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A METHOD FOR FINDING A MINIMAL POINT
OF THE LATTICE IN CUBIC NUMBER FIELDS

By

Kan KANEKO

Abstract. We give a method for finding a minimal point adjacent
to 1 of the reduced lattice in cubic number fields using an isotropic
vector of the quadratic form and two-dimensional lattice.

1. Introduction

Let K be a cubic algebraic number field of negative discriminant. It is known
that to find all the minimal points of a reduced lattice # of K, it is sufficient to
know how to find a minimal point adjacent to 1 in any reduced lattice of K (refer
to Definition 1.1 for a rigorous definition). Williams, Cormack and Seah [6]
utilized the two-dimensional lattice obtained from a reduced lattice # to find a
minimal point adjacent to 1 in % (the definition of such a two-dimensional lattice
is forthcoming in Section 2). Moreover, Adam [1] utilized an isotropic vector of
the quadratic form obtained from a basis of reduced lattice # (the definition of
such a quadratic form is forthcoming in Section 4). Later, Lahlou and Farhane
[5] generalise the Adam’s method.

In this paper, we shall prove six theorems which give candidates of a
minimal point adjacent to 1 in a reduced lattice #. In each case of the theorems,
the maximum number of candidates ¢ € # such that we must check whether
F(p) <1 or not is at most four. Also, such six theorems contain all the occuring
cases.

DeriniTioN 1.1, (1) Let 1,8,y € K be independent over Q. We say that
R=L,p,y>=Z+ZL+7Z.y is a lattice of K with basis {l,p,y}.

AMS 2010 Mathematics Subject Classification: 11R16, 11R27.

Key words and phrases: cubic fields, Voronoi algorithm, fundamental units.
Received August 5, 2013.

Revised November 26, 2013.



86 Kan KANEKO

Ng (o
x(®) =o'a”, where Ng denotes the norm
o

(2) For e # we define F(«) =

of K over Q, and o’ and o” the conjugates of «.

(3) Let # be a lattice of K, and let ¢(> 0) € Z. We say that ¢ is a minimal
point of # if for all « in # such that 0 < o < ¢ we have F(x) > F(p).

(4) Let # be a lattice of K and ¢,y € Z be a minimal point. We
say that i is a minimal point adjacent to ¢ in #Z if Yy = min{ue Z;¢ < o,
F(p) > F(0)}.

(5) If # is a lattice of K in which 1 is a minimal point, we call Z a reduced
lattice.

2. Basis of Reduced Lattice (I)

DerFNITION 2.1. Let e K. We define Y,:=Reo', Z,:=Ima', X,:=
a—7Y, Let AeK, ueK\Q. We define wi(du):=—(Z;/Z,), wr(Au) =
—Y,1 —a)l(/l,,u)Yﬂ.

REMARK. In [6] Y, =Imo', Z, = Red'.

PropPOSITION 2.2. Let a € K, ceZ. Then
) Fa) = Y2 + 72
a0t Q=7Y, X, eK—-Q, Z,¢Q.
3) K> 1,4,u are independent over Q = w;(4,u) ¢ Q.

2)
)
4) K31, are independent over Q = 1,X,,X, are independent over Q.
)
)

(1
(
(
(
X, X,

(5) K21, u are independent over Q = det(Z 7 ) # 0.
(6) Let ¢ Q. Then
(i) —l<Ypc<lec=[-Y,] or [-Y,]+1,
(i) Y-y )4a <0, Yy 41404 >0,
(ili) |Yi—y,j4al < 1/2 or [Y_y 1144 < 1/2.

ProOF. (3) Let K = Q(0) and 2 =ayp + a10 + a,0* (a; € Q), pu= by + b10 +
h,0* (b; € Q). Then we have

Z, = %(/1/ N /1//) _ %{al(ﬁ’ _ (9//) + az(ezz o 0//2)}

1
- 5(9/ — 0" {a1 +ax(0' + 0"} = Zo{ar + (Txj0)ar — a0} (i* = —1).
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Similarly we have Z, = Zy{b1 + (Tk/q0)b2 — b20}. Suppose that

Z,{i a1+pa27a207

) = —_-— -_—_——— :T 0.
wi (4, p) 7. byt phy—bol reQ (p=Tgqb)

Then we have
r(by + pby — by0) = —(a1 + pay — ax0), rby +rpby + a; + pay — (rby + a»)0 = 0.

Hence by +a, =0, rby +a; =0, so ag+rbg— 2 —ru=0.
Since 1, A, u are independent over Q, we have reached a contradiction.
Therefore we have w;(4,u) ¢ Q.
(5) Since 1, A, u are independent over Q, by algebraic number theory

1 1 u I 2 u
det| 1 2" 4 | #0. Moreover, det ( 12 ) =2i(X,Z, — X, Z)).
1 A" u |
Therefore we have X,Z, — X,Z, # 0.
Otheres are easily deduced from definitions. O

DErFINITION 2.3. Let # be a reduced lattice of K. For # 5 o we define

%) if ‘Ya(|)| < 1/2

oy = [=Yal+ o, ap ==Y+ 140 op = {oc<2) if Yy | < 1727

%) := o — [of, where [...] is the greatest integer function.

Note that [Z,| < v3/2 = F(u3) < 1.

Let 2 = {1,B,7> be a reduced lattice of K. Let 7: K — R? be the Q-linear
map defined by of = (X,,Z,). Note that for o, € #, of = o < there exists
some ¢ € Z such that oy = ¢+ a;. Let L := #7 = {f*,y">. By Proposition 2.2,(5)
L is a two-dimensional lattice. Moreover, by Proposition 2.2,(3)(4) L has the
following property (A):

(A) LN({0} x R) = LN (R x {0}) = {(0,0)}.
Now we prepare two lemmas about the two-dimensional lattice which has

property (A) from Delone’s supplement I in [2].

DEFINITION 2.4, Let L(c R?) be a two-dimensional lattice which has
property (A). (1) For R?5 S = (S,,S,) # (0,0) we define C(S):= {(u,v) e R%;
|u| < |Sul,|v] <|Sy|}. Then we say that SeL is a minimal point of L if
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LNC(S)={(0,0)}. The system of all the minimal points of L we denote by
M(L). We put M(L)_,:= {PeM(L);P, > 0}.

(2) Let S(S, > 0), Q(Q, > 0) € L be a minimal point of L. We say that Q is
a minimal point adjacent to S in L if Q, = min{P,;P€ L,S, < P,,|Sy| > |P,|}.

LemMa 2.5, Let L(c R?) be a two-dimensional lattice which has property (A).
Let L>S,0 (S,>0,0,>0). Then Q is a minimal point adjacent to S in L if and
only ifL = <S» Q>> Su < leh |Sv‘ > |Qv|, Sva < 0.

Proor. From Theorem XIXILXIII in [2, p. 467-469]. (cf. Theorem 4.1 in
o). 0O

LemMma 2.6.  Let L(c R?) be a two-dimensional lattice which has property (A)
and let E,G,H € L. We assume that G is a minimal point adjacent to E and that
H is a minimal point adjacent to G. Then we have H = E + [-E,/G,|G.

Proor. From supplement I, Section 3, 34 in [2, p. 470]. O

PROPOSITION 2.7. Let # be a reduced lattice of K, and let L := R*. Then
there exists a basis {1, u} of # such that A" is a minimal point adjacent to u* in
L, 0<X;, F(iz) <1, F(usz) > 1.

Proor. Let #=<1,4,y>. For &¢>0, we shall consider a rectangular
neighbourhood of (0,0), ie. W(e,\/3/2) = {(u,v) € R%|u| <e,|v] <+/3/2}. By
Minkowski’s convex body theorem, there exists & > 0 such that LN W (e,/3/2) #
{(0,0)}. We take such a ¢ >0 and fix it. We put W = W(e,+/3/2). Then there
exists Q= (Qy, Qy) e LNW such that Q, =min{P,;Pe LN W 0< P,}. Note
that such a Q € L is uniquely-determined. We have LN C(Q) = {(0,0)}. Hence
Q is a minimal point of L. There exists S € L such that Q is a minimal point
adjacent to S in L. By Lemma 2.5, {S,Q} is a basis of L. Since both {S, 0}

and {f%,y"} are a basis of L, there exists <Ir) z)eGLz(Z) such that

(Q S)=(p° y’)(f z) We have Q= pf*+ry® = (pf+ry)". Similarly, we

have S = (g + sy)". We define A, ue K by (L u) = (B y) (p q). Then we have
ros

B =10, Q=17 S=u. Since Q= (0, Q) = 4° = (X}, 2;), from |Z;] <
V3/2, we have F(i3) < 1. From this, if we put %y := {0 %0’ e M(L).,,
F(o3)) <1}, then Zp # &. Let Wi(e 1) := {(u,v) eR% jul <& fv] < 1}. As
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W(e,V/3/2) € W(e, 1), we have 1< |%#:NW(eg1)| < oo. Hence there exists
2" € R N W (e, 1) such that X; = min{X,;a" € Z; N W (e, 1)}. Since F(uz) <1 =
|Zy| <1, it is easily seen that X; =min{X,;0" € Z:NW(e 1)} = min{X,;
o” € Zi} = min{X,; o€ Zr}. For this A, there exists ue # such that 1* is a
minimal point adjacent to x* in L. Moreover, for such a y we have F(u)) > 1.

O

REMARK. Such a basis in Proposition 2.7 is easily found by modified version
of Algorithm (A) in [6, p. 581].

DerFmNITION 2.8.  Let # be a reduced lattice of K, and let L := #°. We say
that A e Z is a F-point of M(L)_, if A€ R#r, X, = min{X,;a € Ar}.

LemmA 2.9.  Let # be a reduced lattice of K. If 0 < X, F(43)) < 1, then we
have 0 < Aq).

Proor. We assume that 0<X;, F(i3)<1. From 0<X,= Xo =
@) — Y5,, we have Ao >Y;, >0. Hence we have Ay > 0. Suppose that
A1y < 0. We have 0 < Ay = Ay +1 <1, 50 =1 < A1) < 0. Since Z is a reduced
lattice of K, we have F(/;)) > 1. Hence we have A3y = 41y, so F(4(1)) < 1. From
this, F(—/q)) < 1. Since # is a reduced lattice of K, we have reached a con-

tradiction. Therefore, we have () > 0. O

THEOREM 2.10. Let R be a reduced lattice of K. Then there exists a basis
{1, 4, u} of # such that

(@ 0<A<l, =1/2<u F(u)>1,21Y,|<1,0< X, <X;,0<wi(4u) <1,

(b) wa(2,) >0,

(€) F(lma] +A) <1 or F(lwa] +1+4) < 1.

Proor. By Proposition 2.7, we can take a basis {1,4,u} of # such that
4% is a minimal point adjacent to x* in L, 0 < X;, F(43)) <1, F(ug) > 1, 4 is
a F-point of M(L),. Clearly, # = <1, Aq), t(3))-

(a) Clearly we have 0 < ) <1, F(ua) > 1, 2[Y,
Xy =X From 0 < X, = X, = piz) — Yy,
mark 2.11 bellow, we have 0 < w; (4, ) < 1. Since w1 (4), 43)) = —(Z/ Zys) =
—(Z,/Zy) = w1(4, 1), we have 0 < wi(Ao),43) < 1.

(b) Proof of “wi(4),13)) > 0.

ol <L 0< X, =X, <

we have —1/2 < 3. From Re-
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(i) The case Aqy=[-Yi]+i>1. Aoy =[-Yi]+i=[-Y;,]+ Ao > 1L
Hence -7V, >1. From this and from 0<w; <1, |Y,,[<1/2 we have
@220 1) = = Vi) = @1(20) 3)) Yy > 0-

(ii) The case Ay = [-Y;]+4 < 1. By Lemma 2.9, we have /() > 0. From
0 < 4y <1, we have F(4q)) > 1 because # is a reduced lattice of K. There-
fore we have F(A)) < 1. Since F(4()) > 1, we have Y; < —1/2. Note that
A1) = 4)- Hence from Y, =Y, <-1/2 and from 0 <w; <1, [¥,,|<1/2
we have ws(4), 4(3) = — Y, — @1(40), #3) Yuy > 0.

(C) Proof of “F([wz] —‘y—)b(o)) <1 or F([a)z] +1 —‘y—/1( )) <1”.
(i) The case Y, <0. Since wy—(-Y,,)=—-w1Y,, >0, we have

(3)

Y, <wy. From this and [-w;Y,,[<1/2, we have [a)z] [-Y;,] or
[~ A(O)} +1. Note that [wy] = [, ]+ 1 =0< [Vl +1-(-Y;,)<1/2=
0 Yio = [=Yi,) + 1+ Y;, <1/2. Hence if [w;] A(U)} + 1, then we have

[
+ A )s [602] + 1+ i(o)

3) = /1 . Therefore, we have “[ws] + A [ o)
™ o “lom] + = [ Yi | 4 14 10 = . Pl < L
( i) The case Y,t » > 0. Since ;- ( YA@) —m1Y,, <0, we have
=Y, > @y From this and [-w1Y,,[<1/2, we have [w]=[-Y,,] or
[-Y;,] — 1. Note that [m] =[-Y;,]-1=0<-Y,, —[-Y;,] <1/2= —1/2
<Yy, = [— Yigl+ Y, <0. Hence if [wo]=[-Y;,]—1, then we have
A@) = Aqy. Therefore we have “[wa] + A) = [~ Yi, ]+ 40) = Ay, [@2] + 1+ A
=) “[w2]+1+/1 =Jay, Fny) <17 O

ReMARK 2.11. Let # =<1,f,7), 0 < X, < Xp. Then »* is a minimal point
adjacent to " in L< 0 <wi(f,y) <1.

3. Basis of Reduced Lattice (II)

DErFINITION 3.1. Let 2 be a lattice of K, and let {1, N, M} be a basis of Z.
We say that {1, N, M} is normalized provided that

0< Xy <Xy, |Zul>1/2, |Zy|<1/2, Zy-Zy<DO.

We quote Williams [9], Theorem 8.1 as Theorem 3.2 for our conve-
nience.

THEOREM 3.2 (Williams [9], Theorem 8.1). Let # be a reduced lattice with
the normalized basis {1,N,M}. If 0y =x+ yN +:zM (x,y,z€Z) is the minimal
point adjacent to 1, then (y,z) € {(1,0),(0,1),(1,1),(1,-1),(2,1)}.
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In this paper, 6, denotes the minimal point adjacent to 1 of any reduced
lattice 2. We shall consider the relationship between F-point and the normalized
basis.

THEOREM 3.3. Let # be a reduced lattice with the normalized basis
{LN,M}. If #=<1,Auy, A" is adjacent to u*, i is a F-point of M(L).,
(L =R, then A* must be one of N', (N— M)*, M. Moreover,

(1) The case ." = (N —M)": N'=(d+ D)A"+pu", M*=d\" + 47,

(2) The case \* =M™ N*=di" + u",
where d = d(A,p) = 1/ (4, uw)).

Proor. Recall that Zp = {ae Z;a" € M(L)., F(os) < 1}, X; = min{X,;
o€ Rr}t. By Lemma 2.5 and Definition 3.1, we have N € Zr. Hence, we have
X, < Xy. Since L=<(N*, M*y=<.%,u*>, there exists a,b e Z such that 1* =
aN™ +bM*.

(i) The case a < 0. Since X; >0, we have b > 0. Moreover, since |Z,| =
|aZy +bZy| = |a| - |Zy| +b-1Zu| <1 and 1/2 < |Zy|, we have b < 1. There-
fore b =1. Hence X; = aXy + bXy = aXny + Xpy = Xy — |a| - Xy < 0. Therefore
the case (i) is impossible.

(i) The case @ =0. Since X; = aXy + bXy = bXy, we have b > 0. Since
|Z;| = b|Zy|, we have b= 1. [i.e. (a,b)=(0,1)]

(ili) The case a>1,b<0. Since |Z,| =a|Zy|+1|b] |Zu| <1, we have
|b] < 1.

1) The case b= —1. Since X; =aXy — Xy =(a— )Xy + (Xn — Xu), if
a > 2, then we have X, > Xy, which is impossible. Therefore, we have a = 1. [i.e.
(a7b) = (17_1)]

2) The case b =0. Since X, =aXy =(a—1)Xy + Xu, if a>2, then we
have X; > Xy, which is impossible. Therefore, we have a=1. [i.e. (a,b) =
(1,0)]

(iv) The case a>1, b > 1. We have X, = aXy + bXy > Xy, which is im-
possible. Therefore, the case (iv) is impossible.

By (i) to (iv), we conclude that A* = aN*+bM* = M" or (N — M) or N°.

(a) The case |Z;| <1/2. Since |Z,|>+/3/2>1/2, we have A" =N",
ur=M".

(b) The case |Z;| > 1/2. Since A" # N°, we have 0 < X; < Xy. Hence we
have A= (N —-M)" or M".

(b-1) The case A* = (N — M)". We have

(11) X, =Xy < Xy < Xy.
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Because if X3y < X; = Xy_p < Xy, then from Xy < Xy_ar, | Zy| < |Zn-m],
we have LNC((N —M)") = LN{(u,v) e R |u| < Xy_ur, || < |Zy_a|} 3 MT #
(0,0). Since A*= (N — M)" e L is a minimal point, we have reached a con-
tradiction. Therefore we have X; = Xy_jp < Xy < Xy. By Remark 2.11 we
have 0 < w;(N,M) < 1. Since w;(M,N — M) _7w1(N,iVI)+ [s we have 0 <
i (M,N— M) < 1. From this, if Xy_y < Xy, then MT" is adjacent to
(N — M)". Note that # ={1,M,N — M. Hence we have

(1.2) Xy_m < Xpr & M7 is adjacent to (N — M)".

Since M® is a minimal point adjacent to A, and A’ is a minimal point
adjacent to x°, by Lemma 2.6 we have M®=u"+[—-(Z,/Z;)|]A". We put
d=[-(Z,/Z;)] = [1/wi(4,p)]. We have M* =pu"+dA". From A" =N"—M",
we have N'=pu"+ (d+ 1)A". Therefore we obtain formulas: M*™ = dA1* + u”,
Nt=(d+1)A"+u'.

(b-2) The case A" = M".

Since N° is a minimal point adjacent to A", and A" is a minimal point
adjacent to u°, by Lemma 2.6 we have N =pu*+[—(Z,/Z;)]A" = u* +dA".
Therefore we obtain formulas: M* = A", N°=dA" + u". |

COROLLARY 3.4. Let # be a reduced lattice with basis {1,4,u} such that A’
is adjacent to u*, A is a F-point of M(L)., (L=2"). If 0,=x+ yA+zu
(x,y,z€Z), then

the case . =N (y,z) € {(1,0),(1,1),(1,-1),(2,1)},

the case "= (N —M)": (y,z) €e{(1,0),(d,1),(d +1,1),(2d + 1,2),(3d + 2,3)},

the case A" = M": (y,z) € {(1,0),(d,1),(d+1,1),(2d + 1,2),(d — 1, 1)},
where d = [1/wy (A, 1)] = 1.

)

Proor. From Theorem 3.2. O

ReMARK 3.5. Since 1/(d+1) < w; < 1/d, we have
[don] = [(d = Den] =0, [(d+ D] =1,
1 <[2d+ D] <2, 2<[(Bd+2)w] <4.
THEOREM 3.6. Let R be a reduced lattice with basis {1,1,u} such that
F(u)> 1, 2|Y,| <1, 0< X, < X;, 0<wi(4,u) <1, F(Ag) <1

Then .° must be one of N, (N — M)", M*. Moreover, if \* = (N — M)" or
M?, then J is a F-point of M(L)., (L= 2%).
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ProoF. At first, we note that A° is adjacent to u’. Also Ae Zr. From
21Vl <1, =)

(a) The case |Z;| < 1/2. Since F(u3)) = F(u) > 1, we have |Z,| > V3/2 >
1/2. Hence we have A" = N7, " = M".

(b) The case |Z;| >1/2. Let A" be a F-point of M(L)_,. So we have
X,- < X;. We shall show that A** = A*. Suppose that A** # A°.

(i) The case A" # M*. We have

(i-1) X < X, < X; < Xy < Xy.

Since |Z;+| > 1/2, by Theorem 3.3, we have A" = M* or (N — M)". Hence
A= (N—M)". By (1.1) in the proof of Theorem 3.3, we have X, = Xy_y <
Xy. From (i-1), we have X;» = Xy_y < X, < X; < Xy < Xy. Since M’ is
adjacent to (N — M)", we have reached a contradiction.

(i) The case A* = M". Since A** # 47, by Theorem 3.3, we have 1" =
(N —M)". By (1.1) in the proof of Theorem 3.3, we have X;- = Xy_y < Xu.
Hence we have X+ = Xy_y < X, < X; = Xy < Xy. Since M* is adjacent to
(N — M)*, we have reached a contradiction.

By (i)(ii), an assumption A** # A" lead to a contradiction. Therefore we have
AT =N

Finally, if A" = (N — M)" or M*, then we must have only the case (b), so 1
is a F-point of M(L).. O

REMARK. F(A3) <1< 3ceZ; F(e+ 1) <1

COROLLARY 3.7. Let R be a reduced lattice with basis {1, u} such that
Flp)>1, 2|Y,|<1, 0<X,<X,, 0<owi(hu)<l, Fiz)<l If 0,=
x+yAitzu (x,y,z€Z), then (y,z) € {(1,0),(1,1),(1,-1),(2,1),(d, 1), (d + 1, 1),
(2d +1,2),(d —1,1),(3d 4+ 2,3)}, where d = [1 /w1 (4, 1)) = 1.

4. Preliminaries (I)

DrrFINITION 4.1. Let # be a lattice of K. For a basis {1,4,u} of %, we
define a mapping F; ,: R* — R by F; ,(x,p,z) = x>+ (A + 2")xy + (&' + p")xz
+ (A" + 2" yz+ 22"y + W'z For any (x, y,z) € Z°, we have F ,(x, y,z)
= F(x+ yi+zu).

REMARK. F; , is a positive quadratic form with real coefficients of rank 2.
(w2,1,1) is an isotropic vector of F; ,.
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We quote Lahlou and Farhane [5], Lemma 2.2 as Lemma 4.2 for our
convenience. (cf. [1], Lemma 2.2)

LemmA 4.2 (Lahlou and Farhane [5], Lemma 2.2). Let % be a lattice of K
and let {1,2,u} be a basis of R. Then we can write
(1) Fyu(x, p,2) = alz = o19)* +2b(z = 01 p)(x = 02p) + (x = 029)”

(2)

1
F; u(x,y,2) = E(x— )’ +§(x — w2y +2b(z — 1)) + (a—2b%)(z — w1 y)*
3)
2b 2 252
Fju(x, ,2) :%(2* w1y)’ +g <2w1y+;(x cuzy)> + (1 - 7) (x — any)’

with a=F(u), b=Y,.

DerINITION 4.3. Let # be a reduced lattice with basis {1,4,u} such that
u>—1/2, wry(A,u) >0, 0 <w;(4,u) <1. Let yeZ. Then we define

Ui, = lw2y] — 1+ pi+ [0 ylu Y, = [o2y] + 1+ yi+ ([ory] = D

Vo, = [my] =1+ yi+ ([oy]+ Du Yg = [o2y] + 14+ yi+ [ ylu

Vs, = [0y + yi+ ([oy] — Du Yo, = oy + 1+ yi+ ([01y] + Du
Yy = [0y + y2+ |01 y]u Yo,y = [02y] + 1+ yA+ (o1 y] + 2)u
Us, = lway] + yi+ ([o1y] + Du Yin,y = 02y] +2+ yi+ [oyu
Yo, = ly] + yi+ ([o1y] +2)u V1o, = [02] + 2+ A+ (o1 y] + Du
¢ = Y41 = [w2] + 42 fs =1 =lwa] =1 +i+u ¢g=20+u
by =ts =] +A+u ¢g=vg, =[] +1+2 b0 =34+ 2u

$y=VYs 1 =[wm]+i-u ¢;=Y7, =] +1+7i-u

b=V =] —1+1 ¢s=Yo, =w] +1+7i+u

REMARK 4.4. (1) If 0 < u < 1, then we have
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'ﬁl,y < lpZ,y < lp{y; l»01,}’ < ‘ﬁs,y < '104,}1; ‘//4,)' < l//S,y < w6,y < l//9.y
Yoy <Ws, <Ws, <o, Ya, <7, <¥s, <y,
Vo, <oy <Yy Yo, <V, <Y,

(2) If u> 1, then we have

lp3,y < lpl,y < lp4,y; lply < lp7,y < lp4,y; l//4,y < l//2,)/ < lpS,y < lp9,y
lp4‘y < lp&y < lpS_y < ¢97)7; lp4,y < lp&y < lpll,y < l//9,y
Vo <Wg, <Wioy Yo, <Y, <V,

LemMma 4.5. Let # be a reduced lattice with basis {1, u} such that
u>—1/2, wy(,u) >0 and 0 < w(A,p) < 1. Let a>max(1,2b% 2|b|), where
a=F(u), b=7Y,. Then
(1) Oge{y; ;s ¥y(#0)eZ,1 <i<12}.

Q) Au>0=y;; <y, (y=1).
(3) () b<0:>F(‘//z})>1 F(g,) > 1, F(Yq,) > 1, F(yy,) > 1.

(i) b>0=F(p ) >1, F(y3,)>1, F(Y,) > 1, F(yp,) > L.

@) F(Ys.1) > F(a 1)

(5) (0<)b <1/2= F(Y7,1) > Fihy ).

(6) F(Vs,1) < Flig)), 0<b<1= F(Yq,) > Fiy,)

(7) b>1= F(yq,) > 1.

8)b>0o0r =1/2<b< 0= F( ) >F(y,)

9) F(ys1) > F(ps 1), (0<)b<1=FYy)>Fs,)

(10) (¢41)>F(1//81) b<0=c;=[m] —wr<-1/2.

(11) e1 =[on] =1 < =1/2, b <0 = F(yg ) > F(iho 1)
2[o] fO0<a—[o <1/2

2 P={30 01 1 sa

Proor. We put ¢; = [w1] — w1, ¢2 = [w2] —wy. Then —1 < ¢,¢3 < 0.

(1) was proved in Lahlou and Farhane [5], Theorem 2.1.

(2) obvious

(3) by Lemma 4.2,(1)

(4) By Lemma 4.2,(1), F(J3,)— F(Yy,) = —2ac +a—2bcy = —2ac| +

a<1 —21)62> > 0.
a
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(5) By Lemma 4.2,(1), F(y;,) — F(Yq ) = —2ac) +a+ 2bcy — 2bcy — 2b +
200+ 1=(1-2b)(14+c2)+a+c2—2(a—b)c; > 0.

(6) By Lemma 4.2,(1) since F(ys,) < F(Yy 1), F(¥y,) —F(Ys,) = —2ac; —
a—2bcy > 0. So —2bcy > a(l + 2¢;). From this and a > 2b, we have —2bc, >
2b(1 +2¢1), —c3 > 14 2¢;. Hence —2¢; > 1 + ¢;. By this,

F(l,b’]’l) —F(w4.1) == —2a61 +a+2b61 —_ 2b62 —_ 2b+2€2 + 1

=(1-2b)(1+c2)+a+c;—2¢ci(a—b)
>(1=20)1+c)+a+cr+ (1+e)(a—b)
=1-2b)1+c)+a—-1+14+c+ 1 +ec2)(a—b)
= (2-2b)1+c)+a—1+(1+c)(a—b)>0.

(7) If b > 1, then we have a > 2 because « > 2|b|. From this and by Lemma
4.2,(3), we have F(y;,) > 1.

(8) By Lemma 4.2,(1), F(y, 1) — F(4) = —2bc1 —2¢2+1 > 0.

(9) Since F(ys1) > F(g 1), we have F(Ys ) — F(g 1) = 2aci +a+ 2bc; —
2bcy —2¢3 — 1 > 0. From this, F(y, ) — F(Y4,) = 2aci +a — 2bcy + 2bcy — 2b —
2co+ 1 = (2ac; +a+ 2bcy —2be; —2¢; — 1) +2—-2b> 0.

(10) Since F(y4 ) — F(g ) >0, we have bey + ¢y < —1/2. From this and
b <0, ¢; <0, we have ¢; < —1/2.

(11) By Lemma  4.2,(1), F(y9,)—F(Yg,)=2aci+a+2b(c;+1)=
0(261 + 1) + Zb(Cz + 1) < 0.

(12) is easily deduced from the definitions. O

Some of Lemma 4.5 were proved in Lahlou and Farhane [5], Theorem
2.1.

REMARK. a > 1, 2|b| < 1 = a > max(1,4b%) = a > max(1,2b% 2b|).

5. Preliminaries (II)
In this section, we make the following assumption;
AssuMPTION 5.1. Let # = {1,A,u)> be a reduced lattice of K such that

(@ 0<ai<l, —1/2<pu F(u)>1,2|7,)<1,0<X, <X, 0<wi(4,u) <1
(b) wa(2 ) >0 () F(gy) <1 or Fdg) < 1.
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By Theorem 2.10, we can take such the basis. So in next section, we shall
consider six cases:

14) 0<u<l, ¢ >1 (24) u>1, ¢ >1

1B

(

(34) u<0, ¢, >1
( O<u<l, ¢<1, Flgg) <1 (2B) u>1, ¢; <1, F(¢g) <1
(

)
)
)
3B) p<0, ¢, <1, Fgg) <1

We note that
(A) ¢ =[] +i>1e[m] 21w >1,
B) ¢y =[] +i<1e (W] =0 w < 1.

Lemma 5.2. If ¢, <1, then
(1) Yu<—-1/2 (2) w2(4, 1) >1/2 —01Y,.

PrOOF. (1) From ¢, = [wy] +4 < 1, we have [wy] = 0. By definition 4y =
=Y+ 4 Ao =[-Y]+1+ A Since Z is a reduced lattice, from ¢, <1,
we have F(¢;) > 1. Hence, by Assumpsion 5.1,(c), we have F(¢s) < 1. From
F(pg) = F(lma] +1+2) = F(1+4) <1, we have 144 = A or Ap).

(1) The case 1 + 4= 4. Since —1 < Y; +1= Yy, <0, we have =2 < Y; <
—1.

(ii) The case 1+ 4= /4. We have 4= Aq. Since F(ip) <1, we have
0<Y,, < 1/2. From this, 0 < Y¥; + 1= Y, < 1/2, s0 -1 <Y, < —1/2.

Finally, from (i)(ii), we have Y, < —1/2.

(2) From (1), we have —Y;>1/2. Hence, wy(d,u)=-Y,—wY,>
12— Y,. O

COROLLARY 5.3. Y, < 0= wy(4,u)>1/2.

By Corollary 3.7 if 0,=x+ yi+zu (x,y,z€Z), then (y,z)e{(1,0),
(L),(1,-1),(2,1),(d,1),(d+1,1),(2d + 1,2),(d — 1,1),(3d + 2,3)}, where d =
[1/w1(Z, 1)) = 1.

From Remark 3.5 and Corollary 5.3, we make the following tables in which
we deside whether the possibility that 0, =, , (1 <i <10, i = 12) exists. Note
that y > 1 = [ywy] = ylws].
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Table 1
Wy = [y =14y w>0 w<0 w>0 uw<0

(3,2) + (w1 ylp wy > 1 wr > 1 wy <1 wy <1 No.
(1,0) [@2] =142 <1 <1 (1-1)
(1,1) (@] —14+ 24 impossible | impossible | impossible | impossible
(1,-1) (@] =142 impossible | impossible | impossible | impossible
(2,1) [2002] = 1+ 24+ 2001 (1-2)
(d,1) [dwy) — 1+ dA impossible | impossible | impossible | impossible
d+1,1) | [(d+ 1w =14+ (d+1)A+u (1-3)
2d+1,2) | [2d+ D] = 1+ 2d + 1)7 | > ¢ (1-4)

+[2d + Do Ju
(d-1,1) | [(d=1ew] =1+ (d-1)A impossible | impossible | impossible | impossible
Bd+2,3) | [Bd+2)wa] — 1+ (3d +2) | > ¢ > ¢ (1-5)
+[(3d + 2)on]u
Table 2. (u>0)
wn>0 nw>0
(»,2) Yoy = l02y] = 1+ pi+ ([o1y] + Du wy > 1 wy <1 No.

(1,0) (] =1+ 24u impossible impossible

(1,1 [ =1+ A4u (2-1)

(I,-1) (] —14+A+pu impossible impossible

(2,1) 2ws] = 1424+ ([2001] + (2-2)

(d,1) [dwy] —1+dA+u (2-3)

(d+1,1) (d+ D] -1+ (d+1)A+2u impossible impossible

(2d +1,2) [2d + D] — 1+ (2d + 1)4 > d (2-4)

+ ([(2d + Den] + Du
(d-1,1) [(d=1w] =1+ (d—-1)A+u (2-5)
(3d +2,3) [(3d +2)ws] — 1+ (3d +2)4 > ¢ (2-6)
+ ([(3d + 2)n] + 1)pe
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Table 3
W3, = [w2y] + yA u>0 w<0 u>0 u<0
(»,2) + ([o1y] — Du wy > 1 w > 1 wy < 1 wy <1 No.
(1,0) (] +A—p impossible | impossible | impossible | impossible
(1, 1) (@] +2—p impossible | impossible | impossible | impossible
(1,-1) (2] + 2 —p <1 (3-1)
(2,1) [2wa] + 22+ (21) — )i | impossible | impossible | impossible | impossible
(d,1) [dawy) +di—p impossible | impossible | impossible | impossible
d+1,1) | [([d+ Dw] +(d+1)4 impossible | impossible | impossible | impossible
(2d +1,2) | [(2d + 1)ewa] + (2d + 1)A impossible | impossible | impossible | impossible
+ ([(2d + D] = Du
(d-1,1) | [(d—=1)ws]+ (d —1)A— u | impossible | impossible | impossible | impossible
(3d +2,3) | [3d +2)en] + (3d +2)4 | > ¢ > ¢ (3-2)
+ ([(3d + 2)o1] — Nu
Table 4
wn>0 n<0 n>0 n<0
(y,2) Vi, = [w2y] + YA+ |01 ylu wy > 1 wy > 1 wy < 1 wy < 1 No.
(1,0) [wa] + 2 <1 <1 (4-1)
(1,1) [w2] + 2 impossible | impossible | impossible | impossible
(1,-1) [w2] + 2 impossible | impossible | impossible | impossible
2.1) [202] + 24+ 2o > b (4-2)
d,1) [dy) + dA impossible | impossible | impossible | impossible
(d+1,1) [(d+ D] +(d+DA+u | > ¢ (4-3)
2d+1,2) | [2d+ Vo] + (2d +1)4 > ¢ > ¢ (4-4)
+(@2d + Donu
(d—-1,1) [(d—=1Dwi]+ (d—-1)A impossible | impossible | impossible | impossible
(3d+2,3) | [(3d +2)ma] + (3d +2)4 > ¢ > ¢ (4-5)
+((3d + 2)an]u
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Table 5
Ws = [2y] + yi w>0 w<0 w>0 w<0
(»,2) + ([ y] + D wy > 1 w > 1 w <1 w <1 No.
(1,0) (2] + A+ u impossible | impossible | impossible | impossible
(1,1) (@] + A+ u <1 (5-1)
(1,-1) (2] + 24 1 impossible | impossible | impossible | impossible
Q1) | Rod+ 224 Qo+ i | > dg (52)
(d,1) [dws] +dA+ u > ¢e(d > 2) (5-3)
(d+1,1) | [(d+ Dwa] + (d+1)A+2u | impossible | impossible | impossible | impossible
(2d +1,2) | [(2d + 1)) + (2d + 1) > > de (5-4)
+([2d + o] + D
d=1,1) |[(d=Dwa]+(d—1)it+u |>ds(d=3) (5-5)
(3d +2,3) | [(3d +2)ws] + (3d + 2)2 > > e (5-6)
+([3d +2)on] + D
Table 6. (u>0)
w>0
(5,2) Vs, = lway] + yA+ ([w1y] +2)u o S 1 No.
(1,0) (@] + A+ 2u impossible
(1, 1) [@2] + A+ 2u impossible
(1,-1) (2] + 2421 impossible
(2,1) [2c02]) 4+ 24 + (2001] + 2)u impossible
(d,1) [dws] + di+2u impossible
(d+1,1) [(d+1)ws] + (d+ 1)+ 3u impossible
(2d +1,2) [2d + Dn] + (2d + 1)A+ ([(2d + 1)1 + 2)u impossible
(d-1,1) [(d = 1)ws] + (d — 1)+ 2u impossible
(3d +2,3) [(3d + 2)aa] + (3d + 2)4 + ([(3d + 2)en] + 2)u impossible
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Table 7. (1> 0)
u>0

(,2) Yo,y = lo2y] + 14+ yi+ ([o1y] — Du o s 1 No.
(1,0) (] +14+A—u impossible
(1,1) (] + 144 —u impossible
(1,-1) [2] + 144 —u (7-1)
2,1) [20a] 4+ 1+ 22+ (201] — Du impossible
(1) [dwy) + 1+ di— impossible
(d+1,1) [(d+ D] + 14 (d+1)A impossible
(2d +1,2) [2d + D] + 1+ 2d + 12+ ([(2d + Devy] — Du impossible
(d-1,1) [(d =] +1+d—-1)i—p impossible
(3d +2,3) [3d + 2)wa] + 1 + (3d +2)A+ ([(3d + 2)n] — D > ¢

Table 8
uso

(5,2) Vs, = @2y + 1+ pA+ oy S 1 No.
(1,0) [ +1+ 4 (8-1)
(1,1) (@] + 1+ 7 impossible
(1,-1) (2] + 1+ impossible
(2,1) Raws] + 1424+ 201]u > ¢
(1) [dwn) + 1+ dJ. impossible
(d+1,1) [(d+ D]+ 1+ (d+1DA+u > ¢
(2d +1,2) [2d + Dea] + 1+ 2d + 1A+ [(2d + D > de
d—1,1) [(d =] + 1+ (d = 1)2 impossible
(3d +2,3) [(3d 4+ 2)ma] + 1+ (3d + 2)A + [(3d + 2) o1 > ¢
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(.2) Yo,y = [02y] + 1+ y2+ ([o1)] + Du a/:z<§01 No.
(1,0) @] +1+4+u impossible
(1,1) [ +1+A4+u (9-1)
(1,-1) ] +1+A+pu impossible
2,1 2] 4+ 1422+ (2] + 1)u > ¢
(d,1) [dwn]+1+di+p > dg(d > 2)
(d+1,1) [(d+Dws] + 1+ (d+1)A+2u impossible
(2d +1,2) [(2d + Dwn] + 14 (2d + )A+ ([(2d + D] + Du >
(d—1,1) ((d = D] + 14 (d — DA+ u > ¢o(d = 3)
(3d +2,3) [(3d + 2)wn] + 1 + (3d +2)7 + ([(3d + 2)eo] + D > b

Table 10. (u<0)
w<0

(»,2) Yo,y = 02y + 14 p2 + (01 y] + 2)u o S1 No.
(1,0) () + 1+ 2+ 2u impossible
(L, 1) (2] + 14+ 24 2u impossible
(1,-1) (2] + 14+ 24 2u impossible
(2,1 2w2] + 1422+ (2wi] +2)u impossible
(d,1) [dws] + 1 +di+2u impossible
(d+1,1) [(d+ D] + 1+ (d+1)A+3u impossible
(2d +1,2) [2d + D] + 1+ (2d+ 1)A+ ([(2d + 1)o1] + 2)u impossible
(d-1,1) [(d=1Dw] + 14 (d—-1)A+2u impossible
(3d +2,3) [(3d +2)wa] + 14 (3d 4 2)7. + ([(3d + 2)n] + 2)u impossible




A method for finding a minimal point of the lattice 103

Table 10 (continued)

u<0
(,2) Y12,y = [02)] + 2+ yA+ (Jo1y] + D oy s1 No.

(1,0) (] +24+A4u impossible
(1,1) (@] + 247+ u >
(1,-1) (] +24+ A+ u impossible
(2,1) [202] + 24224+ (2w1] + Du > ¢

(d,1) [denn] + 2+ dA+u > de
(d+1,1) [(d+ D] +2+ (d+1)A+2u impossible
(2d +1,2) [2d + D] +24 (2d + 1)A+ ([(2d + e ] + D > ¢
d—1,1) (d=1V)ws] +2+ (d — Di+u > ¢(d > 2)
(3d +2,3) [(3d + 2)a) + 2+ (3d + 2)A + ([(3d + 2)an ] + N > de

6. Main Theorems

THEOREM 6.1A. Let #=<1,A,u> be a reduced lattice of K such that
0<i<1, 0<X, <X, O<wi(4u <1, @(du)>0,a>1,2b| <1, 0<pu<
1, ¢, > 1, where a=F(u), b=7Y,. Then

(1) If Fld) < 1:

(i) if b <0, then the minimal point adjacent to 1 is ¢, ¢ or ¢,;

(i) if b > 0, then the minimal point adjacent to 1 is ¢, or ¢s.

(2) If F(d)) > 1, F(dy) < I:

() if b <0, then the minimal point adjacent to 1 is ¢;

(i) if b >0, then the minimal point adjacent to 1 is ¢y or ¢s.

(3) If F(¢1) > 1, F(¢y) > 1, F(gg) <1,
then the minimal point adjacent to 1 is ¢

PrOOF. Since ¢, = [w2] + 4 > 1, we have [w;] > 1.

(1) was proved in [5], Theorem 2.1.

(2) We assume that F(, ) > 1, F(ys,) < 1.

(i) the case b <0, by Lemma 4.5,(4), we have ¢; =3, # 0,. By Lemma
4.5,(8), we have ¢4 =y | # 0,. The others were proved in [5], Theorem 2.1;

(i) The case b > 0. The case were all proved in [5], Theorem 2.1.
(3) We assume that F(yy ) > 1, F(ys,) > 1, F(yg,) <1
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By Lemma 4.5,(1)(2) and Remark 4.4,(1), we have 0, € {l//1,,y>l//2,ya%,y:lh,y’

l//5,y7l//6,y7lp7,yvlp8,l}'
(i) The case b <0. By Lemma 4.5,(3), we have 0, € {y; ,,¥3 ,, %4 ,,¥s

Vg1l

Also by Lemma 4.5,(10) we have ¢, = [wp] — w2 < —1/2.

(a) In the case of v, ,, based on Table I,

(1-1) from v | =g, —2 and F(yg,) <1, we have F(y ;) > L.

(1-2) by Lemma 4.5,(12), ¥y, = [20] —14+24+4u=2[wy] +24+u or
2an] = 1+24+pu Since ¢ < —1/2, Yy, #2[wa] —1+22+u. Hence ¥, =
2] 4+ 224 1 > g 4.

(1-3) d=2= 4y 401 > VYg 1. I d=1, then Yy 4 = 5 = 2] — 14+24+
This case is just the same as (1-2).

(b) In the case of Y5 ,, based on Table 3,

(3-1) by Lemma 4.5,(4) ¢5 = 3, # 0,.

(c) In the case of y, ,, based on Table 4,

(4-1) by the assumption vy, # 0,.

(d) In the case of ys ,, based on Table 5,

(5-1) by the assumption 5 # 0,.

As a result, g, remains.

(ii) The case b >0. By Lemma 4.5,(3), we have 0, € {y ¥4, ¥s s
Yoy st}

(a) In the case of v, ,, based on Table 2,

(2-1) by Lemma 4.5,(9), ¥, # 0,.

(2-2) by Lemma 4.5,(12), ¥, = 23] — 1 + 24+ pu = 2[wa] + 24 + u(> g 1)
or 2[wy] —1+24+p.

The case ¥, =2[wa] — 1+ 24+ If [w3] =2, then we have 2[w;] — 1+
20+ pu>g . If o] =1, then Y, =1+21+u We shall show that
F(14+2A+4u)>1. Since F(¢s) =F(2+ 1) <1, we have —1< Yp;) <1, so
—3 < Y; < —1. Suppose that ¥, > —3/2. Then Y»,;, =2+ Y, > 1/2. From this,
we have 1/4+ 273, < Y7, + Z3,, < 1. Hence, |Z,,| < v/3/2. Since Y; > —3/2
and Y, < -1, we have —1/2< Y, <0. Hence, F(1+1) =Y}, +Z} =
YL, +Z3, <1/4+3/4=1. Since F(¢;)=F(1+4)>1, we have reached a
contradiction. Therefore, we have Y; < —3/2. From this, we have Yj,y, =
14+2Y;+Y,<1-3+47Y,<-3/2. Hence, F(1 +21+pu)> 1.

(2-3) d=3 =, = [dwy] =1 +di+u> g .

The case d = 1,2 are just the same as (2-1) or (2-2).

(2-5) Similar to (2-3).

(b) In the case of Y, ,, based on Table 4,
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(4-1) by the assumption, Y4 # 0.

(c) In the case of Y5 ,, based on Table 5,
(5-1) by the assumption s # 0.

(d) In the case of Y ,, based on Table 6,

no case is included

(¢) In the case of 5 ,, based on Table 7,
(7-1) by Lemma 4.5,(5), ;| # 0,.

As a result, g, remains. O

ReMARK. From the proof in [5, Theorem 2.1], (1) and (2) don’t re-
quire the assumption 0 < X, < X,. Moreover, in (1) and (2) (except for the
part of ¢,), we can weaken the condition from a>1, 2/b| <1 to a>
max(1,2b2,2|b|).

THEOREM 6.2A. Let # =<1,A,u> be a reduced lattice of K such that
0<i<l, 0<X,<X;, 0<wi(du) <1, wr(du)>0, a>1, 2|b| <1, u>1,
¢y > 1, where a=F(u), b=Y,. Then
(1) If Flg) < 1:

(i) if b <0, then the minimal point adjacent to 1 is ¢;, ¢ or ¢,;
(i) if b >0, then the minimal point adjacent to 1 is ¢, or ¢;.
(2) If F(gy) > 1, F(gg) < 1:

() if b <0, then the minimal point adjacent to 1 is ¢g;

(

ii) if b >0, then the minimal point adjacent to 1 is ¢s5 or ¢.

PrOOF. Since ¢ = by = [w2] + 2> 1, we have [wy] > 1.

(1) We assume that F(iy, ) < 1.

By Lemma 4.5,(1)(2) and Remark 4.4,(2), we have 0, € {iy ,, Y3 ,, 7,41}
(i) The case b <0. By Lemma 4.5,(3), we have 0, € {yy ,, 3, ¥4}

a) In the case of , ,, based on Table 1,

1-1) 4 1.

1-2) 5 = Ran] = 14+24+ > g 4.

1-3) Wy a1 > Wg 1 > V4

b) In the case of Y5 ,, based on Table 3,

(1) v

As a result, Y44, Y3, and ¥, ; remain.

(i) The case b >0. By Lemma 4.5,(3), we have 0, € {{7,,¥4}-

(a) In the case of y ,, based on Table 7,
(

7-1) g ).

(
(
(
(
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As a result, Y, and y;; remain.
(2) We assume that F(y, ) > 1, F(ys,) < 1.
By Lemma 4.5,(1)(2) and Remark 4.4,(2), we have 0, € {{; ,, ¥ ,, W3 5, V4 s
l//7,}771//8,1}-
i) The case b < 0. By Lemma 4.5,(3), we have 0, € {{ ,, {3 ,, 4 ;¥ }-
a) In the case of i, ,, based on Table 1,
1-1) from W, | =Yg, —2 and F(y5,) <1, we have F(y, ) >
1-2) Yy 5= [2w2]—1+2ﬂ+ﬂ>‘ﬁ81
1-3) a1 > s -
(b) In the case of Y5 ,, based on Table 3,
(3-1) by Lemma 4.5,(4) ¢5 =3 | # 0,.
(c) In the case of y, ,, based on Table 4,
(4-1) by the assumption v, | # 0,.
As a result, g, remains.
ii) The case b > 0. By Lemma 4.5,(3), we have 0, € {{ ,, V4 V7 ,,¥s1}-
a) In the case of y, ,, based on Table 2,
D) Yo1 =[] =1+ A4 u(> ).
2-2) Ypp=[202] =14+ 2A+u> Yy,
2-3) d=3= Yy = [dwy] =1 +di+p> g .
The cases d = 1,2 are just the same as (2-1) or (2-2).
(2-5) Similar to (2-3).
(b) In the case of y, ,, based on Table 4,
(4-1) by the assumption v, | # 0,.
(
(

(
(
(
(
(

(
(
(2-
(
(

c) In the case of y ,, based on Table 7,
7-1) by Lemma 4.5,(5) ¥, # 0,.
As a result, Y5, and y, | remain. |

THEOREM 6.3A. Let # =<1,A,u> be a reduced lattice of K such that
0<i<l, 0<X,<X;, O<owi(Au<l, w2(d4,p) >0, a>1, 2/b| <1, u<o,
¢y > 1, where a =F(u), b=1Y,. Then

(1) If F(¢)) < It

(i) if [w2] =2, then the minimal point adjacent to 1 is ¢y, ¢y or ¢4

(ii-a) if [w2] =1, A+ u <0, then the minimal point adjacent to 1 is ¢, or

+ @9,

(ii-b) if [wa] =1, A+u>0, then the minimal point adjacent to 1 is ¢,
or ¢,.

(2) If F(¢y) > 1, F(¢g) <1, then the minimal point adjacent to 1 is ¢,, ¢

or ¢q.
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Proor. Since 1 <0 and 0 < X,, we have » <0 and —1/2 < pu.
From Table 10 and Lemma 4.5,3), we have 0, € {{y ,, V3, V4, Vs,

a) In the case of ¥, ,, based on Table 1,

1-1) -

1-2) by Lemma 4.5,(12) ¥ 5 = [202] = 1 4+ 224 u = 2[wn] + 24+ pu(> Y4 1)
or 2[wy] — 1421+ p.

The case ¥, , = 2[wy] — 14+ 224+ p. If [wy] = 2, then we have Y2 > Yy I
(2] =1, Vio=14+24+u

(1-3) d =2 = 441 = Ban] = 1+ 34+ pu >y . The case d =1 is just the
same as (1-2).

(1-4) ¥ 2gs1 > Way-

b) In the case of Y5 ,, based on Table 3,
) g = o] + A - > (o] + A=y,

¢) In the case of Y, ,, based on Table 4,
-1) Yy

2) Yap = Rwa] + 22+ 1>y .

-3) Yaar1 > Va1

d) In the case of ys ,, based on Table 5,
) Ws = lw] + 4+

) Uso=[20] + 24+ 1>y ;.

) d=2= s> 20 + 24+ 1> Yy .
The case d =1 is just the same as (5-1).
-5) Similar to (5-3).

e) In the case of y5 ,, based on Table 8,
8-1) g1 > Wy
f) In the case of Y ,, based on Table 9,

O-1) Yo =[wa] + 1+ A+ u>y,.

As a result, Y4y, Y5y, ¥, and 1+ 24+ u remain. Moreover, If [wy] > 2,
then we have 0, # 1 + 24+ u. The case [wy] = 1. Since ¢y = | = [w2] — 144
=<1, we have 0, #, . If A+ <0, then we have ¢y =1+1+pu<1. If
A+ p >0, then we have 1 4+ 21+ p # 0, because 1 +2A+u=14+ 14+ A+ u) >
1+4=1vy,.

(2) We assume that F(¢;) > 1, F(d) < 1.

We note that by Lemma 4.5,(10), we have ¢, = [w2] — w2 < —1/2. So by
Lemma 4.5,(12), we have [2w;] = 2[w,] + 1.

(a) In the case of y, ,, based on Table I,

-1
-2
-3
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(1-1) from v | =g, —2 and F(yg,) <1, we have F(y, ;) > 1.

(1-2) ¥ 5 = [202] =1 + 24+ u = 2[ws] + 24 + p. If such a y; , exist, then by
[2wi] =1, we have ¢ < —1/2(& 2w1] =1).

(i) The case [wy] = 2. We have y , > g ;.

(i) The case [wy] = 1. Yy, =24+2A+u>2+ A+ pu="yqy;.

From Lemma 4.5,(11), we have F(yq ;) < F(g ;). So we have F( ;) <1
Therefore, ¥ , =2+ 24+ u # 0,.

(1-3) (i) The case d>2. We have ¥ 4.1 = [3cwa] =1+ 34+ pu = [20] +
[02] = 14+ 34 4 p=3[wa] + 344+ p > g ;.

(i) The case d =1. Since d =1 < [2w;] =1, this case is just the same as
(1-2).

(1-4) Yy 2041 = [Ban] = 1+ 32+ 2u = [202] + [w2] — 1+ 34+ 2u = 3w + 34
+2u> Yy .

(b) In the case of Y5 ,, based on Table 3,

(3-1) by Lemma 4.5,(4) ¢5 = 3, # 0,.

(c) In the case of y, ,, based on Table 4,
(4-1) F(yy) > 1.
(4-2) Yy = R + 24+ pu=2]mo] + 1+ 24+ u > g ;.
(4-3) Yy a1 = 202 + 224+ 1> Yy 1.
(d) In the case of Y5 ,, based on Table 5,
) Ws=[w] + 4+
) Wso = [200] + 24+ p=2[wy] + 1+ 22+ p> g .
) d=2= s g > 20 + 24+ p> Yy ).
The case d =1 is just the same as (5-1).
(5-5) Similar to (5-3).
(¢) In the case of g ,, based on Table 8,
(8-1) F(yg) <1
(f) In the case of vy ,, based on Table 9,
(9-1) Yoy = (@] + 1+ 2+ 4.
As a result, Y5 ,¥s, and Y, remain. O

(5-1
(5-2
(5-3

THEOREM 6.1B. Let # =<1,A,u> be a reduced lattice of K such that
0<i<1, 0<X, <X, O<wi(4u <1, wr(iu)>0,a>1, 2b| <1, 0<pu<
1, ¢ <1, F(¢g) <1, where a=F(u), b=7Y,. Then

(1) If F(¢,y) <1, then the minimal point adjacent to 1 is ¢,.

(2) If ¢, > 1, F(¢y) > 1, then the minimal point adjacent to 1 is ¢s.

(3) If ¢ < 1:
(

i) if b <0, then the minimal point adjacent to 1 is ¢;
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(i-a) if b>0, 224+u <1, then the minimal point adjacent to 1 is ¢
or ¢y,
(ii-b) if b>0, 2A+u> 1, then the minimal point adjacent to 1 is ¢

or ¢g.

Proor. From the assumption ¢; < 1, by Lemma 5.2,(1), we have Y, <
—1/2. By Corollary 5.3, if b <0, then we have 1 > w, > 1/2.

(1) We assume that F(ys,) <1. Since # is a reduced lattice, we have
Ys1 = oo + 4+ ([on] + D=+ > 1.

By Lemma 4.5,(1)(2) and Remark 4.4,(1) we have 0, € {{; ,,, 5, V5 5, V4
lp7,y7 WS,I}'
i) The case b < 0. By Lemma 4.5,(3), we have 0, € {{; ,,, V5 ,, ¥4, ¥s 1}
a) In the case of i, ,, based on Table 1,
1-2) since [2mp] =1, we have ¥y , =244+ u> g > s ).
1-3) [(d+ D] =2 =Yy 401 > 51 > sy (d+ D] =1= ) 4y =
(d—|— 1))»—!—,11 = Y,/,Ld“ = (d+ I)Y; + Y,u < —1.

(1-4) [2d + Dan] =2 = Yy 21 > Vs > Ys 1 [2d+ D] =1 = 54 =
<2d+ 1)/"L+2ﬂ > lp&l > l//5~,1'

(1-5) from [(3d +2)w,] =2, we have Yy 3, = 14 (3d +2)A+3u> g | >
Vs -

b) In the case of Y5 ,, based on Table 3,

3-2) Y3302 > Vg1 > Ws -

o~~~ —

ii) The case b > 0. By Lemma 4.5,(3), we have 0, € {y, ,,, Vs, ¥7 ,,¥s 1}

a) In the case of i, ,, based on Table 2,

2-1) Yy =14+ A+u<l.

22) Ran]=0=yp,=—1+24+u=Yy,,=-1+2Y; + ¥V, < —1. 2wn] =
L= =22+p>Yg > s

(2-3) [dan] =22 = p 4 > g > sy, [doa]=1=Since d=2, yY,,=
d}u+ﬂ>lﬁ8ﬁ1 >x//571. [dw2]=0=>lﬁ27d=—1+dl+/vl:> Yy,, =—-1+dY, + 7,
< -1

(2-4) [2d + D] 2 2= g 0401 > Vg1 > Ys - [(2d + Den] =1 =4y 901 =
(2d +1)A+2u> gy > sy [2d+Dwa] =0= 4y 500 = -1+ 2d +1)4+2u
= Y,/,Md“ =—1+(2d+ 1)Y1+2YH < —1.
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(2-5) Similar to (2-3).

(2-6) [(3d +2)wn] 2 2= Yy 3410 > Vg1 > Ys - [Bd + 2] =1= 30, =
(3d +2)A+3u> gy > sy [Bd+2)wr] =0= s 350=—1+3d+2).+3u
= Y‘/’2.3d+2 =—-1+Bd+2)Y,+ 3, < —1.

(b) In the case of Y, ,, based on Table 4,

(4-2) Ron] =0= Yy, =24+pu> g > Ys . Ron]=1= Yy, =1+24+u
>y > sy

(4-3) Yy g41 > g1 > s 1
4-4) Yy a1 > g1 > ¥s 1
4-5) V43042 > g1 > ¥s 1
c) In the case of y ,, based on Table 7,

7-1) by Lemma 4.5,(5) 7 ; # 0,.

As a result, 5, remains.

(2) We assume that Y5 | =A+u>1, F(ys,) > 1.

By Lemma 4.5,(1)(2) and Remark 4.4,(1) we have 0, € {{ ,, ¥ ,, W3 5, V4

Vs W o7 o Vs 1 -

(i) The case b < 0. By Lemma 4.5,3), we have 0, € {\ ,,¥3 ¥4 ,,¥s ,,
g1}

(a) In the case of y, ,, based on Table I,
similar to (1).

(b) In the case of Y5 ,, based on Table 3,
similar to (1).

(c) In the case of y, ,, based on Table 4,
similar to (1).

(d) In the case of ys ,, based on Table 5,

(5-1) from the assumption, F(ys ) > 1.

(5-2) Y52 > ds. (53) Ysa> ds(d = 2).

(5-4) Y5411 > P (55) Ws a1 > ds(d > 3).

As a result, Yg | remains.

(ii) The case b >0. By Lemma 4.5,3), we have 0, € {{ ,, V4 s ¥s ,, Vg s
VW81 }-

(a) In the case of i, ,, based on Table 2,
similar to (1).

(b) In the case of v, ,, based on Table 4,
similar to (1).

(c) In the case of Vs ,, based on Table 5,

(5-1) from the assumption, F(ys ) > 1.

(5-2) Y52 > ¢6. (5-3) Y5y > ¢e(d = 2).

(
(
(
(
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(5-4) ¥s 2041 > b6 (5-5) Ys a1 > d6(d = 3).

(d) In the case of Y ,, based on Table 6,
no case included

(¢) In the case of V5 ,, based on Table 7,
similar to (1).

As a result, g, remains.

(3) We assume that s < 1.

By Lemma 4.5,(1)(2) and Remark 4.4,(1) we have 0, € {{; ,,, 5, V3 5, Vs
Vs Wy Yy Vs 1 )

(i) The case b <0. By Lemma 4.5,3), we have 0, € {\ ,,¥3 ,, %4 ,,¥s ,,
V1)

(a) In the case of Y, ,, based on Table I,

(12) Wy, =204 p, Yy, =2Y,+ Y, < —1.

(1-3) The case d >3. Yy 40y > 1+4Ai+u>¢s. The case d=2. Y 4, =
Bwa =14+32+u PBon]=2= Y 40 =1+32+u>d¢s. Bwn]=1=y 44
34+ . Yl/’l_,m =3Y,+Y,<-1

(1-4) The case d = 2. Yy 54,1 > dg-

The case d=1. Y45, = [Bwa] = 14+324+2u [Bawn]=2= Y5 =1+
304 2u> ¢g. Ban] =1= ) 200 =34+2u Yy, =3Y,+2Y, <~

(1-5) V1 3412 > P6-

(b) In the case of 5 ,, based on Table 3,

(3-2) ¥3.3042 > de-

(c) In the case of y, ,, based on Table 4,
(
(
(
(

42) Yo > e (43) Va a1 > b (44) Vanai1 > d6- (4-5) V43002 > Pe.

d) In the case of ys ,, based on Table 5,

5-1) from the assumption, 5| < 1. (5-2) Y5, > .

5-3) Ys.a > ds(d = 2). (5-4) Ys 2001 > b (5-5) 541 > de(d = 3).

As a result, g, remains.

(ii) The case b >0. by Lemma 4.5,3), we have 0, € {{5 ,, Vs, ¥s ,, Vg s
Y, W1}

(a) In the case of y, ,, based on Table 2,

2-1) Yy =—-1+i4+pu<1.

(2-2) Ron] =0=yp,=—1+2A+u<i<l. 2wy =1= 4y, =24+

(2-3) The case [dwa] = 2. Wy g > g > sy

The case [dw;] =1. We have d >2 =, ,=di+u If d=3, then we
have Yy, , =dY;+ Y, < —1. Hence, only when d =2, it is possible to have
Oy =V 4="2,=2A+u The case [dwn]=0. Yp,=-1+di+p Yy, =
—1+dY,+ Y, < -1
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(2-4) The case [(2d + 1)wa] = 2. Y5 5441 > g 1. The case [(2d + 1)wa] = 1.
Vr2a1 = (2d+1)A+2u If d =2, then we have Yy, , = @2d+1)Y;+2Y,
< —1. Hence, only when d =1, it is possible to have 8, =y, ;=314 2u.
The case [(2d+ 1)wn] =0. Y05 =14+ Qd+1)A+2u. Yy, =-1+
(2d+1)Y; +2Y, < —1.

(2-5) Similar to (2-3).

(2-6) The case [(3d +2)wa] =2. Y3400 > Yg - The case [(3d +2)w,]
=1 Y3400 =0Bd+2)2+3u Yy, ,=0Bd+2)Y;+3Y,<—1. The case
[(Bd+2)wn] =0. Yy350=—-1+0Bd+2)A+3u. Yy, ,,=-1+03Bd+2)Y; +
3Y, < L

(b) In the case of Y, ,, based on Table 4,

(4-2) L] =0= Yy, =24+pu Ron]=1= Yy, =1+24+u> g .

(4-3) The case [(d+ 1)wa] = 1. Wy 401 > Y5 The case [(d+ 1)wy] =0.
Vg0 =@+ 1)A+u If d=2, then we have Yy, =d+1)Y;+7Y,<-1
Hence, only when d =1, it is possible to have 0, =, , = 22+ p.

(4-4) The case [(2d + 1)w] = 1. Yq 54,1 > b5 1. The case [(2d + 1)wy] = 0.
Vara1 = (2d + 1)+ 2u If d =2, then we have Y, =2d+1)Y; +2Y, <
—1. Hence, only when d =1, it is possible to have 0, =, 3 = 34+ 2u.

(4-5) [Bd +2)mn] 2 1=y 3040 > Vg 1. [(Bd +2)wa] =0 =y 30,5 =(3d +2)4
+ 3u. Yl//4,3d+z =Bd+2)Y,+ 3y, < -1

(c) In the case of Vs ,, based on Table 5,

(5-1) from the assumption, F(ys ) > 1.

(5-2) Ran] =0= s, =2A+pu Ron]=1= s, =1+224+u> g .

(5-3) The case [dwy] = 1. W5 4 > g -

The case [dwy]=0. Ys5,=di+u If d=3, then we have Y, =
dY;+ Y, < —1. Hence, only when d =2, it is possible to have 0, =5, =
20+ p.

(5-4) The case [(2d + 1)wz] = 1. Ws594,1 > g 1. The case [(2d + 1)w,] = 0.
Ws a1 = (2d +1)A+2u. If d =2, then we have Yy, = (2d+1)Y; +2Y, <
—1. Hence, only when d =1, it is possible to have 0, = 53 = 32+ 2u.

(5-5) The case [(d—1)wa] = 1. s, 1> s, The case [(d—1)ws] =0.
sy =(d—1)A+u If d>4, then we have Yy, , =d-1Y,+7Y,<-1
Hence, only when d = 3, it is possible to have 0, = 5, =21+ .

(d) In the case of v ,. based on Table 6,
no case included

(¢) In the case of V5 ,, based on Table 7,

(7-1) By Lemma 4.5,(5) 71 # 0,.

As a result, 24+ 4,34+ 2u and g remain. If 21+ u <1, then we have
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204+u#06, If 224+u>1, then we have 314 2u# 0, because 31+ 2u=
A+ +i+pu>1+A=g,. O

THEOREM 6.2B. Let # =<1,A,u> be a reduced lattice of K such that
0<i<l, 0<X,<X;, 0<wi(du) <1, wr(du)>0, a>1, 2|b| <1, p>1,
¢ <1, F(gg) < 1, where a = F(u), b= Y,. Then the minimal point adjacent to 1

is ¢6'

Proor. From the assumption ¢; <1, by Lemma 5.2,(1), we have Y, <
—1/2. By Corollary 5.3, if b <0, then we have w; > 1/2.
By Lemma 4.5,(1)(2) and Remark 4.4,(2) we have 0, € {{; ,,, 5 5, V3 3, Vs
Y7,y s 1}
i) The case b < 0. By Lemma 4.5,(3), we have 0, € {{; ,,, V3 ;¥4 ,, Vs 1}
a) In the case of i, ,, based on Table 1,
1-1) from ¥ ; =g —2 and F(yg ) <1, we have F(y; ;) > 1
1-2) Y15 =244 u> g 1. (1-3) ¥y g1 > Vs 1-
1-4) Y1 nag > W1 (155) Wi 3040 > g 1
(b) In the case of Y5 ,, based on Table 3,
(3-2) V33042 > ¥s1-
(c) In the case of y, ,, based on Table 4,
(4-2) Yy > g . (4-3) Vg3 > g

4) Va2ai1 > Vs1- (45) Y3000 > Vs -

(4
As a result Y| remains.
ii) The case b > 0. By Lemma 4.5,(3), we have 0, € {{5 ,, V4 V7 ,, V5 1}
a) In the case of i, ,, based on Table 2,
2D Y =—1+A+p Yy, =-1+Y,+ Y, <L
22) Yy =Ran] = 1+4+24+pu  Ron]=0=y,,=-1+22+u Yy, =
1 +2Y;,+ Y, < —1L Ran]=1= Yy, =22+ u> g .
(23) [don) = 1= vy g = [deos] = L+ di+u> gy [don] =0 = Yy s =
—l+di+u Yy,,=-1+dY,+ Y, <-L
(2-4) Y0441 > g1+ (2-5) Similar to (2-3).
2-6) Y3412 > Vg1
b) In the case of Y, ,, based on Table 4,
2) Yuo > Vg1 (43) Yy a > Vs
4) Yy a1 > s 1- (45) V3400 > Ys 1
¢) In the case of Y7 ,, based on Table 7,

(
(
(4-
(4-
(

Y1 =1+A-u<i<l

As a result, g, remains. O
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THEOREM 6.3B. Let #=<1,A,uy be a reduced lattice of K such that
0<i<l, 0<X,<X;, O<owi(hu<l, wdp) >0, a>1, 2/b| <1, u<O,
¢ <1, F(¢g) <1, where a =F(u), b=1Y,. Then

(1) If F(¢g) <1, then the minimal point adjacent to 1 is ¢g.

() If Fig) > 1:

() if 24+ p <0, then the minimal point adjacent to 1 is ¢ or ¢g + ¢o;

(i) if 24+ 1 > 0, then the minimal point adjacent to 1 is ¢ or 1+ ¢y.

Proor. From the assumption ¢; <1, by Lemma 5.2,(1), we have Y, <
—1/2. Since 4 <0 and 0 < X,, we have b <0. By Corollary 5.3, we have
@3 > 1/2. From Table 10 and Lemma 4.5,(3), we have 0, € {¢; ,, V3 ¥4 5 ¥s
2 2

(a) In the case of y, ,, based on Table I,

(1-2) Y1, =24+up Yy, ,=2Y, + ¥V, < -1

*1-3) d=5= Yy 441 = [602] =1+ 644+ u=2+64+pu> g . d=1=
Vg =24+u Yy . =2V, + Y, <-L

Hence, only when 2 < d <4, it is possible to have 0, = ;..

*1-4) d =3 =Yy 200 2 [T02] =1+ T2+ 2u =2+ T4+ 2u > g 4.

Hence, only when 1 <d <2, it is possible to have 0, = 54.1-

*1-5) d =2 =Yy 3000 = Bwa] = 14+ 8243u >3+ 84+ 3u> g ;.

Hence, only when d =1, it is possible to have 0, = 551 = ¥ s.

(b) In the case of Y5, based on Table 3,

(3-1) By Lemma 4.5,(4), ¢3 =3 | # 0,.

*(3-2) d =2 = 3 34,2 > g . Hence, only when d = 1, it is possible to have
Oy = V3 3012 = V3. 5-

(c) In the case of y, ,, based on Table 4,

*4-2) Yy =1+24+

*43) d=3= Yy g0 2 [Bon] + 4+ u>2+ 40+ pu> Yy .

Hence, only when 1 <d <2, it is possible to have 0, =4 4,1

*4-4) d =2 = Yy 0001 = [Sn] + 54+ 20 =2+ 54+ 2u > g 4.

Hence, only when d =1, it is possible to have 0y =y 54,1

*4-5) d =2 = Yy 3000 = Bwn] +8A+3u =4+ 81+ 3u> g .

Hence, only when d =1, it is possible to have 05 = Yy 3,5

(d) In the case of ys ,, based on Table 5,

*(5-2) s, =1+24+

*5-3) d=4=Ys =B +4A+u=2+ 4+ u>pg . d=1=yYs,=
A+u<l.

Hence, only when 2 < d <3, it is possible to have 6, = s .
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*(54) d = 2= s 5041 = [Swo] + 54+ 21 =2+ 544 20> g .

Hence, only when d =1, it is possible to have 0y = 5 54,

*5-5) d=5= s = [ban] + 4+ uz2+ 4+ pu> gy d=2= 5 ,=
A+u<l.

Hence, only when 3 <d <4, it is possible to have 0, = 5 ;.

#(5-6) d =2 = 53400 = [8wn] + 84+ 3u >4+ 8L+ 3u> g .

Hence, only when d =1, it is possible to have 05 = s 3,.5.

(¢) In the case of g ,, based on Table 8,

*(8-1) From the assumption, F(yg ) < 1.

(f) In the case of yq ,, based on Table 9,

*9-1) Yo =[] + 1+ 2+ 4

From described above, we shall select all the elements in each part with
asterisk (*), using 1 < [3wy] <2, 2 < [4ws] <3, 2 < [Swy] < 4. Then we have the
following set

(U4 A1+ A4 1 4+ 24+, j+ 34+ pu(0 < j < 2),
JH3A42u(0 < j<2), j+4h+u(l <j<2),j+5i+ul <j<3),
J+5a+2u(1<j<3),j+54+3u(l <j<4)} =3

Here, we eliminate elements y € X such that > ¢s or Y, < —1. Then we
have

Y = {4 A LA+ L+ 224+ 1+ 34+, 1+ 34+ 21,2 + 5+ 3u).

(1) We assume that F(¢g) < 1. Since % is a reduced lattice, we have ¢g =
Y91 =1+ A+u>1. Hence, we have A+ x> 0. From this, we have 1+ 4+ u
<142A4+pu, 14+34+u, 14+32+2u, 2+ 54+ 3u. Therefore we conclude that
0y =¢g =1+ A+ u because ¢y < g =1+ 4.

(2) We assume that F(¢g) > 1. We note that d(A,u) = 1< 1/2 < w;. Hence,
if d =1, then by Lemma 4.5,(11), we have F(¢g) < 1. Therefore we have d > 2.
So we have 0, #1434+ 2u, 2+ 5.+ 3.

(i) The case 2A+u < 0. We have 0, =1+ 4 or 1+ 31+ .

(ii) The case 24+ > 0. We have 0, =1+ /1 or 1 +21+ u. O

7. Examples

Voronoi-algorithm:
Let K be a cubic algebraic number field of negative discriminant and let #
be a reduced lattice of K. We define the increasing chain of the minimal points
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of # by:
Oo=1, Oy =min{ye R;0, <y, F(0k) > F(y)} if k=0.

Then 6y, is the minimal point adjacent to 0 in .
Let Ok be the ring of integers in K and # = 0. By Voronoi we know that
the previous chain is of purely periodic form:

1:007 91,...,0/,1, €, 691,...769/,1,...,

where / denotes the period length and e(> 1) is the fundamental unit of 0. To
calculate such a sequence, it is sufficient to know how to find the minimal point
adjacent to 1 in d lattice .

Indeed let 0 be the minimal point adjacent to 1 in 2, = Ox =<1, ,y) and
0, = 0

@i ) We choose an appropriate point 0, so that {1, 051), 0,(11)} is a basis of #;.

(i) Let #, = R, then %, is a reduced lattice. 0;2) is the minimal point

ol
g 1
adjacent to 1 in %, = 0—9)5?1 =, 1/0(1),0(1)/0(1)>, is equivalent to 6, = Hlﬁéz)

)
= 0 0 being the minimal point adjacent to 0; in %;.
ThlS process can be continued by induction.

ExampLE 7.1. Let K=Q(0) be a cubic number field defined by

1.1 21
0 —70—12=0 (0 =3.2669). Then %z = <1,—2+50+502,2+§9—§92> =

<12 1.
It is easily seen that 0 < A< 1, 0 << 1.
Since %3 is a reduced lattice, we have a = F(u) > 1.

1

1 1 SN 2
Yy = E(TK/QH 9) —597 Yb,z :E(TK/QH —07) = 5(14 H)

1 3 15 IS
Xp==(30—Txl) =20, Xy ==(30° = Tgo0%) == (30° — 14).

2 2 2 2

2 1 7 1,
X=Xy 0m0-073) _§X9—§ gz:§+0—§0 >0,
X;— X, = ;—%9+%92>0
2 1 1 5 1

Y=Yy 030-01/3) 2+§Y0—§Y0 3( 2-20+467), 0< Y,,<§.
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Y; :i(—lo—e—ez). w1 (A1) =

2 2012 O<er<lh
. B 1 5 0—1 1 2
(0o 1) = =5 (710~ 0= 07) — 3o x £ (2204 07)

(0> =3), [wi] =1.

=

F([cuz]—&-/l):F(l—ki):1+%(6—3)> 1.

50
F([wzHHu):F(le):2759+92+g>1_

_ (Ll 1) 1 2
F([w2]+1+/1)—F(2+/1)—F(6H+66)—392(124—0 0°) < 1.
Therefore, by Theorem 6.1A,(3), we have 0, = [w2] + 1+ A =2+ 4.

ExampLE 7.2. Let K=Q(0) be a cubic number field defined by
0} —20— 111 =0 (0 = 4.9445). Then

Ry = 1, (=71 + 150 + 07) /98, (—61 — 230 + 50%) /196> = <1, 1, .
It is easily seen that 0 < A< 1, u<O.
Since %7 is a reduced lattice, we have a = F(u) > 1.

X, =20, X = (307 — 4,
)

3
2

1
X, =5 (150° = 690~ 20) = 0.0141 > 0 (c = 19).

4

1
X, — X, = 2—6(—902 + 1596 + 12) = 1.4748 > 0.

1 1
Y, = Z<_592 +230-102) = —0.2819, 0<|¥,[ <.

_ 1 2 71 ) -
Y = 5o (07 — 150 - 138) = (=07 — 150 — 138) = —1.2072.

&

—20+ 30

=04214, 0<a < 1.

(i) = —Y; — Y, = 12072 — 0.4214 x —0.2819, [o,] = 1.
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) NK/Q(x—i—yH—l—z@z) = x4+ 2 x 2x%z — 2xy% — 3 x 111xpz + 22xz2 + 1113
—2x 1lyz2 + 111223,
(a) By (1),

F(¢)) = F(lwa] + 2) = F(918 (27 + 1560 + 92)>

1 Ngj7+150+6%)
982 274150+ 07

_ 1 2
= 5 F(27 150+ 0°)

1 259308

=770 02149 < 1.
982 27 + 150 + 0?

(b) }t+u=%(702+7()—203) :%x2.7480> 0.
(c) By (1),

1
F@s) = Fllonl + 340 = (3 (-7 470476
1 Ngjo(=7+70+76%)
2 —T+70+ 76

1
=S F(=T+70+ 76%) =

_ 1 02592 565 .

A T+70+70
Therefore, by Theorem 6.3A,(1),(ii-b), we have 0, = ¢,.

ExamPLE 7.3. Let K = Q(6) be a cubic number field defined by 6° — 776 —
513 =0 (0 =11.1002). Then

Ry = (1,(—674 — 280 + 90%) /613, (1205 + 1210 — 1760%)/613)> = (1, 1, iD.

It is easily seen that 0 < A< 1, 0 <pu< 1.
Since %39 is a reduced lattice, we have a = F(u) > 1.

3

- 2 _154).
5 (30% — 154)

N | —

Xg=30, Xp=

1 1
X, = Z(—5192 + 3630+ 2618) = 5 x 363.4361 > 0 (c = 613).

1, 1
X, — X, = — — 4570 — 4004) = — 9349 > 0.
3= Xy = 5 (7807 — 4570 — 4004) = 5 x 533.9349 > 0

1, 1
= 5o (1707 — 1210 - 208) = 0.4433, 0 < ¥, <5.

Y, 5
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1 A 90 + 28

O0<w <1. (i) =-Y;—w Y, =0.6200— 04129 x 0.4433, [e,] = 0.

(@) ¢ =2+ p :%(—802 +930 + 521) = 0.9259 < 1.
(b) 2 + :%(92 4650 — 143) = 1.1447 > 1.

(1) Nijg(x + ¥0 +z0%) = x> + 2 x 77x%z — TTxp? — 3 x 513xpz + 77%xz% +
513y% — 77 x 51322 + 513223,
(c) By (1),

F(gg) = F([on] + 1+ 2) = FG (—61 — 280 + 902))

Nio(—61 — 280 + 962
— L (61280 +90%) = L x/Q i )
¢ ¢ —61 — 280 + 90

= iz _ 229837169 5 =0.8153 < 1.
= —61 — 280+ 90

(d) By (1),

1 Ngjo(0® + 650 — 143)
2 0% +650 — 143

F(2h+u) = Cle(az + 650 — 143) =

1 198781801

=55 —=07538 <1
¢ 07+ 650 — 143

Therefore, by Theorem 6.1B,(3),(ii-b), we have 0, =21+ .

ExampLE 7.4 (Williams and Dueck [8, p. 690]). Let K = Q(60) be a cubic
number field defined by 6° — 68781 =0 (0 = 40.97221992). Then

9?2307 = <17 ¢, l/j>
— (1, (—72036 + 18096 + 26%)/126539, (117574 — 26680 + 676%)/126539>
— (1, — 1> = <1, (=72036 + 18090 + 267)/126539,

(—8965 — 26680 + 670%)/126539

=0, hu. 0<Ai<l,u<0. 0<X,<X,.
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Since #1307 is a reduced lattice, we have a = F(u) > 1.

=20+ 1809 1, B
10 k) = 2o eeg Vi =~ 5, (207 + 180904 144072)  (c = 126539).
Y, =— 2% (670% — 26680 + 17930).

w; = 0.31904891. Y, = —0.87541450. Y, = —0.08333592.
w2 = 0.90200274.

Hence [ws] =0, ¢ =[wa] +Ai=2< 1.
(1) Nijo(x+ y0+20%) = x* — 3 x 68781xyz + 68781y + 68781223,
(a) By (1),
F(pg) = F(lwa] + 1+ 2) = F(1 +2) = FC (54503 + 18090 + 292))
1 Ng/o(54503 + 18090 + 20%)
¢ 54503 + 18090 + 262

= le(54503 + 18090 + 20%) =
C

1 528431935430042
€% 54503 + 18090 + 20>

(b) By (1),

= 0.25005464 < 1.

264 16>
F(1+2/1+,u):F< 6 98+96500+7 9)

1 Ng/o(—26498 + 9500 + 716°)

1
= — F(—26498 + 9500 + 716°) = — -
¢ ¢t —26498 49500 + 710

_ 1 2102375149688779 — 0.99760062 < 1.

2 26498 + 9500 + 716°

(c) By (1),

4

45538 — 8590 + 696>
F<¢8>—F<1+A+m—F< i >

1

N /o(45538 — 8590 + 69607
= 5 F(45538 — 8590 + 690°) /0 +696)

1
T2 45538 — 8590 + 696°

1 2161892194231336

= 5 = 1.07007239 > 1.
€= 45538 — 8590 + 690
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—153037 + 9500 + 716> -
C

(d) Since —153037 + 9500 + 710> > 0, 24 u =
—81001 — 2
(e) Since A+ p = 8100 i590+699 <0, we have 1 +2A4+u<1+4.

Therefore, by Theorem 6.3B,(2),(ii), we have 0, =1+ 21+ .

0.
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