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HOCHSCHILD COHOMOLOGY RING OF A MAXIMAL
ORDER OF THE QUATERNION ALGEBRA

By

Takao Hayami

Abstract. We give an efficient bimodule projective resolution of
a maximal Z-order A of the ordinary quaternion algebra over Q,
and therefore we determine the ring structure of the Hochschild
cohomology of A by calculating the Yoneda products using this
resolution.

1. Introduction

Let R be a commutative ring and A an R-algebra which is a finitely
generated projective R-module. The nth Hochschild cohomology of A is defined
by HH"(A) := Ext)c(A,A), where A° =A ®zA°". The Yoneda product gives
HH*(A) :==@,.,HH"(A) a graded ring structure with 1eZA ~ HH"(A)
where ZA denotes the center of A. HH *(A) is called the Hochschild cohomology
ring of A. The Hochschild cohomology ring HH*(A) is graded-commutative, that
is, for o € HH?(A) and fe HHY(A) we have off = (—1)"Ba (see [2], [6]).

The Hochschild cohomology has important connections and applications
to the representation theory of algebras. For example, under appropriate
hypotheses two derived equivalent algebras have isomorphic Hochschild coho-
mology algebras (see [5, Proposition 2.5]), and the second Hochschild coho-
mology group is important in deformation theory. The Hochschild cohomology
has been studied for various algebras, however it is difficult to compute in
general.

We have investigated the Hochschild cohomology of quaternion orders in
[3] (see also [6], [7], [4]). Let A =Q ® Qi ® Qj @ Qij be the ordinary quaternion
algebra over Q with the relations i = j> = —1, jj= —ji. Weset T=ZQ®Zi ®
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Zj®Zij. Then T' is a Z-order of A. The multiplicative structure of the
Hochschild cohomology ring HH*(I") is known in [6] (see [3] for a new proof and
a generalization):

HH*(T) ~Z[X,Y,Z]/(2X,2Y,2Z, X* + Y* + Z?),

where deg X =deg Y =degZ=1. So it is natural ask to consider the
Hochschild cohomology rings of other quaternion orders. On the other hand,
Bobovich [1] shows that the Hochschild cohomology of a maximal order of a
simple central algebra over the algebraic number field is periodic with period 2.
Now we set a=(1+i+j+1i)/2. Then A=ZPZi®DZj® Za is a maximal
Z-order of A. In this article, we give an explicit bimodule projective resolution of
a maximal quaternion order A, and apply the result to determine the Hochschild
cohomology ring of A. This resolution is not periodic, but nevertheless we can
determine the ring structure of the Hochschild cohomology by using this res-
olution.

In Section 2, we give a bimodule projective resolution of A (Theorem 2.1).
In Section 3, we give the module structure of HH*(A) using this resolution of
A (Theorem 3.1). This is a complicated calculation. To compute the Yoneda
products on HH*(A) we need generators of HH*(A) as a module. In Section 4,
as a main theorem of this paper, we determine the Hochschild cohomology ring
HH*(A) (Theorem 4.2).

2. Bimodule Projective Resolution

Let A=Q® Qi ® Qj @ Qij be the ordinary quaternion algebra over Q with
the relations i> = j2 = —1, ij = —ji. We put a= (1 +i+ j+ij)/2. Then A =
7ZD7ZiDZjD Za is a maximal order of 4. Note that the following equations
hold:

ia=a—-1—j=i—1—ai, jataj=j—1, a*=a—-1, a*=-1.
It is easy to see that 1, i, @, ia are linearly independent over Z, so we take
{1,i,a,ia} as a Z-basis of A.
In this section we give an efficient bimodule projective resolution of A. For
each ¢ > 0, let Y, be the direct sum of ¢ + 1 copies of A ® A. As elements of Y,
we set

s
Cs{((),...,O,l@l,(),...,O) (if 1<s<gq+1),
! 0 (otherwise).
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Then we have Y, = 13? Ac(’;A. Define left A°-homomorphisms 7 : Yy — A;

¢t 1and é,: Y, — Y1 (¢>0) given by
S s 7 s—1 s—1, _ .s—1
5.(et) = ic; |+ jitacy+cila—c7 for g even,
E icy | — cgfli—l—ac;:} — c;ja for ¢ odd.

THEOREM 2.1. The above (Y,n,d) is a A°-projective resolution of A.

Proor. First, we must check that -y =0 and J,-dy41 =0 for ¢ > 1.
Clearly -6, =0 holds. If g(>2) is even, we have the following:

s\ .8 s s—1 s—1 s—1
01+ 04(cy) = 04-1(icy_y +cy_yi+ac,”) +c,1a—c,"))

=0.

The case ¢ odd is similar.
Next we state a contracting homotopy. We define right A-homomorphisms

T_1:A—=Yyand T,: Y, — Y4 (¢ =0) as follows:
T 1(2) =cpi (for LeA);

):{mc;Jfl (SZI),

T m .8
i 0 (s>2),

q

.1 _ . cm .2 _
me,  —mc,a+i"c;, (s=1 and ¢ odd),

T,(i"ac}) = § meg,a+i"cq, (s=1 and ¢ even),
l-rﬂc;ii (S > 2),

where m = 0, 1. These homomorphisms are right A-homomorphism. So it permits
us to cut down the number of cases. Thus we must check that

cmo_n ,S) — imancs

Og1 Ty + Ty194)(i"a ¢ q
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holds form=0,1; n=0,1; 1 <s < g+ 1, where we set dp = z. In the case ¢ =0,
we have the following:

1 To(i"a"c)) + T n(i™a"c)) = (i"a"c) — cli™a") + cli™a" = i"a"c,.
Note that the computation of & To(i"a"c}) is divided into four cases.
In the case ¢ odd, we have the following:

Case s = 1:

Og1 Ty (i™ c(}) 5q+1(mc;+1) = m(ic(} + c;i) (m=0,1),
c! m=0),
Ty19,(i"cq) = Ty1 (i (icy_y — ¢4 1i)) = { "y )
q

-m Iy 1 1 -m 2
Ogr1Ty(i"ac,) = 0411 (meyy —meyqa+i"cy, )

.1 1 _
{acq—&—cqa q—i—lc +Ll (m=0),
-1 ;1 B

iac, + c,i cqzaJrlc i—c¢ 1
T

g1 a(icéfl - C;qi))

Case s > 2:

8y Ty(i"e;) =0,

Ty104(i"cy) = Ty (i"(icy_y — cgfli+ac;j — ¢, a)) =i"cy,

Og1 Ty(i"acy) = dg (i" ;1)

= i"(ic)™ e+ ac) + cja — ),

Ty104(i"acy) = Ty (i"((i = 1 —ia)cy, | —acy_yi+ (a—1)cy") — ac;ja))

K
q—1

_ams o s+1 s+ S LS
i"(ic,” + ¢y i+ cpa — ).
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Note that the computations of T,_;d, are divided into some subcases. The case
¢(=2) even is handled by a similar way. O

It seems to be difficult (or impossible) to construct a periodic bimodule
projective resolution of A. The resolution in Theorem 2.1 is not periodic, but
nevertheless we can determine the ring structure of the Hochschild cohomology
by using this resolution.

3. Module Structure

In this section, we determine the module structure of HH"(A). To calculate
products on HH*(A) by the Yoneda product, we need an explicit module gen-
erator of HH"(A). Let A7"! be a direct sum of ¢+ 1 copies of A. As elements
of AT we set

s
f:{m,”ﬁjﬁ,”ﬁ)(ﬂlgsgq+w,
! 0 (otherwise).
Thus we have A% = @/ ALk,
Applying the functor Homye(—, A) to the resolution (Y,x,d), we have the

following complex, where we identify Homu:(Y,, A) with A" using an isomor-
phism Homye(Y,,A) — AT [ Zgillf(cfi‘)l;‘:

o7 oF o7 oF
(Hompe(Y,A),0%): 0 — A A2 A LAY LA — -

P78 S s+1 s+1
5% () = ALy — /hlq+1 + aiqu - )vaqu for ¢ odd,
1 =9 ., . ! ! )
AR PS4 AL+ adty 4 da Ty — ity for g even,

for 2 € A. In the above, note that
s
if{mw“ﬂlﬂ,”ﬂ)(ﬁlssgq+b,
! 0 (otherwise),
and so on. In the following, if z is a cocycle, we also denote its cohomology class
by z for brevity.
THEOREM 3.1. The module structure of HH"(A) is as follows:

z (n=0),
HH"(A) =<0 (n odd),
(Z)2Z)1)  (n(0) even).
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ProoOF. Let Ay = by + cri + dra + eria (by, cr,dy, e € Z) be any element of
A. Then we have
iAx = bpi — ¢ + diia — eya,
Mk =byi—ck +dp(i — 1 —ia) + ex(a—1—1)
= —(cx +dr +ex) + (br + dr — er)i + exa — dyia,
alg =bra+c(i—1—ia)+di(a—1)+ex(i — a)
= —(ck +di) + (ck +ex)i + (bx + dx — ex)a — ciia,
Aka = bra + cria+ di(a— 1) + exi(a — 1)
= —dy —exi+ (br + di)a + (ck + ex)ia.

(i) The case n=0: We see that HH’(A) = Ker 6] = Z. In fact, for 1, =
by + c1i +dyja+ ejia (b],Cl,dl,el EZ), we have
iy — Jyi =0,
a/ll —/1161 =0

(dl + 61) + (81 — dl)i — 2ej1a + 2dyia = 0,
—c1+ (c1 +2e))i—eja— (2¢1 +e)ia=0

JeKerdf & {

<:>61=d1:€1:0.

(i) The case n odd: We show HH"(A) = 0. Since the cohomology module
is periodic with period 2, it suffices to show HH'(A) = 0. For Ay = by + cxi +
dra + exia (b, ck,di,er € Z), we have

i+ Ai= 0,
(21512) € Ker 5;‘ S S al+dia— A +idy + Ai =0,
ary +ra—7,=0

—Q2c1+di+e)+ (2by+dy —e)i =0,
o —(bl +c1 +2d) +2¢+d> +e2)

—|—(2b2 +dr — €2)i + (2171 +d — €1)a =0,

—(bz + o+ 2d2) + (2b2 +d) — ez)a =0

2¢i+d; +e =0,
2by +dy — e; =0,
S b4 +2d) +2¢+dr + ey =0,
by + ¢y +2d, =0,
2by +dr —er =0
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bl = —C1 — Zdz,
dy = 2d,,

S qe =2 — 2d2,
Cy = 7b2 — 2d2,
ey =2by+db

If this is the case, then we have
(A1,22) = c1(i— 1 = 2ia,0) — dr(2 — 2a + 2ia,2i — a — ia) + by(0,1 — i + 2ia).
Therefore we have that
Kerd) = Z(i — 1 — 2ia,0) @ Z(2 — 2a + 2ia, 2i — a — ia) ® Z(0,i — 1 — 2ia).
Since for Ay = by + cji + dya+ ejia (by,c1,di,e; € Z),
0t (A1) = (il — Ai,aly — Jya)
=d\ (1 —i+2ia,0)+e (1 +i—2a,2i —a—ia)+ c1(0,i — 1 — 2ia)
= (e —di)(i— 1 —2ia,0) + e;(2 — 2a + 2ia,2i — a — ia)
+¢1(0,i — 1 — 2ia),

it follows that Kerdj = Im 4} holds.
(iii) The case n(>2) even: We show HH"(A) = Ker ¢/, ,/Im 6} = (Z/2Z)1).

First we calculate Ker 5f 1 Let Ax = by + cii + dra+exia (bi, ci, di, e € Z). Since

(/11,)»2,...,}.n+1) eKer&fH
idy — i=0,
S aky —a+ il —ni=0 (k=1,2,...,n),
aﬂ»n_H —;Ln+1a =0

(dy+e1)+ (e1 —d)i —2e1a + 2dyia = 0,
o (—ck + dis1 + exy1) + (ck + 2ex — diy1 + exs1)i
—(ex +2exr1)a — 2ck + e — 2dpy1)ia=0 (k=1,2,...,n),
—Cpt1 + (Cn+1 + 2en+1)i — €py1d — (2Cl1+l + en+l)ia =0
d =0,
o e =0 (k=1,2,...,n41),
Ci = dk+1 (k = 1,2,. .. ,n),
Cnyl = 0

n+1 n

& (M day e dnet) = Y btk + > (it + ark ™),
k=1 k=1
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we have
n+1
Ker o7, = Zz @ @ Z(ith + a)
= k=
n+1 n
=Pz D Z(G+ 1)k +al). (3.1)
k=1 =
Next we prove
n+1
Imé? =72 +2)o P 2@ @ Z((i + V)i + @, (3.2)
k=2 k=

For A = by + cxi + dra + exia (by, ¢k, di,ex € Z), we have

n
OF (A, day. oy dn) = Y bi(2itk + (2a = 1)if ™) ch (205 5
k=1
+de ((i—1n e Zek (i + )ik + akth

n

(b + dy — ex)((i + )2k + )

>~
—_

Z (b + ¢ + dy) 21 + lk'H ZdAZkH

(b + dy — ex)((i + )2k 4+ a1
-

— (b +c1+di) (2 + 1) = (dy +2(by + 2 + do))y

>

,_

n—
(bi + cx + 2(di + brs1 + oyt + dii1) )ikt
2

— (b + ¢+ 2d,)1"

~
|

Then 67 (1,42, ...,4,) is an element of the right-hand side of (3.2). Conversely,
by choosing ¢, (1 <k <n), b,d\,by (2 <k <n) properly, 67 (A1, 22,..., %) is
to be any element of the right-hand side of (3.2). Therefore we have

Im 6% = 27:! @ @ 7S @ Z((i + )i @, (3.3)

Hence by (3.1) and (3.3) we have the results. N
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4. Hochschild Cohomology Ring of A

In this section, we determine the ring structure of the Hochschild cohomology
ring HH*(A).

Recall the Yoneda product in HH*(A). Let « € HH"(A) and e HH™(A),
where o and f are represented by cocycles f,:Y, — A and fz:7Y,, — A, re-
spectively. There exists the commutative diagram of A°-modules:

Onmt1 Onsm Omi2 Ot f/f
— Yyum —— - —— Ypu Y A

| I

Y, — .- Y Yo A 0,

Ons1 On ) o1 n

where 1, (0 </ <n) are liftings of f3. We define the product o - f e HH"t"(A)
by the cohomology class of f,u,. This product is independent of the choice of
representatives f, and fp, and liftings ¢, (0 </ <n).

Let o =1(e HH*(A)). Then « is represented by the A°-homomorphism
Ju: Ya— A given by f,(c}) =1, f,(c3) = fu(c3) = 0. Then the following lemma
holds.

LemMA 4.1. A lifting p,: Yoo — Y, of f, is given by p,(ck.,) =ck for
n>0.

Proor. Clearly 7-y, = f, holds. If n>1 is odd, we have

K _ -k ko k-1 k-1
P—10n12(Cy10) = pyy (iCyyy — ¢yl +acy — ¢, a)
.k ko k-1 k—1
=1ic, | —C,l+ac,_| —c,_1a

= 5n(cr1:) = 5n/‘n(clf+2)~

The case n > 2 even is similar. |

Let f=u,e HH*(A) for n>1. Then B is represented by the A°-
homomorphism f: Yo, — A; 5, 1§, Since fj -, (¢, 5) = fp(ch) =1, it
follows that off =1}, ,€ HH*(A) holds. Therefore we have o =1, €

HH?(A) for n>1, and the following theorem holds.

THEOREM 4.2. The Hochschild cohomology ring HH*(A) is isomorphic to
Zo)/(20), where deg o = 2.
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REMARK. Let '=Z @ Zi ® Zj ® Zij be the ordinary quaternion Z-algebra.
The multiplicative structure of the Hochschild cohomology ring HH*(I') is
known in [6], [3]:

HH*(T) ~Z[X,Y,Z]/(2X,2Y,2Z, X* + Y* + Z?),

where deg X =deg Y =deg Z=1. HH*(T') is not a periodic cohomology. It is
known that T" is not a maximal order of the ordinary quaternion Q algebra 4.
In general, there does not exist a ring homomorphism between two Hochschild
cohomology rings except special cases. However, by Theorem 4.2, we get an
injective ring homomorphism HH*(A) — HH*(T') given by o+ X2.
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