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SOME TRANSFORMATIONS ON (LCS),-MANIFOLDS

By

Absos Ali SHAIKH and Helaluddin AHMAD

Abstract. The present paper deals with a study of certain trans-
formations on an (LCS),-manifold. It is shown that an (LCS),-
manifold remains invariant under a D-homothetic deformation.
We also study an infinitesimal CL-transformation on an (LCS),-
manifold and obtain a necessary and sufficient condition for such an
infinitesimal transformation to be a Killing or a conformal Killing
vector field. Finally, we study CL-transformation on an (LCS),-
manifold and obtained a new tensor field, called CL-curvature tensor
field, which is invariant under such a transformation.

1. Introduction

In 1968, Tanno [23] introduced and studied D-homothetic deformation on a
contact metric manifold. By a D-homothetic deformation we mean a conformal
change of structure on a contact metric manifold which is invariant under such
change. Tanno [23] used D-homothetic deformation on Sasakian structure to get
results on first Betti number, second Betti number and hormonic forms and hence
D-homothetic deformation is an important transformation due to the invariance
of a structure. Again, in [11] Olszak and in [18] Shaikh et al. are respectively
studied the D-homothetic deformation on a quasi-Sasakian and a trans-Sasakian
manifold, and both the structures remain invariant under such a deformation.
In 1963, Tashiro and Tachibana [25] introduced a transformation, called CL-
transformation, on a Sasakian manifold under which C-loxodrome remains
invariant. We note that a C-loxodrome is a loxodrome cutting geodesic
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trajectories of the characterstic vector field ¢ of the Sasakian manifold with
constant angle. Again, Takamatsu and Mizusawa [24] studied an infinitesimal
CL-transformation on a compact Sasakian manifold. In [6] Koto and Nagao
obtained a tensor field on a Sasakian manifold which is invariant under a
CL-transformation. Also, Matsumoto and Mihai [8] studied infinitesimal CL-
transformation and CL-transformation on an LP-Sasakian manifold and obtained
an invariant tensor field under a CL-transformation with many other interesting
results.

On the other hand in 2003, the first author [14] introduced the notion of
Lorentzian concircular structure manifolds (briefly, (LCS),-manifolds), which
generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto [7],
Mihai and Rosca [9].

Motivating from the above studies, in the present paper, we study the D-
homothetic deformation, infinitesimal CL-transformation and CL-transformation
on an (LCS),-manifold. The paper is organized as follows. Section 2 provides
the rudimentary facts of (LCS),-manifolds along with some curvature relations.
Section 3 is devoted to the study of D-homothetic deformation on an (LCS),-
manifold. It is proved that an (LCS),-manifold is invariant under a D-homothetic
deformation (see, Theorem 3.1). However, under such a deformation an LP-
Sasakian manifold is not invariant. We also prove that under a D-homothetic
deformation an #-Einstein (LCS), -manifold is invariant and under such a de-
formation the ¢-sectional curvature of an (LCS), -manifold is conformal (see,
Theorem 3.3 and 3.4).

In 1966, Takamatsu and Mizusawa [24] studied an infinitesimal CL-
transformation on a compact Sasakian manifold and proved that such a
transformation is necessarily projective. Again in [8], Matsumoto and Mihai
studied infinitesimal CL-transformation on an LP-Sasakian manifold. In Section
4 we study an infinitesimal CL-transformation on an (LCS),-manifold and obtain
the expression of Lie derivative of the metric tensor with respect to such
transformation (see, Theorem 4.1), which generalizes the corresponding result of
LP-Sasakian manifold. We also obtain a necessary and sufficient condition for
which an infinitesimal CL-transformation to be a Killing (resp. conformal Killing)
vector field (see, Theorem 4.2 (resp. Theorem 4.3)).

In [25], Tashiro and Tachibana proved that if a Sasakian manifold is related
to a locally Euclidean manifold by a CL-transformation, then it is a locally
C-Fubinian manifold and vice-versa. In [6], Koto and Nagao obtained an
invariant tensor field under a CL-transformation on a Sasakian manifold and
in [8], Matsumoto and Mihai also obtained an invariant tensor field under a
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CL-transformation on an LP-Sasakian manifold. Again in [2], Atceken proved
that a conformally flat (LCS),-manifold is a manifold of quasi-constant curvature.
In Section 5 we study CL-transformation on an (LCS),-manifold M and prove
that if the Levi-Civita connection V of M is transformed into a flat symmetric
affine connection V by a CL-transformation, then M is of quasi-constant curvature
(see, Theorem 5.1). We also obtain a new tensor field 4 which is invariant under
the CL-transformation and such an invariant tensor field on the manifold is said
to be the CL-curvature tensor field. It is shown that the CL-curvature tensor
field A is invariant under a D-homothetic deformation if and if the deformation
is homothetic (see, Theorem 5.3).

If the CL-curvature tensor field A vanishes identically, then the (LCS),-
manifold is said to be CL-flat [6]. Finally, in the last section we study CL-flat and
CL-symmetric (LCS),-manifold. In [2] (Theorem 2 and Corollary 4), Atceken
proved that a conformally flat as well as a quasi-conformally flat (LCS),-
manifold M is an x-Einstein manifold. But in our paper it is proved that a
CL-flat (LCS),-manifold is #5-Einstein if r % n(n—1)(a®> — p). However, if
r=n(n—1)(a*> — p), then the manifold is Einstein. It is shown that the scalar
curvature of a CL-flat (LCS),-manifold is constant if and only if 2up — f = 0.
Again, in [2] (Theorem 3 and Theorem 6), Atceken proved that a quasi-
conformally flat (LCS),-manifold is of constant curvature but a conformally flat
(LCS),-manifold is of quasi-constant curvature. In our paper it is proved that a
CL-flat (LCS),-manifold is of quasi-constant curvature if r # n(n — 1)(«® — p).
However, if r = n(n — 1)(«* — p), then the manifold is of constant curvature. An
(LCS),-manifold is said to be CL-symmetric if VA = 0. It is proved that a CL-
symmetric (LCS),-manifold is an #-Einstein manifold. Again, it is shown that in
a CL-symmetric (LCS),-manifold, grad r is codirectional with ¢. It is also proved
that a CL-symmetric (LCS),-manifold M is locally symmetric if and only if M is
an Einstein manifold. We note that in Corollary 10 of [2], Atceken proved that
a locally symmetric (LCS),-manifold is Einstein. But an Einstein manifold is not
necessarily locally symmetric unless n = 3. However, our Theorem 6.5 ensures
that if an Einstein (LCS),-manifold is CL-symmetric, then it is locally symmetric.

2. (LCS),-manifolds

An n-dimensional Lorentzian manifold M is a smooth connected para-
compact Hausdorff manifold with a Lorentzian metric g, that is, M admits a
smooth symmetric tensor field g of type (0,2) such that for each point p e M,
the tensor g, : T,M x T,M — R is a non-degenerate inner product of signature
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(—+---+), where T,M denotes the tangent vector space of M at p and R is
the real number space. A non-zero vector ve T, M is said to be timelike (resp.,
non-spacelike, null, spacelike) if it satisfies g,(v,v) < 0 (resp., <0, =0, > 0) [12].
The category to which a given vector falls is called its causal character.

In a semi-Riemannian manifold M a vector field P defined by g(X,P) =
A(X) for any X on M, is said to to be a concircular vector field [28] if

(2.1) (VxA)(Y) = af{g(X, Y) + o(X)A(Y)},

where o is a non-zero scalar and w is a closed 1-form. Let M be an n-dimensional
Lorentzian manifold admitting a unit timelike concircular vector field &, called
the structure vector field of the manifold. Then we have

(2.2) 9(¢, &) = ~L.

Since ¢ is a unit concircular vector field, it follows that there exists a non-zero
1-form # such that for

(2.3) 9(X, &) = n(X),

the following equation

(2.4) (Vxm)(Y) = afg(X, Y) +n(X)n(Y)}

holds for all vector fields X, Y on M and « is a non-zero scalar function satisfies

(2.5) Via = (X2) = da(X) = pn(X),

p being a certain scalar function given by p = —(&a). If we put
1

(2.6) X = &Vxé,

then from (2.4) and (2.6) we have

(2.7) X = X +n(X)¢,
from which it follows that

(2.8) $X =X +n(X)E,

that is, ¢ is a symmetric (1,1) tensor field, called the structure tensor of the
manifold. The n-dimensional Lorentzian manifold M together with the unit
timelike concircular vector field &, its associated 1-form #, and an (1,1) tensor
field ¢ is said to be a Lorentzian concircular structure manifold (briefly, (LCS),-
manifold) [14]. Especially, if o = 1, then we can obtain the LP-Sasakian structure
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of Matsumoto [7]. The (LCS),-manifold have also been studied in ([1], [3], [13],
[15], [16], [17], [19], [20], [21], [22]).
In an (LCS),-manifold, the following relations hold (see [14], [15]):

(2.9) (@) n(&)=-1, (b) $o&=0, (c) no¢=0,
(2.10) 99X, 9Y) = g(X,Y) +n(X)n(Y),

(2.11) N(R(X,Y)Z) = (&% = p){g(Y, Z)n(X) — g(X, Z)n(Y)},
(2.12) R(E Y)Z = (& = p){9(Y,2)E —n(Z) Y},

(2.13) S(X,¢) = (& = p)(n — L)n(X)

for any vector fields X, Y, Z on M and o> — p # 0, where R and S denotes
respectively the curvature tensor and the Ricci tensor of the manifold.
In an (LCS),-manifold, we also have the following relations:

(2.14) (Vxn)(Y) = (Vyn)(X),
(2.15) dn(X,Y) =0.

We also mention that, in an (LCS),-manifold the symmetric (1,1) tensor field
¢ is idempotent and hence the eigenvalue of ¢ is either 1 or 0.

3. D-homothetic Deformation on an (LCS), -manifold

An odd dimensional smooth manifold M is said to be an almost contact
metric manifold [30] if there exist an (1,1) tensor field ¢, a vector field &, an
I-form # and a Riemannian metric g on M such that (&) =1, g(X, &) = n(X),
$*X = —X +n(X)¢ and g(¢pX,4Y) =g(X,Y) —n(X)y(Y) for any vector fields
X, Y on M.

Let M be an almost contact metric manifold equipped with an almost
contact metric structure (¢,&,7,¢g). A transformation on M is said to be a D-
homothetic deformation [11] if the almost contact metric structure (¢,¢&,7,g) is
transformed into (¢',&’,%’,g’) such that

1
$ =0 ==& n'=a g =bg+(a=by@,
where a and b are constants such that ¢ # 0 and b > 0. If > =5, then the

transformation is called a homothetic deformation. It can be easily seen that
(¢',&",n',g") is also an almost contact metric structure on M.
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Now we make a little change in the definition of a D-homothetic deformation
for Lorentzian metric.

DEeFINITION 3.1. Let M be an (LCS),-manifold with structure (¢,&,1,9).

If the Lorentzian concircular structure (¢,&,n,9) on M is transformed into
(¢'.&".n',g") such that

! ! 1 ! !
(3.1) $=¢ &=-¢ n'=an, g’ =bg—(a>—byn@n

for certain constants a and b such that a # 0 and b > 0, then the transformation is
called a D-homothetic deformation on M.

ProrosiTiON 3.1. If a Lorentzian concircular structure (¢,&,n,9) on an

(LCS),-manifold M is transformed into (¢',&',n’,g") under a D-homothetic de-
Jformation, then

(3:2) @ 7'(¢)=-1, (b) g'(X. &) =n"(X).
Proor. (3.2) follows from (3.1), (2.3) and (2.9).

Lemma 3.1. If a Lorentzian concircular structure (¢,&,n,9) on an (LCS),-

manifold M is transformed into (¢',&',n',g") under a D-homothetic deformation,
then

, (a* — b)u
(3:3) Vy¥ =Vy¥ = ——5—{g(X, ¥) +n(X)n(Y)},
where V and V' are the Levi-Civita connections of g and g’ respectively.

Proor. Using Koszul formula for V' we get
(34) 24'(VyY.2)=Xg'(Y,2)+ Yg'(Z,X) - Zg'(X, Y) + ¢'([X, Y], Z)
—4g'([Y, 2], X) +¢'([2.X], Y)

for all X, Y and Z on M.
In view of (3.1), (2.14) and (2.15), (3.4) yields

(3:5) bg(VyY,Z) = (a® = b)y(Vy Y)n(Z)

=bg(VxY,Z) — (> = b)n(Z){n(Vx Y) + (Vxn)(Y)}.
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Setting Z = ¢ in (3.5), we get

a—b
(3.6) n(VyY)=n(VxY) +

(Van)(Y).
Using (3.6) and (2.4) in (3.5), we obtain (3.3).
Lemma 3.2. If a Lorentzian concircular structure (¢,&,n,g9) on an (LCS),-

manifold M is transformed into (¢',E'\n',g") under a D-homothetic deformation,
then

(3.7) Vi = évx@
' b
(3.8) (Vi )(Y) = — (Vxn)(Y).
Proor. From (3.3) we have
(3.9) Vi = Vxé.

Then in view of (3.1) and (3.9), we have (3.7). Now using (3.7) we can easily
prove (3.8).

ProposITION 3.2. If a Lorentzian concircular structure (¢,&,n,g) on an
(LCS),-manifold M is transformed into (¢',&',n',g') under a D-homothetic de-
formation, then

(3.10) (Vin')(Y) =o' {g" (X, Y) +1"(X)n'(Y)},

where o' =% is a non-zero scalar function such that

(3.11) Vo = (Xo') =do'(X) = p'n'(X),

p' being a certain scalar function given by p' = —(&'a’).
ProoF. By virtue of (2.4), (3.8) yields
bo
(3.12) (Vi) (V) = —{g(X, ¥) +n(X)n(Y)}.

On the other hand, from (3.1) we have

(3.13) g' (X, Y) +n'(X)n'(Y) = b{g(X, Y) +n(X)n(Y)}.



8 Absos Ali SHAIKH and Helaluddin AHMAD

Hence in view of (3.13) and (3.12), we obtain (3.10). Again, since «’ = £ and a is
a constant, in view of (2.5), (3.11) holds where p' =4 = —(&a").

ProrosiTiON 3.3.  If a Lorentzian concircular structure (¢,&,1,9) on an
(LCS),-manifold M is transformed into (¢',&',n’,g") under a D-homothetic de-
formation, then

(3.14) Vi =d§'X, o = g
(3.15) PX =X + 5 (X)E.

ProOOF. In view of (2.6) and (3.1), (3.7) gives us (3.14). Also from (3.1) and
(2.7), we obtain (3.15).

THEOREM 3.1. If a Lorentzian concircular structure (¢,&,n,9) on an (LCS),-
manifold M is transformed into (¢',&',n’,g") under a D-homothetic deformation,
then (¢',&',n',g") is also a Lorentzian concircular structure on M.

ProOF. By the above propositions and lemmas it follows that (¢', &', %', g")
is a Lorentzian concircular structure on M.

CoroOLLARY 3.1. If a Lorentzian concircular structure (¢,&,n,9) on an LP-
Sasakian manifold M is transformed into (¢',&',n',g") under a D-homothetic
deformation, then (¢',&' n',g’) is not an LP-Sasakian structure on M.

THEOREM 3.2. If a Lorentzian concircular structure (¢,¢,n,g) on an (LCS),-
manifold M is transformed into (¢',E'\n',g") under a D-homothetic deformation,
then the curvature tensors R and R' with respect to the metric g and g’ are related

by

a* —b)a?

(3.16) R'(X,Y)Z=R(X,Y)Z— ( S [{9(Y.2)X —g(x. 2)Y}

+{n(N)X =n(X)Y}n(2)].
Proor. For the curvature tensor R and R’ we have
(3.17) R(X,Y)Z =VyVyZ —VyVxZ - Vix v Z,
(3.18) R(X,Y)Z=VyV\yZ-V\,V\Z — fo, v|Z:

where V and V' are Levi-Civita connection for g and ¢’ respectively.
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Using (2.4), (3.3), (3.9) and (3.17) in (3.18), we have
(a* — b)a
a2

+{9(Y,Z) +n(Y)n(Z2)}Vxé — {g(X,Z) + n(X)n(Z)}Vy].

(3.19) R(X,Y)Z=R(X,Y)Z — ({9 (X, Z)n(Y) — g(Y, Z)n(X)}<

Using (2.6) and (2.7) in (3.19), we obtain (3.16).

THEOREM 3.3. Under a D-homothetic deformation an n-Einstein (LCS),-
manifold is invariant.

Proor. If an (LCS),-manifold M with the structure (¢, &,#,g) is #-Einstein,
then the Ricci tensor S satisfies the relation

(3.20) S(Y,Z)=1g(Y,Z) +mn(Y)n(Z)

where / and m are smooth functions given by ([14]) /=-5— (2> —p) and
m =L —n(e? — p). Now from (3.16) we have

(@ = b){(n — 3)a*h + 2a%p}
a*b

x{g(Y,Z) +n(Y)n(Z)}.

(3.21) S"(Y,Z)=S(Y,Z) -

In view of (3.1) and (3.20), (3.21) yields

S(Y,.Z)=1'g"(Y,Z) + m'n'(Y)n'(Z)

where
I = L (a®> — b){(n — 3)ab + 2a°p}
b a2b2?
and
L[ M =b) (@ =b){(n—3)a’b+2d’p)
m' = a|m + - _ = .

This completes the proof.

DEFINITION 3.2. A plane section of the tangent space To(M) is called a
¢-section if there exists a unit vector X in Ty(M) orthogonal to & such that
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{X,¢X} is an orthonormal basis of the plane section. Then the sectional curvature
K(X,9X) =g(R(X,9X)pX,X) is called a ¢-sectional curvature.

THEOREM 3.4.  Under a D-homothetic deformation the ¢-sectional curvature of
an (LCS),-manifold M is conformal.

Proor. In view of (3.1) and (2.11), (3.16) yields
(3.22) R(X,Y,Z,W)

=bR(X.Y.Z, W) - W [{o(Y, 2)g(x, W)

—g(X, Z2)g(Y, W)} +{g(X, W)n(Y) —g(Y, W)n(X)}n(Z)]

(a? = b)(a*p — bo?)
612

+ {9(Y, Z)n(X) — g(X, Z)n(Y ) }n(W).

Now if X is a non-zero unit vector tangent to M(¢',&',5’,g’) and orthogonal to
&', then (3.22) entails

(3.23) K'(X,¢'X) = %K(X, oX).

This completes the proof.
4. Infinitesimal CL-transformation in an (LCS),-manifold

DEFINITION 4.1. A vector field V' in an (LCS),-manifold M is said to be an
infinitesimal CL-transformation [8] if it satisfies

(4.1) £V{jlj} = Njé? + Miéjh + a(q,¢{1 + 77i¢;7) + b¢jifh7 9 = ¢jlgli

for certain constants a and b, where u; are components of the 1-form u, £y de-
notes the Lie derivative with respect to V and {/},'} is the Christoffel symbol of the
Lorentzian metric g.

ProPOSITION 4.1. If V is an infinitesimal CL-transformation on an (LCS),-
manifold, then the 1-form u is closed.

Proor. From (4.1) and (2.7) we have

42) VvV R/I:ji vk = ( + a’]j)éih + (4 + 5”71‘)5;1 + (2a + b)’?/’?ifh + bgc".
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Contracting & and 7 in (4.2) we get
VIV = (14 Dy +aln— 1),
which yields by virtue of (2.4)
(4.3) ViV = (n+ 1)V + a(n — V(g + nm,)-

Taking skew-symmetric part of (4.3) we get the result.

THEOREM 4.1. If V is an infinitesimal CL-transformation on an (LCS),-
manifold M, then the relation

(44) (o =p)Evg)(Y,Z) = =(Vyp)(Z) + {ala + b) — Qap = B)n(V)}g(Y, Z)
+oa3a+by(Y)n(Z)

holds for any vector fields Y and Z on M.

ProOF. We know from [29] that

(4.5) £y R = Vikr (i} — Vi {}.

Substituting (4.1) in (4.5) and then using (2.4), (2.6) and (2.7), we obtain

(4.6) (£vR)(X, Y)Z = (Vxp)(Z)Y — (Vyu)(Z)X
+a(a—b){g(X,Z2)Y —g(Y,Z)X}
+ola+0){n(Y)X —n(X)Y}n(Z)
+2a0{n(Y)g(X, Z) = n(X)g(Y,Z)}<.

Applying 5 on (4.6) we get

4.7 n(ER)(X,Y)Z) = (Vxu)(Z)n(Y) = (Vyu)(Z)n(X)
+a(a+b){g(Y,Z)n(X) - g(X, Z)n(Y)}.

Taking Lie derivative of (2.11) with respect to ¥ and using (4.7) and then setting
Y =¢, we get

(4.8) (o = p)(£rg)(Y,Z)
= —(Vyu)(Z) = {(Ve)(Z) + (2 = p)(£r9) (&, Z) }n(Y)

+{ala+b) — 2ap — Bn(V)}g(Y, Z) +n(Y)n(Z)].
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Interchanging ¥ and Z in (4.8) and then subtracting from (4.8), we get
(4.9) {(Var)(Z) + (27 = p)(£v9) (&, Z)}n(Y)

= {(Ve)(Y) + (&% = p)(£rg) (& Y)}n(2).
Putting ¥ = ¢ in (4.9) we obtain by virtue of (4.8)
(4.10) (& = p)(£rvg)(Y,Z)

= —(Vyt)(Z) + {(Ver) (&) — (&% = p)2n(EvE) (Y )n(Z)
+{ala+b) = Qop — Bn(V)}Hg(Y, Z) +n(Y)n(Z)].
Now taking inner product of (4.6) with ¥ and then contracting X and W, we get
(411)  (ES)(Y,Z) = —(n = )(Vy)(Z) + o (n+ Da+ (n— Db}n(Y)n(2)
—of{(n—3)a— (n—1)blg(Y,2).

Setting ¥ = & in (4.11), we have
(4.12) (£18)(&,Z) = —(n — D{(Vew) (2) + 2a0m(2)}.

Taking Lie derivative of (2.12) with respect to V' and using (4.12) and then
setting Z = £, we obtain

(4.13) (Ver) (€) — (o2 = p)2n(£r &) = 2a0+ 2ap — B)n(V).

Using (4.13) in (4.10), we obtain (4.4). This completes the proof.
In an (LCS),-manifold if we take oo =1, then p = 0 and hence the manifold
is LP-Sasakian. Thus we have

CorOLLARY 4.1 [8]. If V is an infinitesimal CL-transformation on an LP-
Sasakian manifold, then the relation
(4.14)  (Evg)(Y,Z) = =(Vyu)(Z) + (a+ b)g(Y, Z) + (3a+ b)n(Y)n(Z)
holds.

From (4.4) we can state the following:

THEOREM 4.2. An infinitesimal CL-transformation V on an (LCS),-manifold
is a Killing vector field if and only if

(4.15)  (Vyp)(Z) = {ala+b) = Qap = in(V)}9(Y, Z) + a(3a + b)n(Y)n(Z).
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CoRrOLLARY 4.2. If an infinitesimal CL-transformation V on an (LCS),-
manifold is a Killing vector field such that u is codirectional with n, then u is
concircular.

A vector field Z on M is said to be conformal Killing [30] if (£29)(X,Y) =
0g(X,Y), where o is a scalar. By virtue of (4.4), this leads to the following:

THEOREM 4.3.  An infinitesimal CL-transformation V on an (LCS), -manifold
is a conformal Killing vector field if and only if

(4.16) (Vyu)(Z) = {a(a+b) = (> = p)o — (20p — B)n(V)}g(Y, Z)
+oaBa+bn(Y)n(Z).

5. CL-transformation on an (LCS),-manifold

DEFINITION 5.1. A transformation on an (LCS),-manifold M, n > 3, with
structure (¢, &,n,g) is said to be a CL-transformation [8] if the Levi-Civita con-
nection V is transformed into a symmetric affine connection V such that

(5.1) Vx¥Y =VxY +u(X)Y +u(Y)X + c{n(X)pY +n(Y)pX} +29(X, Y)E,

where u is the associated 1-form and ¢ is a constant.

Throughout the section ‘—’ represents the geometric objects with respect to
the symmetric affine connection V and other notations have their usual meaning.
Also throughout the section 5 and 6, we will assume an (LCS),-manifold M with
n> 3.

In view of (2.7), (5.1) yields

(5.2) VxY =VxY +{u(X)+en(X)}Y +{u(Y) +en(Y)}X
+2(c+ Dn(X)n(Y)E+29(X, Y)<.

If a symmetric affine connection V is related with the Levi-Civita connection
V on an (LCS),-manifold M by a CL-transformation, then by virtue of (5.2),
(2.4), (2.6) and (2.7), the curvature tensor R(X, Y)Z of the connection V is given
by

(53) R(X,Y)Z=R(X,Y)Z+{P(X,Y)—P(Y,X)}Z+P(X,Z)Y — P(Y,Z)X

= 2¢(o+2){g(Y, Z)n(X) — g(X, Z)n(Y)}<
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for any vector fields X, ¥, Z on M, where the tensor field P(X, Y) is defined by
(5:4) P(X,Y) = (Vap)(Y) + [e(o+2) = 2( + u(S)]g(X, Y)

+ (e +2)(e =) = 2u(&) (e + Dln(X)n(Y)

= 1(Xu(Y) = {p(X)n(Y) + n(X)u(Y)}.

ProposITION 5.1. In an (LCS),-manifold M, the tensor field P(X,Y) is
symmetric if and only if the 1-form u is closed.

Proor. Interchanging X and Y in (5.4) and then subtracting from (5.4), we
get the result.

A symmetric affine connection V on M is said to be flat if the corresponding
curvature tensor R vanishes identically on M.

PROPOSITION 5.2. In an (LCS),-manifold M, if the symmetric affine connec-
tion V is flat, then the tensor field P(X,Y) is symmetric.

PrROOF. If the symmetric affine connection V is flat, then from (5.3) we have
(55)  RX,Y)Z={P(Y,X)—-P(X,Y)}Z-P(X,Z)Y +P(Y,Z)X
+2¢(e+2){g(Y, Z)n(X) — g(X, Z)n(Y)}<.
From (5.5), it follows that
(5.6) S(Y,Z2)=nP(Y,Z)—P(Z,Y)—2c(a+2){g(Y,Z)+n(Y)n(2)}.

Interchanging Y and Z in (5.6) and then subtracting from (5.6), we get P(Y,Z) =
P(Z,Y). This completes the proof.

The Weyl conformal curvature tensor C of type (1,3) of an n-dimensional
Riemannian manifold M, n > 3, is given by [27]

(5.7) C(X,Y)Z=R(X,Y)Z - n—iZ [S(Y,Z)X — S(X,2)Y
+9(Y,Z)0X — g(X,Z)QY]

’
— (Y, 2)X —g(X,2)Y

where R, S, O, r denote respectively the curvature tensor, the Ricci tensor of type

(0,2), the Ricci operator and the scalar curvature of the manifold. The manifold
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M is said to be conformally flat if the conformal curvature tensor C vanishes
identically on M.

DEFINITION 5.2. A semi-Riemannian manifold is said to be a manifold of
quasi-constant curvature 5] if it is conformally flat and its curvature tensor R

of type (0,4) is of the form
(58) R(X7 Y. Z, U) = p{g(Yv Z)g(Xv U) - Q(X, Z)g(Y7 U)}
+q{9(Y,Z)A(X)A(U) — g(X, Z)A(Y)A(U)

+9(X, U)A(Y)A(Z) = g(Y, U)A(X)A(Z)}

for any vector fields X, Y, Z and U on M, where p and q are scalars such that
q#0 and A is a non-zero 1-form. If ¢ =0, then the manifold reduces to a
manifold of constant curvature.

It is easy to check that if the curvature tensor R is of the form (5.8), then the
manifold is conformally flat. Hence a semi-Riemannian manifold is a manifold
of quasi-constant curvature only if its curvature tensor is of the form (5.8). Thus
a manifold of quasi-constant curvature is conformally flat, but the converse is not
true, in general. However, the converse is true if the manifold is quasi-Einstein.
We also note that, in [26], Vranceanu defined the notion of almost constant
curvature by the same expression of (5.8). However, Mocanu [10] showed that
both the notions of almost constant curvature by Vranceanu [26] and quasi-
constant curvature by Chen and Yano [5] are the same.

THEOREM 5.1.  If the Levi-Civita connection V on an (LCS),-manifold M is
transformed into a symmetric affine connection V by a CL-transformation such that
V is flat, then M is of quasi-constant curvature.

PrOOF. Since the connection V on M is flat, on account of Proposition 5.2,
(5.5) and (5.6) turns into

(5.9) R(X,Y)Z=P(Y,Z)X — P(X,2)Y
+ 2¢(o+2){g(Y, Z)n(X) — g(X, Z)n(Y)}<,
(510)  S(Y,Z) = (n—1)P(Y,Z) = 2c(a+ 2){g(Y,Z) + n(Y)n(Z)}.

Taking inner product of (5.9) with U and then using (5.10), (5.9) yields
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(5.11) R(X,Y,Z,U) = n%l{S(KZ)g(X, U)—S(X,Z)g(Y,U)}

$ 2D v, 2) (Y2 e(x. U)

—{9(X,Z2) +n(X)n(2)}g(Y, U)]
+2¢(e+2){g(Y, Z)n(X) — g(X, Z)n(Y) }n(U).

Using (5.11) in the relation R(X,Y,Z,U)+ R(X,Y,U,Z) =0 and then setting
X = U =¢ and using (2.13), we obtain

(512) - L(S(Y,2) = 2ela+ D)n~ D{g(¥.2) +n(¥n(2))]

= (& = p)g(Y,2).
In view of (5.12), (5.11) yields
(513)  R(X,Y,Z,U)
= {(o® = p) +2c(2 +2)H{g(Y, Z)g(X, U) — g(X, Z)g(Y, U)}
+ 2¢(e+ 2){g(Y, Z)n(X)n(U) = (X, Z)n(Y)n(U)
+9(X, Un(Y)n(Z) —g(Y, U)n(X)n(Z)}.

Moreover, from (5.7), (5.12) and (5.13), it can be easily seen that the manifold M
is conformally flat and hence the manifold M is of quasi-constant curvature.

THEOREM 5.2. If the Levi-Civita connection V on an (LCS),-manifold M is
transformed into a symmetric affine connection V by a CL-transformation such that
its associated 1-form p is closed, then a tensor field A of type (1,3) is invariant
under the CL-transformation, where A is given by

(5.14) AX,Y)Z=R(X,Y)Z - n%Z {S(Y,Z)X - S(X,Z)Y}

+{S(Y, Z)n(X) - S(X, Z)n(Y)}<]

o? —
D v z)x - gx 2y )

+ (n=D{g(Y, Z)n(X) — g(X, Z)n(Y)}].
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ProOOF. Since the associated 1-form u of the transformation is closed, taking
account of Proposition 5.1, (5.3) can be written as

(5.15) RX,Y)Z=R(X,Y)Z+P(X,Z)Y —P(Y,Z)X
= 2c(a+2){9(Y, Z)n(X) — g(X, Z)n(Y)}<,
which yields

(516) (n—1)P(Y,Z2)=S(Y,Z2) - S(Y,Z) +2c(0+2){g(Y,2)) +n(Y)n(Z2)}.

Inserting (5.16) in (5.15), we obtain

(5.17) HX,YVZ=H(X,Y)Z —2c(a+2){g(Y,Z)n(X) — g(X,Z)n(Y)}<

2¢(o+2)
n—1

—{9(X,2)) +n(X)n(2)} Y],

{9(Y,2)) +n(Y)n(2)} X

where we put
(5.18) H(X,Y)Z =R(X, Y)Z—anl{S(Y,Z)X—S(X7Z)Y}.

Setting X = ¢ in (5.17) and then applying #, we obtain

2¢(a+2)(n—2)

S (v, 2) (Y (2)):

(5:19) n(H(E Y)Z)—n(H(E Y)Z) = —

Using (5.19) in (5.17), we have

(520) T(X,¥)Z = T(X,¥)Z ~ 2+ 2){g(Y, Z)(X) - g(X, Z)n(¥)}&,

where we put
(521) TX,YYZ=H(X,Y)Z —n%z{n(H(f, Z2)X —n(H(E X)Z) Y}

From (5.20), it follows that

(522) (V.2 +aMZ) = 55 T2 = T(Y.2))

where

n

T(Y,Z)= Zﬁig(T(ei’ Y)Z,e), & =g(eei),
i=1
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{e;:i=1,2,...,n} being an orthonormal frame of the tangent space at any point
of the manifold.
Substituting (5.22) in (5.20), we obtain

(5.23) A(X,Y)Z=A(X,Y)Z,
where the tensor field 4 is defined by

Hence the tensor field A is invariant. Using (5.18), (5.21), (2.12) and (2.13) in
(5.24) we get (5.14). This completes the proof.

The invariant tensor field 4 on an (LCS),-manifold M obtained under a
CL-transformation is said to be the CL-curvature tensor field on M.

THEOREM 5.3. In an (LCS),-manifold M, the CL-curvature tensor field re-
mains invariant under a D-homothetic deformation if and only if the deformation
is homothetic.

Proor. From Theorem 3.1, it follows that under a D-homothetic deforma-
tion defined by (3.1) an (LCS),-manifold M,(¢,&,n,g) is again an (LCS), -
manifold M, (¢, n',g"), where o' =2%. Hence from (5.14), the CL-curvature

a

tensor field on M,/ (¢',&" 5’ g’) can be written as
1
(525  A(X.Y)Z=R(X,V)Z-—[{S(¥Y.2)X - 5'(X,2)Y}

+{S'(Y, 2)n'(X) = S'(X, Z)n'(Y)}<]

OC/Z_ /
(v 2)x - g (X 2)Y)

+(n=D{g" (Y, 2)n'(X) — ¢'(X, Z)n"(Y)}<'],

where p’ is a scalar such that p’ = —(&'o/).
Using (3.1), (3.16), (3.20) and (5.14) in (5.25), we obtain

, _ (a®>—b)p
(5:26) A NZ—-AX,Y)Z = 50—

+(n—D{g(Y,Z)n(X) — g(X, Z)n(Y)}<

+{n(Y)X —n(X)Y}n(Z2)].

{o(Y,2)X —g(X,Z)Y}
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Now we assume that the CL-curvature tensor field 4 remains invariant under
a D-homothetic deformation. Then right hand side of (5.26) is equal to zero,
which yields, for X =¢,

(5.27) (a> = b)p=0,

which implies that either (> —b) =0 or p=0. If p=0, then (X«) =0 and
hence o is constant, which is inadmissible. Thus we must have (a*> —b) =0 and
hence the deformation is homothetic.

Next we suppose that the deformation is homothetic, that is, a> = b. Hence
the right hand side of (5.26) is equal to zero. Therefore A’ = A.

6. CL-flat and CL-symmetric (LCS),-manifold

DEFINITION 6.1. An (LCS),-manifold M is said to be CL-flat if the CL-
curvature tensor field A of type (1,3) vanishes identically on M.

We mention that CL-flat manifold was introduced by Koto and Nagao in [6]
for a Sasakian manifold.

THEOREM 6.1. A CL-flat (LCS),-manifold M is an n-Einstein manifold if
r#n(n—1)(a® - p).

Proor. Let M be a CL-flat (LCS),-manifold. Then from (5.14) we have
1
(6.1) R(X,Y)Z = [{S(Y.Z)X - S(X.Z)Y}

+{S(Y, 2)n(X) - S(X, Z)n(Y)}¥]

(e = p)
n—2

+(n—D{g(Y, Z)n(X) — g(X, Z)n(Y)}].

{9(Y,2)X —g(X,2)Y}

Taking inner product of (6.1) with U and then contracting over Y and Z, we get

62) SO0 = {55 = = ) ol 0) 4 {5 = o = ) bron©),

n—1

where r is the scalar curvature of the manifold. Thus the manifold is #-Einstein.
This completes the proof.
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COROLLARY 6.1. If r=n(n—1)(a® — p) then a CL-flat (LCS),-manifold M
is an Einstein manifold.

COROLLARY 6.2. A CL-flat LP-Sasakian manifold is an n-Einstein.

COROLLARY 6.3. In a CL-flat (LCS),-manifold M, the scalar curvature of the
manifold is constant if and only if 2up — f = 0.

Proor. The result follows from Theorem 3.2 of [14] and Theorem 6.1.

THEOREM 6.2. A CL-flat (LCS),-manifold M is a manifold of quasi-constant
curvature if r # n(n —1)(a> — p).

Proor. Let M be a CL-flat (LCS),-manifold. Then (6.1) and (6.2) holds on
M. Inserting (6.2) in (6.1) and then taking inner product with U, we obtain

(6.3) R(X,Y,Z,U)=p{g(Y,Z)g9(X,U) —g(X,Z)g(Y,U)}
+q{g(Y, Z)n(X)n(U) — g(X, Z)n(Y)n(U)
+9(X, Un(Y)n(Z) —g(Y, Un(X)n(Z)},

where p=-L{-2-—2(a> —p)} and ¢=-5{-55 —n(a® —p)}. Also in view of
(6.1) and (6.2), it is clear from (5.7) that the manifold is conformally flat. Hence
the manifold is of quasi-constant curvature. This completes the proof.

COROLLARY 6.4. If r=n(n—1)(a® —p) then a CL-flat (LCS),-manifold M
is of constant curvature.

DEFINITION 6.2.  An (LCS),-manifold M is said to be a CL-symmetric if
(VuA)(X,Y)Z=0 for all X, Y, Z and U on M.

Differentiating (5.14) covariantly with respect to U, we obtain
1
(64)  (Vud)(X,Y)Z = (VuR)(X, Y)Z - —— [(VuS)(Y, Z)X — (VuS)(X,2)Y

+{(VuS)(Y, Z)n(X) — (VuS)(X, Z)n(Y)}<]
n—2

= S(X, 2){g(Y, U) + 2n(Y)n(U)})<

+{S(Y, Z)n(X) = S(X, Z)n(Y)} U]

[(S(Y, Z){g(X, U) + 2n(X)n(U)}
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20p — B

* n—2
+ (= 1{g(Y, Z)n(X) = g(X, Z)n(Y)}<In(U)

(n—1)(o® = p)a
n—2

—g(X, Z2){g(Y,U) +2n(Y)n(U)})¢

+{9(Y, Z)n(X) — g(X, Z)n(Y)} U].

{9(Y, 2)X —g(X,2) Y}

+ [(9(Y, Z){g(X, U) + 2n(X)n(U)}

THEOREM 6.3. A CL-symmetric (LCS),-manifold M is an n-Einstein mani-
fold.

ProOF. Let M be a CL-symmetric (LCS),-manifold. Then (Vy4)(X,Y)Z
=0 for all X, Y, Z and U on M and hence (6.4) yields

dr(U)
n—1

+a{ni1—n(a2—p)}

x {g(X, Un(W) +g(U, W)n(X) + 2n(X)n(U)n(W)}

— (2op = P){g(X, W) + (X )n(W)}n(U).

(6.5)  (VuS)(X, W)= {9(X, W) +n(X)n(W)}

Putting W =¢ in (6.5), we obtain

66 srv) = {5 0= batx.v)+ { = nte < ) brcon),

n—1 n—1

that is, the manifold is #-Einstein.

THEOREM 6.4. In a CL-symmetric (LCS),-manifold M, grad r is codirectional
with the structure vector field &, r being the scalar curvature of the manifold.

Proor. Contracting X and U in (6.5), we get

(6.7) (n—23) dr(X) = 2{dr(¢) + (n — 1)*Qop — )

+(n = Dor = nln — 1)2(o = pay(X).
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Setting X = ¢ in (6.7), we get

(6.8) dr(&) = —2{ar + (n —1)(2ap — B) — n(n — 1)(a® — p)a}.
In view of (6.8), (6.7) yields
(6.9) dr(X) = —dr(&)n(X).

Thus the result follows from (6.9).
A semi-Riemannian manifold M is said to be locally symmetric due to
Cartan [4] if it satisfies VR = 0.

THEOREM 6.5. A CL-symmetric (LCS),-manifold M is locally symmetric if
and only if M is an Einstein manifold such that

(6.10) S(X,Y)=(n—1)(«* = p)g(X,Y).

Proor. First we suppose that a CL-symmetric (LCS),-manifold M is locally
symmetric. Then from (6.4) we have

(6.11) (VuS)(Y,2)X — (VuS)(X,2)Y
= —{(VuS)(Y, Z)n(X) = (VuS)(X, Z)n(Y)}<
—a[{S(Y, Z){g(X, U) + 2n(X)n(U)}
= SX, Z2){g(Y, U) + 2(Y)n(U)}}&
+{S(Y, Z)n(X) - S(X,Z)n(Y)} U]
+ 2up = PHy(Y,Z)X —g(X.Z)Y}
+ (n— D{g(Y, Z)n(X) — g(X, Z)n(Y)}<n(U)
+(n = 1)(2* = p)al{g(Y, 2){g(X, U) + 2n(X)n(U)}
—g(X,Z){g(Y, U) +29(Y)n(U)}}&
+{9(Y, Z)n(X) — g(X, Z)n(Y)} U].

Taking inner product of (6.11) with W and then contracting X and W and using
(2.13), we get

(6.12) (VuS)(Y,Z) =0.
In view of (6.12), (6.11) yields
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(6.13) aS(Y,Z){g(X, U) + 2n(X)n(U)}<
= a[S(X, Z){g(Y, U) + 2n(Y)n(U)}&
—{S(Y, Z)n(X) - S(X,Z)n(Y)} U]
+ Qop - p){9(Y,2)X —g(X,2)Y}
+ (n=D{g(Y, Z)n(X) — (X, Z)n(Y) }n(U)
+ (= 1)(@* = p)al{g(Y, 2){g(X, U) + 2n(X)n(U)}
—g(X, Z){g(Y, U) + 2n(Y)n(U)}}<

+{9(Y, 2)n(X) — g(X, Z)n(Y)} U].

Again, taking inner product of (6.13) with W and contracting X and U and then
setting ¥ = ¢ and using (2.13), we obtain (6.10) and hence the manifold is
Einstein.

Conversely, if a CL-symmetric (LCS),-manifold M is an Einstein manifold
with the Ricci tensor given as (6.10), then (6.4) entails that M is locally symmetric.
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