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ON THE GAUSS MAP OF SURFACES OF REVOLUTION

IN THE THREE-DIMENSIONAL MINKOWSKI SPACE

By

Chahrazede Baba-Hamed and Mohammed Bekkar

Abstract. In this paper, we study surfaces of revolution without

parabolic points in the 3-dimensional Lorentz-Minkowski space

whose Gauss map N satisfies the condition D IIN ¼ AN, where DII

is the Laplace operator with respect to the second fundamental

form and A is a real 3� 3 matrix. More precisely we prove that

such surfaces are either pseudo-Riemannian spheres S2
1 or pseudo-

hyperbolic spaces H 2
0 .

1. Introduction

The notion of finite type Gauss map is especially a useful and an interesting

tool in the study of submanifolds. It has been introduced by B.-Y. Chen and

P. Piccinni [4] and has been investigated from various viewpoints by many

di¤erential geometers.

F. Dillen, J. Pas and L. Verstraelen [7] studied surfaces of revolution in

Euclidean 3-space R3 such that their Gauss map N satisfies the condition

DN ¼ AN; A ¼ ðaijÞ A Matð3;RÞ; (1.1)

where D is the Laplace operator with respect to the first fundamental form and

Matð3;RÞ the set of 3� 3 real matrices. On the other hand, C. Baikoussis and

D. E. Blair [2] investigated the ruled surfaces in R3 satisfying the condition

(1.1). C. Baikoussis and L. Verstraelen [3] studied the helicoidal surfaces in

R3 satisfying the condition (1.1). Also, for the Lorentz version, S. M. Choi

[5, 6] completely classified the surfaces of revolution and the ruled surfaces

with non-null base curve satisfying the condition (1.1) in Minkowski 3-space R3
1 .
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Furthermore, L. J. Alias, A. Ferràndez, P. Lucas and M. A. Merono [1] studied

the ruled surfaces with null ruling satisfying the condition (1.1) in Minkowski

3-space R3
1 . On the other hand, D. W. Yoon [12] studied translation surfaces in

the 3-dimensional Minkowski space whose Gauss map satisfies the condition (1.1).

Recently, Y. H. Kim, C. W. Lee and D. W. Yoon [9] studied surfaces of

revolution without parabolic points in R3 satisfying the condition

D IIN ¼ AN; A ¼ ðaijÞ A Matð3;RÞ; (1.2)

where D II is the Laplace operator with respect to the second fundamental form.

In this article, we investigate the Lorentz version of the surfaces of revolution

without parabolic points satisfying the condition (1.2).

Throughout this paper, we assume that all objects are smooth and all

surfaces are pseudo-Riemannian, unless otherwise specified.

2. Preliminaries

Minkowski 3-space has more complicated and richer geometric structures

compared with familiar Euclidean 3-space. In particular, Minkowski 3-space has

3 distinguished axes of rotation, namely spacelike, timelike, and lightlike axes (or

null axes). Hence, one can consider three di¤erent kinds of rotations; rotations

about spacelike, timelike, and lightlike axes.

An m-dimensional vector space L ¼ Lm
1 with scalar product h: ; :i of index 1

is called a Lorentz vector space. In particular, if L ¼ Rm
1 , mb 2, it is called a

Minkowski m-space. A vector X of Lm
1 is said to be spacelike if hX ;Xi > 0 or

X ¼ 0, timelike if hX ;Xi < 0 and lightlike or null if hX ;Xi ¼ 0 and X 0 0.

Let X ¼ ðXiÞ and Y ¼ ðYiÞ be vectors in a 3-dimensional Lorentz vector

space L3
1 . Then the scalar product of X and Y is defined by

hX ;Yi ¼ �X1Y1 þ X2Y2 þ X3Y3; (2.1)

and it is called a Lorentz product.

Furthermore, a Lorentz cross product X � Y is given by

X � Y ¼ ð�X2Y3 þ X3Y2;X3Y1 � X1Y3;X1Y2 � X2Y1Þ: (2.2)

Let M 2 be a 2-dimensional surface of the 3-dimensional Lorentz-Minkowski

space equipped with the induced metric. Then by saying Lorentz-Minkowski

space R3
1 , we mean the real vector space R3 with the standard metric given by

g ¼ ds2 ¼ �dx2 þ dy2 þ dz2;

where ðx; y; zÞ is a rectangular coordinate system of R3
1 .
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The map N : M 2 ! Q2ðeÞHR3
1 which sends each point of M 2 to the unit

normal vector to M 2 at the point is called the Gauss map of the surface M 2,

where eð¼G1Þ denotes the sign of the vector field N and Q2ðeÞ is a 2-dimensional

space form as follows:

Q2ðeÞ ¼ S2
1ð1Þ ¼ fX A R3

1 j hX ;Xi ¼ 1g if e ¼ 1

H2ð�1Þ ¼ fX A R3
1 j hX ;Xi ¼ �1g if e ¼ �1

�
;

S2
1ð1Þ is called the de Sitter space, H2ð�1Þ the hyperbolic space in R3

1 .

On the other hand, we denote by E, F , G; L, M, N the coe‰cients of the

first and second fundamental form, respectively, of this surface. If f : M 2 ! R,

ðu; vÞ ! fðu; vÞ is a smooth function and DII is the Laplace operator with respect

to the second fundamental form of M 2, then from [11] we have

D IIf ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLN �M 2j

p Nfu �Mfvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLN �M 2j

p
 !

u

� Mfu � Lfvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLN �M 2j

p
 !

v

" #
(2.3)

where LN �M 2 0 0 since the surface has no parabolic points.

The mean curvature H and the Gaussian curvature KG can be computed by

the well-known classical formulas

H ¼ GLþ EN � 2FM

2jEG � F 2j ; KG ¼ hN;Ni
LN �M 2

EG � F 2
(2.4)

Now, we give a definition of a surface of revolution in a 3-dimensional

Lorentz-Minkowski space R3
1 .

For an open interval J, let g : J ! P be a curve in a plane P in R3
1 and let

l be a straight line in P which does not intersect the curve g. A surface of

revolution M 2 in R3
1 is defined to be a non-degenerate surface revolving a profile

curve g around the l. In other words, a surface M 2 of revolution with axis l in R3
1

is invariant under the action of the group of motions in R3
1 which fixes each point

of the line l.

From definition, we can derive four types of the surfaces of revolution in R3
1 .

When the axis l is spacelike (resp. timelike) there is a Lorentz transformation by

which the axis l is transformed to the z-axis (resp. the x-axis). So we may suppose

that the axis is the z-axis (resp. the x-axis). First of all, we consider that the axis

of revolution is spacelike. Since the surface M 2 is non-degenerate, it su‰ces to

consider the case that the plane P is spacelike or timelike. Hence without loss

of generality, we may suppose that P is the yz-plane or the xz-plane. Then the

profile curve g is parametrized as

gðuÞ ¼ ð0; f ðuÞ; gðuÞÞ or gðuÞ ¼ ð f ðuÞ; 0; gðuÞÞ;
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where f is a positive function and g is a function on J. In the rest of this paper

we shall identify a vector ða; b; cÞ with its tanspose tða; b; cÞ.
On the other hand, a subgroup of the Lorentz group which fixes the vector

ð0; 0; 1Þ is given by

cosh v sinh v 0

sinh v cosh v 0

0 0 1

0
B@

1
CA

for any v A R, (hyperbolic group). Hence the surface M 2 of revolution can be

written as

rðu; vÞ ¼
cosh v sinh v 0

sinh v cosh v 0

0 0 1

0
B@

1
CA 0

f ðuÞ
gðuÞ

0
B@

1
CA

or

rðu; vÞ ¼
cosh v sinh v 0

sinh v cosh v 0

0 0 1

0
B@

1
CA f ðuÞ

0

gðuÞ

0
B@

1
CA:

That is, M 2 can be parametized by

rðu; vÞ ¼ ð f ðuÞ sinh v; f ðuÞ cosh v; gðuÞÞ; (2.5)

or

rðu; vÞ ¼ ð f ðuÞ cosh v; f ðuÞ sinh v; gðuÞÞ; (2.6)

which is called a surface of revolution of type I or II .

Next, if the axis is timelike then we may suppose that P is the xy-plane

without loss of generality. Then the profile curve g is parametrized as

gðuÞ ¼ ðgðuÞ; f ðuÞ; 0Þ;

where f is a positive function and g is a function on J. In this case, the subgroup

of the Lorentz group which fixes the vector ð1; 0; 0Þ is given by

1 0 0

0 cos v �sin v

0 sin v cos v

0
B@

1
CA

for any v A R, (elliptic group). Hence the surface M 2 of revolution can be written

as
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rðu; vÞ ¼
1 0 0

0 cos v �sin v

0 sin v cos v

0
B@

1
CA gðuÞ

f ðuÞ
0

0
B@

1
CA:

So, M 2 is parametrized by

rðu; vÞ ¼ ðgðuÞ; f ðuÞ cos v; f ðuÞ sin vÞ; (2.7)

which is called a surface of revolution of type III .

Last of all, if the axis l is lightlike then we may suppose that it is the line

spanned by the vector ð1; 1; 0Þ. Since the surface M 2 is non-degenerate, it su‰ces

to consider the case that the plane P is timelike. So, we may assume that P is

the xy-plane without loss of generality. Then the profile curve g is parametrized

as

gðuÞ ¼ ð f ðuÞ; gðuÞ; 0Þ;

where f and g are functions such that f 0 g on J. We notice here that the

subgroup of the Lorentz group which fixes the vector ð1; 1; 0Þ consists of the

matrices

1þ v2

2 � v2

2 v

v2

2 1� v2

2 v

v �v 1

0
B@

1
CA; v A R ðparabolic groupÞ:

Therefore, the surface M 2 of revolution may be parametrized in the following

way

rðu; vÞ ¼
1þ v2

2 � v2

2 v

v2

2 1� v2

2 v

v �v 1

0
B@

1
CA f ðuÞ

gðuÞ
0

0
B@

1
CA;

so that

rðu; vÞ ¼ f ðuÞ þ v2

2
hðuÞ; gðuÞ þ v2

2
hðuÞ; vhðuÞ

� �
; (2.8)

where we put h ¼ f � g on J. This surface is called a surface of revolution of

type IV .

3. Surfaces of Revolution of Type I , II and III

In this section we are concerned with non-degenerate surfaces of revolution

M 2 without parabolic points satisfying the condition (1.2). We distinguish three
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cases according to whether these surfaces are given by (2.5), (2.6) or (2.7). That is

M 2 is of type I , II or III .

Case 1. Suppose that the immersed surface M 2 in R3
1 is given by (2.5). For

the sake of simplicity, we suppose that the curve g is parametrized by the arc-

length, so

f 02ðuÞ þ g 02ðuÞ ¼ 1; Eu A J: (3.1)

Then we have the natural frame fru; rvg given by

ru ¼ ð f 0ðuÞ sinh v; f 0ðuÞ cosh v; g 0ðuÞÞ;

rv ¼ ð f ðuÞ cosh v; f ðuÞ sinh v; 0Þ:

Accordingly we see

E ¼ 1; F ¼ 0; G ¼ �f 2;

which implies that the surface M 2 is timelike. The unit normal vector to M 2 is

defined by

N ¼ ru � rv

f
;

so we get

N ¼ ðg 0ðuÞ sinh v; g 0ðuÞ cosh v;�f 0ðuÞÞ:

Then N is the spacelike unit normal vector to M 2 and hence it can be regarded as

a Gauss map of M 2 into the 2-dimensional de Sitter space S2
1ð1Þ. Moreover, we

get

L ¼ g 0f 00 � f 0g 00; M ¼ 0; N ¼ fg 0; 2H ¼ g 0f 00 � f 0g 00 � g 0

f
:

Since the relation (3.1) holds, there exists a smooth function t ¼ tðuÞ such

that

f 0ðuÞ ¼ cos tðuÞ; g 0ðuÞ ¼ sin tðuÞ Eu A J:

Therefore

L ¼ �t 0ðuÞ; N ¼ f ðuÞ sin tðuÞ; 2H ¼ �t 0ðuÞ � f �1ðuÞ sin tðuÞ; (3.2)

and since the surface has no parabolic points we must have t 0ðuÞ f ðuÞ sin tðuÞ0 0.

198 Chahrazede Baba-Hamed and Mohammed Bekkar



Then by using (2.3) and (3.2) we get

D II ðg 0ðuÞ sinh vÞ ¼ cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f

� �
sinh v

D II ðg 0ðuÞ cosh vÞ ¼ cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f

� �
cosh v

D II ð�f 0ðuÞÞ ¼ cos t sin t

2f
þ 3t 0 cos t

2
þ t 00 sin t

2t 0
:

Hence

DIIN ¼ ðDII ðg 0ðuÞ sinh vÞ;D II ðg 0ðuÞ cosh vÞ;D II ð�f 0ðuÞÞÞ: (3.3)

Let A ¼ ðaijÞ, i; j ¼ 1; 2; 3 be a 3� 3 matrix with real entries. The equation (1.2)

by means of (2.5) and (3.3) gives rise to the following system of ordinary dif-

ferential equations:

cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f

� �
sinh v

¼ a11g
0 sinh vþ a12g

0 cosh v� a13 f
0 ð3:4Þ

cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f

� �
cosh v

¼ a21g
0 sinh vþ a22g

0 cosh v� a23 f
0 ð3:5Þ

cos t sin t

2f
þ 3t 0 cos t

2
þ t 00 sin t

2t 0
¼ a31g

0 sinh vþ a32g
0 cosh v� a33 f

0: (3.6)

In order to classify the surfaces M 2 of revolution satisfying (1.2) and (2.5)

we may solve the above system. It is remarkable that this classification depends

strongly on the function t ¼ tðuÞ. From the equation (3.6) we easily deduce that

a31 ¼ a32 ¼ 0. On the other hand, from (3.4) and (3.5) we get that a13 ¼ a23 ¼
a12 ¼ a21 ¼ 0. So the system is reduced to

cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f

� �
sinh v ¼ a11g

0 sinh v (3.7)

cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f

� �
cosh v ¼ a22g

0 cosh v (3.8)

cos t sin t

2f
þ 3t 0 cos t

2
þ t 00 sin t

2t 0
¼ �a33 f

0: (3.9)
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Comparing now the equations (3.7) and (3.8), we deduce that a11 ¼ a22 ¼ l,

l A R. We put a33 ¼ m, m A R. Then the system becomes

cos2 t

2f
þ t 0 cos2 t

2 sin t
þ t 00 cos t

2t 0
� t 0 sin t� 1

f
¼ lg 0 ¼ l sin t (3.10)

cos t sin t

2f
þ 3t 0 cos t

2
þ t 00 sin t

2t 0
¼ �mf 0 ¼ �m cos t (3.11)

If we multiply (3.10) by sin t and (3.11) by �cos t and add up the resulting

equations, we get

�t 0ðuÞ � f �1ðuÞ sin tðuÞ ¼ l sin2 tðuÞ þ m cos2 tðuÞ: (3.12)

That is,

2H ¼ l sin2 tþ m cos2 t ¼ ðl� mÞ sin2 tþ m:

A. Let l ¼ m ¼ 0, then H ¼ 0 which means that the surfaces of revolution

are minimal. In this case

t 0ðuÞ ¼ �f �1ðuÞ sin tðuÞ and t 00ðuÞ ¼ 2f �2ðuÞ cos tðuÞ sin tðuÞ:

If we substitute these values in Equ. (3.11) we get cos tðuÞ sin tðuÞ ¼ 0, that is

f 0g 0 ¼ 0 which is a contradiction. So there are no surfaces of revolution in this

case.

B. Let l ¼ m0 0, then 2H ¼ l which means that M 2 is a surface of rev-

olution with non-zero constant mean curvature (abbreviated to cmc).

These surfaces have been studied by S. Lee and J. H. Varnado in [10]. They

studied certain ODEs that characterize timelike cmc surfaces of revolution in R3
1 .

They obtained examples of such surfaces from the numerical solutions. In [8],

J. Hano and K. Nomizu also classified cmc spacelike surfaces of revolution in

R3
1 by studying profiles curves. Timelike cmc surfaces are physically interesting

because they are the solutions of nonhomogeneous wave equation �rtt þ rvv ¼
g2HN, where g is a positive function called the conformal factor, H is the mean

curvature and N is the unit normal vector of the timelike cmc surface rðt; vÞ.
Timelike cmc surfaces are also interesting from the string theory point of view.

A string evolves in time while sweeping a surface in spacetime so-called a

worldsheet. Hence, string worldsheet are in fact timelike surfaces. A closed string

is an object in the configuration space, that is homeomorphic to S1. Timelike

cmc0 0 surfaces may be interpreted as worldsheets that are swept by closed

strings in spacetime.
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More precisely, in this case we have

t 0ðuÞ ¼ �l� f �1ðuÞ sin tðuÞ (3.13)

and thus

t 00ðuÞ ¼ f �2ðuÞ cos tðuÞðlf þ 2 sin tðuÞÞ: (3.14)

Substituting (3.13) and (3.14) in (3.11) we get

l2f 2 þ 4l sin tf þ 4 sin2 t ¼ 0; (3.15)

from which

f ðuÞ ¼ � 2

l
sin tðuÞ: (3.16)

So, using (3.13) we find t 0 ¼ �l=2, that is

tðuÞ ¼ � l

2
uþ k; k A R: (3.17)

On the other hand, since g 0ðuÞ ¼ sin tðuÞ, we deduce that

g 0ðuÞ ¼ sin � l

2
uþ k

� �
;

and then

gðuÞ ¼ 2

l
cos � l

2
uþ k

� �
þ b; b A R: (3.18)

Accordingly, from (3.16) and (3.18) we get

hrðu; vÞ � b; rðu; vÞ � bi ¼ f 2ðuÞ þ ðgðuÞ � bÞ2 ¼ 4

l2
> 0;

with b ¼ ð0; 0; bÞ: ð3:19Þ

This means that the surface M 2 is contained in the pseudo-Riemannian sphere

S2
1 ðb; 2=jljÞ centered at b with radius 2=jlj, and A ¼ lI3 where I3 denotes the unit

matrix.

C. Let l0 m. By (3.12) we get

t 0ðuÞ ¼ ðm� lÞ sin2 tðuÞ � m� f �1 sin tðuÞ: (3.20)
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Taking the derivative we have

t 00 ¼ 2ðm� lÞt 0 sin t cos t� f �2ð ft 0 cos t� sin t cos tÞ

If we substitute the values of t 0 and t 00 in Equ. (3.11) we get

3

2
ðm� lÞ cos t sin2 t� m cos t� sin t cos t

f

� �
þ ðm� lÞ cos t sin2 tþ cos t sin2 t

2Pf

" #

¼ �m cos t

where P ¼ ðm� lÞ f sin2 t� mf � sin t. Multiplying now this equation by Pf , we

obtain the following algebraic equation of second order

a2 f
2 þ a1 f þ a0 ¼ 0; (3.21)

where

a0 ¼ 4 sin2 t; a1 ¼ �8a sin3 tþ 4m sin t; a2 ¼ 5a2 sin4 t� 6ma sin2 tþ m2;

and

a ¼ m� l:

Di¤erentiating now the algebraic equation (3.21), using (3.20) and f 0 ¼ cos t, we

get the algebraic equation of third order

B3 f
3 þ B2 f

2 þ B1 f þ B0 ¼ 0 (3.22)

where

B0 ¼ �8 sin2 t; B1 ¼ 24a sin3 t� 8m sin t;

B2 ¼ �34a2 sin4 tþ 28ma sin2 t� 2m2;

B3 ¼ 20a3 sin5 t� 32ma2 sin3 tþ 12m2a sin t:

Then if we multiply (3.21) by 2 and add (3.22), we find an algebraic equation of

the form

b2 f
2 þ b1 f þ b0 ¼ 0; (3.23)

The equation �2ðb2 f 2 þ b1 f þ b0Þ þ aða2 f 2 þ a1 f þ a0Þ ¼ 0 gives us

d1 f þ d0 ¼ 0: (3.24)

On the other hand, combining the equations (3.21), (3.22) we have

ða1b2 � a2b1Þ f þ a0b2 � a2b0 ¼ 0
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and then we obtain an algebraic equation of first order of the form

s1 f þ s0 ¼ 0: (3.25)

Hence if we multiply (3.24) by �s1 and (3.25) by d1 and add up the resulting

equations, we obtain

s0d1 � s1d0 ¼ 0:

That is the following polynomial

�5a6 sin9 tþ 24ma5 sin7 t� 42m2a4 sin5 tþ 32m3a3 sin3 t� 9m4a2 sin t

must be equal to zero. Since this polynomial vanishes for every t, all its co-

e‰cients must be zero. Hence we conclude that either a ¼ 0 (equivalently l ¼ m)

or l ¼ m ¼ 0. So we have a contradiction and therefore, in this case there are no

surfaces of revolution of R3
1 .

Then we have proved the following theorem

Theorem 1. The only surfaces of revolution of type I whose Gauss map

satisfies

D IIN ¼ AN; A ¼ ðaijÞ A Matð3;RÞ;

are locally the pseudo-Riemannian sphere S2
1 .

Case 2. Suppose now that the surface M 2 is given by (2.7). The tangent

vector of the revolving curve satisfies the relation

hg 0ðuÞ; g 0ðuÞi ¼ f 02ðuÞ � g 02ðuÞ ¼G1; Eu A J:

Consider that

f 02ðuÞ � g 02ðuÞ ¼ �1; Eu A J: (3.26)

Then the induced pseudo-Riemannian metric on M 2 is obtained by

E ¼ �1; F ¼ 0; G ¼ f 2:

which implies that the surface M 2 is timelike. The Gauss map N of the surface

M 2 is given by

N ¼ ð�f 0ðuÞ;�g 0ðuÞ cos v;�g 0ðuÞ sin vÞ:

In this case again, N is spacelike and hence it can be regarded as a Gauss

map of M 2 into the 2-dimensional de Sitter space S2
1ð1Þ. On the other hand
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we get

L ¼ f 0g 00 � g 0f 00; M ¼ 0; N ¼ fg 0; 2H ¼ g 0f 00 � f 0g 00 þ g 0

f
:

From the relation (3.26) we deduce that there exists a smooth function t ¼ tðuÞ
such that

f 0ðuÞ ¼ sinh tðuÞ; g 0ðuÞ ¼ cosh tðuÞ Eu A J:

Therefore

L ¼ �t 0ðuÞ; N ¼ f ðuÞ cosh tðuÞ; 2H ¼ t 0ðuÞ þ f �1ðuÞ cosh tðuÞ; (3.27)

and since the surface has no parabolic points we must have t 0ðuÞ f ðuÞ cosh tðuÞ
0 0.

Then using (2.3) and (3.27) we get

DII ð�f 0ðuÞÞ ¼ � sinh t cosh t

2f
� 3t 0 sinh t

2
� t 00 cosh t

2t 0

DII ð�g 0ðuÞ cos vÞ ¼ � sinh2 t

2f
� t 0 sinh2 t

2 cosh t
� t 00 sinh t

2t 0
� t 0 cosh t� 1

f

 !
cos v

DII ð�g 0ðuÞ sin vÞ ¼ � sinh2 t

2f
� t 0 sinh2 t

2 cosh t
� t 00 sinh t

2t 0
� t 0 cosh t� 1

f

 !
sin v:

The condition (1.2) leads to the following system

sinh t cosh t

2f
þ 3t 0 sinh t

2
þ t 00 cosh t

2t 0
¼ a11 f

0ðuÞ þ a12g
0ðuÞ cos vþ a13g

0ðuÞ sin v

sinh2 t

2f
þ t 0 sinh2 t

2 cosh t
þ t 00 sinh t

2t 0
þ t 0 cosh tþ 1

f

 !
cos v

¼ a21 f
0ðuÞ þ a22g

0ðuÞ cos vþ a23g
0ðuÞ sin v

sinh2 t

2f
þ t 0 sinh2 t

2 cosh t
þ t 00 sinh t

2t 0
þ t 0 cosh tþ 1

f

 !
sin v

¼ a31 f
0ðuÞ þ a32g

0ðuÞ cos vþ a33g
0ðuÞ sin v:

Applying similar algebraic methods, used in the first case, this system is reduced

equivalently to the following equations
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sinh t cosh t

2f
þ 3t 0 sinh t

2
þ t 00 cosh t

2t 0
¼ mf 0ðuÞ ¼ m sinh tðuÞ (3.28)

sinh2 t

2f
þ t 0 sinh2 t

2 cosh t
þ t 00 sinh t

2t 0
þ t 0 cosh tþ 1

f
¼ lg 0ðuÞ ¼ l cosh tðuÞ (3.29)

where a11 ¼ m, a22 ¼ a33 ¼ l, m; l A R.

If we multiply (3.28) by sinh t and (3.29) by �cosh t and add up the resulting

equations, we get

�t 0ðuÞ � f �1ðuÞ cosh tðuÞ ¼ ðm� lÞ cosh2 tðuÞ � m: (3.30)

That is

�2H ¼ ðm� lÞ cosh2 t� m:

A. Let l ¼ m ¼ 0, then H ¼ 0 which means that the surfaces of revolution

are minimal. In this case

t 0 ¼ �f �1 cosh t and t 00 ¼ 2f �2 cosh t sinh t:

By Equ. (3.28) it follows that cosh t sinh t ¼ 0. This is a contradiction and thus

there are no surfaces of revolution in this case.

B. Let l ¼ m0 0, then 2H ¼ l which means that M 2 is a surface of rev-

olution with non-zero constant mean curvature. In this case we have

t 0 ¼ l� f �1 cosh t and t 00 ¼ f �2 sinh tð�lf þ 2 cosh tÞ: (3.31)

Using (3.28) we obtain

l2f 2 � 4l cosh tf þ 4 cosh2 t ¼ 0; (3.32)

from which

f ðuÞ ¼ 2

l
cosh tðuÞ: (3.33)

Using (3.31) we obtain t 0 ¼ l=2 and then tðuÞ ¼ ðl=2Þuþ k, k A R.

Since g 0ðuÞ ¼ cosh tðuÞ ¼ coshððl=2Þuþ kÞ, we deduce that

gðuÞ ¼ 2

l
sinh

l

2
uþ k

� �
þ c; c A R: (3.34)

Consequently, from (3.33) and (3.34) we get

hrðu; vÞ � c; rðu; vÞ � ci ¼ f 2ðuÞ � ðgðuÞ � cÞ2 ¼ 4

l2
> 0; with c ¼ ðc; 0; 0Þ:
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This means that the timelike surface M 2 is contained in the pseudo-Riemannian

sphere S2
1 ðc; 2=jljÞ centered at c with radius 2=jlj.

Remark. If we considered that the surface M 2 is spacelike, that is

f 02ðuÞ � g 02ðuÞ ¼ þ1 (instead of (3.26)), we find

hrðu; vÞ � c; rðu; vÞ � ci ¼ � 4

l2
< 0;

so M 2 is contained in the pseudo-hyperbolic space H 2
0 ðc;�2=jljÞ.

C. Let l0 m. By (3.30) we get

t 0ðuÞ ¼ ðl� mÞ cosh2 tðuÞ þ m� f �1ðuÞ cosh tðuÞ: (3.35)

Taking the derivative we have

t 00 ¼ 2ðl� mÞt 0 sinh t cosh t� f �2ð ft 0 sinh t� sinh t cosh tÞ:

If we substitute the values of t 0 and t 00 in Equ. (3.28) we get

� 3

2
a cosh2 t sinh tþ m sinh tþ sinh t cosh t

f

� �
� a cosh2 t sinh t� cosh2 t sinh t

2Qf

¼ m sinh t

where

Q ¼ af cosh2 tþ mf þ cosh t

and

a ¼ l� m:

Then we obtain the following algebraic equation of second order

a2 f
2 þ a1 f þ a0 ¼ 0; (3.36)

where

a0 ¼ 4 cosh2 t; a1 ¼ �8a cosh3 t� 4m cosh t;

a2 ¼ 5a2 cosh4 tþ 6ma cosh2 tþ m2:

Di¤erentiating now the algebraic equation (3.36), using (3.35), we get the al-

gebraic equation of third order

B3 f
3 þ B2 f

2 þ B1 f þ B0 ¼ 0 (3.37)
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where

B0 ¼ �8 cosh2 t; B1 ¼ 24a cosh3 tþ 8m cosh t;

B2 ¼ �34a2 cosh4 t� 28ma cosh2 t� 2m2;

B3 ¼ 20a3 cosh5 tþ 32ma2 cosh3 tþ 12m2a cosh t:

Then if we multiply (3.36) by 2 and add (3.37), we find an algebraic equation of

the form

b2 f
2 þ b1 f þ b0 ¼ 0: (3.38)

The equation 2ðb2 f 2 þ b1 f þ b0Þ � aða2 f 2 þ a1 f þ a0Þ ¼ 0 gives us

d1 f þ d0 ¼ 0: (3.39)

On the other hand, combining the equations (3.36), (3.38) we have

ða1b2 � a2b1Þ f þ a0b2 � a2b0 ¼ 0;

and then we obtain an algebraic equation of first order of the form

s1 f þ s0 ¼ 0: (3.40)

If we combine (3.39), (3.40) we find that the following polynomial must be equal

to zero:

5a6 cosh9 tþ 24ma5 cosh7 tþ 42m2a4 cosh5 tþ 32m3a3 cosh3 tþ 9m4a2 cosh t ¼ 0:

Hence we have a contradiction and therefore, in this case there are no surfaces of

revolution of R3
1 .

Next, for the case of surfaces of revolution of type II , we have the same

results. So,

Theorem 2. The only timelike (resp. spacelike) surfaces of revolution of type

II or III whose Gauss map satisfies

D IIN ¼ AN; A ¼ ðaijÞ A Matð3;RÞ;

are locally the pseudo-Riemannian sphere S2
1 (resp. the pseudo-hyperbolic space

H 2
0 ).

4. Surfaces of Revolution of Type IV

Finally surfaces of revolution of type IV in R3
1 are characterized in this

section. Let M 2 be a surface of revolution of type IV whose axis l is the lightlike
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straight line spanned by ð1; 1; 0Þ. Then the profile curve g is given by gðuÞ ¼
ð f ðuÞ; gðuÞ; 0Þ where f 0 g. Suppose that it is parametrized by the arc-length, i.e.,

it satisfies �f 02ðuÞ þ g 02ðuÞ ¼G1, Eu A J. In this case the surface M 2 is given by

(2.8) that is

rðu; vÞ ¼ f ðuÞ þ v2

2
hðuÞ; gðuÞ þ v2

2
hðuÞ; vhðuÞ

� �
;

where h ¼ f � g on J. Since the function h has no zero points, we may assume

that h is positive without loss of generality.

Consider that

�f 02ðuÞ þ g 02ðuÞ ¼ �1; Eu A J; (4.1)

(the case �f 02ðuÞ þ g 02ðuÞ ¼ þ1, Eu A J is treated with the same way). The natural

frame fru; rvg is given by

ru ¼ f 0 þ 1

2
v2h 0; g 0 þ 1

2
v2h 0; vh 0

� �
;

rv ¼ ðvh; vh; hÞ:

Then the induced pseudo-Riemannian metric on M 2 is obtained by

E ¼ �1; F ¼ 0; G ¼ h2:

which implies that the surface M 2 is timelike (for the case �f 02 þ g 02 ¼ þ1, M 2 is

spacelike). The Gauss map N of the surface M 2 is given by

N ¼ �g 0 þ 1

2
v2h 0;�f 0 þ 1

2
v2h 0; vh 0

� �
:

In this case again, N is spacelike and hence it can be regarded as a Gauss

map of M 2 into the 2-dimensional de Sitter space S2
1ð1Þ. On the other hand

we get

L ¼ g 0f 00 � f 0g 00; M ¼ 0; N ¼ �hh 0; 2H ¼ f 0g 00 � g 0f 00 � h 0

h
:

From the relation (4.1) we deduce that there exists a smooth function t ¼ tðuÞ
such that

f 0ðuÞ ¼ cosh tðuÞ; g 0ðuÞ ¼ sinh tðuÞ; Eu A J:
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Therefore

L ¼ �t 0ðuÞ; N ¼ �hðuÞh 0ðuÞ ¼ �hðuÞ expð�tðuÞÞ; (4.2)

2H ¼ t 0ðuÞ � h�1ðuÞh 0ðuÞ ¼ t 0ðuÞ � h�1ðuÞ expð�tðuÞÞ;

and since the surface has no parabolic points we must have t 0ðuÞhðuÞh 0ðuÞ
0 0.

Then using (2.3) and (4.2) we get

D II �g 0 þ 1

2
v2h 0

� �
¼ 1

4
v2 � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
� h 0f 0

2h
þ 1

h
þ t 0f 0

2
� t 0g 0 � t 00f 0

2t 0
;

D II �f 0 þ 1

2
v2h 0

� �
¼ 1

4
v2 � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
� h 0g 0

2h
þ 1

h
þ t 0g 0

2
� t 0f 0 � t 00g 0

2t 0
;

D II ðvh 0Þ ¼ 1

2
v � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
:

By the assumption (1.2) and the above equation we get

1

4
v2 � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
� h 0f 0

2h
þ 1

h
þ t 0f 0

2
� t 0g 0 � t 00f 0

2t 0

¼ a11 �g 0 þ 1

2
v2h 0

� �
þ a12 �f 0 þ 1

2
v2h 0

� �
þ a13vh

0; ð4:3Þ

1

4
v2 � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
� h 0g 0

2h
þ 1

h
þ t 0g 0

2
� t 0f 0 � t 00g 0

2t 0

¼ a21 �g 0 þ 1

2
v2h 0

� �
þ a22 �f 0 þ 1

2
v2h 0

� �
þ a23vh

0; ð4:4Þ

1

2
v � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �

¼ a31 �g 0 þ 1

2
v2h 0

� �
þ a32 �f 0 þ 1

2
v2h 0

� �
þ a33vh

0: ð4:5Þ

So we can regard the above equations as polynomials with variable v and from

the coe‰cients we get

2ða11 þ a12Þh 0 � � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
¼ 0

a13h
0 ¼ 0

a11g
0 þ a12 f

0 � h 0f 0

2h þ 1
h
þ t 0f 0

2 � t 0g 0 � t 00f 0

2t 0 ¼ 0;

8>><
>>: (4.6)
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2ða21 þ a22Þh 0 � � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
¼ 0

a23h
0 ¼ 0

a21g
0 þ a22f

0 � h 0g 0

2h þ 1
h
þ t 0g 0

2 � t 0f 0 � t 00g 0

2t 0 ¼ 0;

8>><
>>: (4.7)

ða31 þ a32Þh 0 ¼ 0

2a33h
0 � � h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
¼ 0

a31g
0 þ a32 f

0 ¼ 0;

8>><
>>: (4.8)

Since h 0 has no zero points, from (4.6) and (4.7) we get a13 ¼ a23 ¼ 0, and by

(4.8) a31 þ a32 ¼ 0 and a31g
0 þ a32 f

0 ¼ 0. Hence we get a31 ¼ a32 ¼ 0. On the

other hand, by the first equations of (4.6) and (4.7) and the second equation of

(4.8), we have

a11 þ a12 ¼ a21 þ a22 ¼ a33: (4.9)

Also, by the third equations of (4.6) and (4.7), we get

ða11 � a21Þg 0 þ ða12 � a22Þ f 0 þ 1

2
� h 02

h
þ 3t 0h 0 � t 00h 0

t 0

� �
¼ 0:

Therefore, from the second equation of (4.8) and since h 0 ¼ f 0 � g 0 we get

ða11 � a21 � a33Þg 0 þ ða12 � a22 þ a33Þ f 0 ¼ 0, so a33 ¼ a11 � a21 ¼ a22 � a12 and by

(4.9) it follows that

a33 ¼
1

2
ða11 þ a22Þ and a12 ¼ �a21: (4.10)

We put a11 ¼ l and a22 ¼ m, ðl; m A RÞ. Then

a33 ¼
1

2
ðlþ mÞ and a12 ¼ �a21 ¼

1

2
ðm� lÞ:

Consequently the matrix A satisfies

A ¼
l 1

2 ðm� lÞ 0
1
2 ðl� mÞ m 0

0 0 1
2 ðlþ mÞ

0
B@

1
CA:

Thus, by the first equation of (4.6) and the last equation of (4.7) we

get
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lþ mþ h 0

h
� 3t 0 þ t 00

t 0
¼ 0; (4.11)

1

2
ðl� mÞg 0 þ mf 0 � h 0g 0

2h
þ 1

h
þ t 0g 0

2
� t 0f 0 � t 00g 0

2t 0
¼ 0: (4.12)

If we multiply (4.11) by ð1=2Þg 0 and add (4.12) we obtain

lg 0 þ mf 0 � t 0g 0 � t 0f 0 þ 1

h
¼ 0:

Since f 0ðuÞ ¼ cosh tðuÞ and g 0ðuÞ ¼ sinh tðuÞ, we deduce that

t 0ðuÞ � h 0

h
ðuÞ ¼ ðl sinh tðuÞ þ m cosh tðuÞÞ expð�tðuÞÞ: (4.13)

That is

2H ¼ ðl sinh tþ m cosh tÞ expð�tÞ:

A. Let l ¼ m ¼ 0, then H ¼ 0 which means that the surfaces of revolution

are minimal. In this case

t 0 ¼ h�1 expð�tÞ and t 00 ¼ �2h�2 expð�2tÞ:

From (4.11) we deduces that expð�tÞ ¼ 0 which is impossible. Then, there are no

surfaces of revolution in this case.

B. Let l ¼ m0 0, then 2H ¼ l which means that M 2 is a surface of rev-

olution with non-zero constant mean curvature. In this case we have

t 0 ¼ lþ h�1 expð�tÞ and t 00 ¼ �h�2ðlhþ 2 expð�tÞÞ expð�tÞ: (4.14)

Using (4.11) we get

l2h2 þ 4l expð�tÞhþ 4 ¼ 0; (4.15)

from which

hðuÞ ¼ � 2

l
expð�tÞ: (4.16)

Using (4.14) we obtain t 0 ¼ l=2 and then tðuÞ ¼ ðl=2Þuþ k, k A R. Thus,

f 0ðuÞ ¼ cosh
l

2
uþ k

� �
and g 0ðuÞ ¼ sinh

l

2
uþ k

� �
:
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We deduce that

f ðuÞ ¼ 2

l
sinh

l

2
uþ k

� �
þ d and gðuÞ ¼ 2

l
cosh

l

2
uþ k

� �
þ d; d A R:

So,

hrðu; vÞ � d; rðu; vÞ � di ¼ ðgðuÞ � dÞ2 � ð f ðuÞ � dÞ2 ¼ 4

l2
> 0; with d ¼ ðd; d; 0Þ:

This means that the timelike surface M 2 is contained in the pseudo-Riemannian

sphere S2
1 ðd; 2=jljÞ centered at d with radius 2=jlj.

On the other hand, if the surface M 2 is spacelike we get

hrðu; vÞ � d; rðu; vÞ � di ¼ � 4

l2
;

which means that M 2 is contained in the pseudo-hyperbolic space H 2
0 ðd;�2=jljÞ:

C. Let l0 m. By (4.13) we get

t 0ðuÞ ¼ l sinh tðuÞ þ m cosh tðuÞ þ 1

hðuÞ

� �
expð�tðuÞÞ: (4.17)

Taking the derivative we have

t 00 ¼ ððl� mÞt 0h 0 � h�1t 0 � h�2h 0Þ expð�tÞ:

If we substitute the values of t 0 and t 00 in Equ. (4.11) we get

Rh½lþ m� 3l sinh t expð�tÞ � 3m cosh t expð�tÞ þ ðl� mÞ expð�2tÞ�

� 3R expð�tÞ � expð�tÞ ¼ 0:

where

R ¼ lh sinh tþ mh cosh tþ 1:

Then, after some calculus, we find the following algebraic equation of second

order

a2h
2 þ a1hþ a0 ¼ 0; (4.18)

where

a0 ¼ �16 expð�tÞ; a1 ¼ �8b þ 16a expð�2tÞ;

a2 ¼ �b2 exp tþ 6ab expð�tÞ � 5a2 expð�3tÞ;
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and

a ¼ l� m; b ¼ lþ m:

Di¤erentiating now the algebraic equation (4.18), using (4.17), we get the al-

gebraic equation of third order

A3h
3 þ A2h

2 þ A1hþ A0 ¼ 0 (4.19)

where

A0 ¼ 16 expð�2tÞ; A1 ¼ �24a expð�3tÞ;

A2 ¼ �3b2 � 10ab expð�2tÞ þ 21a2 expð�4tÞ;

A3 ¼
1

2
½�b3 exp t� 5ab2 expð�tÞ þ 21a2b expð�3tÞ � 15a3 expð�5tÞ�:

Then if we multiply (4.18) by expð�tÞ and add (4.19), we find an algebraic

equation of the form A3h
3 þ C2h

2 þ C1h ¼ 0 which we divide by h to obtain

b2h
2 þ b1hþ b0 ¼ 0; (4.20)

where

b0 ¼ Ca0;

b1 ¼ �8b2 � 8ab expð�2tÞ þ 32a2 expð�4tÞ;

b2 ¼ �b3 exp t� 5ab2 expð�tÞ þ 21a2b expð�3tÞ � 15a3 expð�5tÞ:

The equation Cða2h2 þ a1hþ a0Þ � ðb2h2 þ b1hþ b0Þ ¼ 0 gives us

d1hþ d0 ¼ 0: (4.21)

On the other hand, combining the equations (4.18), (4.20) we have

ða1b2 � a2b1Þhþ a0b2 � a2b0 ¼ 0;

and then we obtain an algebraic equation of first order

s1hþ s0 ¼ 0: (4.22)

If we combine (4.21), (4.22) we find s1d0 � s0d0 ¼ 0; that is the following

polynomial must be equal to zero for every t:

72b4 expð�3tÞ � 256ab3 expð�5tÞ þ 336a2b2 expð�7tÞ

� 192a3b expð�9tÞ þ 40a4 expð�11tÞ ¼ 0:
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So we have a contradiction. Therefore, in the case l0 m, there are no surfaces of

revolution of R3
1 satisfying the condition (1.2).

Then we have proved the following theorem

Theorem 3. The only timelike (resp. spacelike) surfaces of revolution of type

IV whose Gauss map satisfies

D IIN ¼ AN; A ¼ ðaijÞ A Matð3;RÞ;

are locally the pseudo-Riemannian sphere S2
1 (resp. the pseudo-hyperbolic space

H 2
0 ).

Finally, using the results of S. M. Choi [6], one can state the following

characterization theorem:

Theorem 4. Let M 2 be a timelike (resp. spacelike) surface of revolution

without parabolic points in R3
1 . Then for some non-singular matrices A;AII A

Matð3;RÞ the following are equivalent:

1. DN ¼ AN:

2. D IIN ¼ AIIN.

3. M 2 is locally a pseudo-Riemannian sphere (resp. a pseudo-hyperbolic space).

References
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Chahrazède Baba-Hamed, Mohammed Bekkar

Department of Mathematics

Faculty of Sciences

University of Oran.

B. P. 1524, El M’Naouer, Oran. 31000 Oran.

Algeria

e-mail: baba_hamedch@yahoo.fr

bekkar_99@yahoo.fr

215On the Gauss map of surfaces of revolution


