^2}$$

$$= \frac{1}{c^2}\frac{2161892194231336}{45538 - 859\theta + 69\theta^2} = 1.07007239 > 1.$$

(d) Since
$$-153037 + 950\theta + 71\theta^2 > 0$$
, $2\lambda + \mu = \frac{-153037 + 950\theta + 71\theta^2}{c} > 0$.
(e) Since $\lambda + \mu = \frac{-81001 - 859\theta + 69\theta^2}{c} < 0$, we have $1 + 2\lambda + \mu < 1 + \lambda$.

(e) Since
$$\lambda + \mu = \frac{-81001 - 859\theta + 69\theta^2}{c} < 0$$
, we have $1 + 2\lambda + \mu < 1 + \lambda$.

Therefore, by Theorem 6.3B,(2),(ii), we have $\theta_q = 1 + 2\lambda + \mu$.

Acknowledgment

I would like to thank the referee for his/her careful reading of the original manuscript and many helpful suggestions.

References

- [1] B. Adam, Voronoi-algorithm expansion of two families with period length going to infinity, Math. Comp. 64 (1995), 1687-1704.
- [2] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, RI, 1964.
- [3] K. Kaneko, On the cubic fields $\mathbf{Q}(\theta)$ defined by $\theta^3 3\theta + b^3 = 0$, Sut J. Math. vol. 32, No. 2 (1996), 141-147.
- [4] K. Kaneko, Voronoi-algorithm expansion of a family with period length going to infinity, Sut J. Math. vol. 34, No. 1 (1998), 49-62.
- [5] O. Lahlou and A. Farhane, Sur les points extrémaux dans un ordre cubique, Bull. Belg. Math. Soc. 12 (2005), 449-459.
- [6] H. C. Williams, G. Cormack and E. Seah, Calculation of the regulator of a pure cubic field, Math. Comp. 34 (1980), 567-611.
- [7] H. C. Williams, G. W. Dueck and B. K. Schmid, A rapid method of evaluating the regulator and class number of a pure cubic field, Math. Comp. 41 (1983), 235–286.
- [8] H. C. Williams and G. W. Dueck, An analogue of the nearest integer continued fraction for certain cubic irrationalities, Math. Comp. 42 (1984), 683-705.
- [9] H. C. Williams, Continued fractions and number-theoretic computations, Rocky Mountain J. Math. 15 (1985), 621-655.
- [10] H. C. Williams, The period length of Voronoi's algorithm for certain cubic orders, Publ, Math. Debrecen 37 (1990), 245-265.

Graduate School of Mathematics University of Tsukuba 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573, Japan