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METRIC SPHERES IN THE PROJECTIVE SPACES WITH
CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

By
Nobuhiro INnNaMI, Yukihiro MasHiko, and Katsuhiro SHIOHAMA

To the memory of our esteemed friend, Hisao Nakagawa

Abstract. We discuss codimension one isometric immersions of
complete Riemannian manifolds into the projective spaces with
constant holomorphic sectional curvature. Here, the shape operator
and the curvature transformation with respect to the normal unit
have the same eigenspaces. We then characterize the metric spheres
in terms of the shape operator.

1. Introduction and the Statement of Results

Let M"(c) = KP*(c) be a projective space of constant holomorphic sectional
curvature ¢ > 0. Here, we set K= C for A=1, K= Q for 4 =3 and K = Ca for
/=7 and k =2, and the real dimension n of M"(c) is n = (A + 1)k, k > 2. Let
M be a connected and complete Riemannian (n — 1)-manifold and :: M —
M"(c) an isometric immersion.

Let pe M"(c) be an arbitrary fixed point and ¢ a unit vector in the
tangent space M "(¢); to M"(¢) at p. We then have the unique orthogonal
decomposition:

M”(c)ﬁ = span{&} @ #: ® A A

Here, we denote by span{uy,...,u,} the span of vectors uy,...,u, € M"(c)ﬁ. The
H: and o/ H#: are the eigenspaces of the curvature transformation u — R(u,&)E,
ue M "(c); corresponding to the maximum and minimum eigenvalues, respec-
tively. Each point p € M has a neighborhood where a unit normal field N along :
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is well defined and the tangent space M, to M at p admits a unique orthogonal
decomposition:

My = Hip) @ AHn(p)-

Here, M, is naturally identified with 1, M), and the sectional curvature K., of
M"(c) satisfies § < Ky < ¢ and Ay, = {ue M, | Ky (N(p),u) = c} U{0},
AAN(p) = {v € My | Kypn(y (N(p), )—c/4}U{0}.

The shape operator A M, — M, for 1 at a point pe M is given as

A,X = —VyN, XeM,

where V is the Levi-Civita connection on M"(c).

In a recent work [4], it has been proved that :(M) is a metric p-sphere
S"1(p,p) = M"(c) centered at a point p e M"(c), if there are constants x, x>
satisfying

(1) Al =11l Al gy, =2l
(2) c= 4K’§ — 4ok

Here we have
(3) K| = vccot ep, 1= [ cot [

The purpose of this article is to establish a new rigidity theorem for metric
spheres in M"(c) under weaker assumption than stated above. In order to avoid
the case by case discussion on the choice of coefficient fields, we employ the
matrix Jacobi equation along the unit speed geodesics fitting N. We shall prove
the following

THEOREM 1. Let 1: M — M"(c) be an isometric immersion of a connected
and complete Riemannian (n — 1)-manifold into a projective space M"(c) = KP*(c)
with constant holomorphic sectional curvature c. If the shape operator of 1 satisfies
(1) for smooth functions i) and i, we then have:

(1) Both x| and K, are constant.

(2) The principal curvatures satisfy (2).

(3

(

)
) «(M) is a metric sphere in M"(c).
4) 1 is an embedding.

REMARK 1. There are many local works on the real hypersurfaces in M "(¢)
with constant principal curvatures, for instance [3], [5], [1] and others. Complete
real hypersurfaces in M"(c) have first been discussed in [4]. Real hypersurfaces in
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the Cayley projective planes have not been discussed even locally, but in [4].
Berndt [1] first introduced the notion of curvature adapted for a real hypersurface
in M"(c), which states that the shape operator commutes with the curvature
transformation with respect to a unit normal at each point on it. Thus the
hypersurfaces in Theorem 1 are curvature adapted. We employ the two-parameter
geodesic variation to prove that all the principal curvatures with multiplicities
greater than 1 are constant. The matrix Jacobi tensor provides us with a dis-
cussion independent of the choice of coefficient fields. As a direct consequence of
Theorem 1:(2), we observe that M"(c) admits neither totally umbilic nor totally
geodesic hypersurfaces.

Let Inj(q) for ¢ € M be the injectivity radius of the exponential map at g.
Let S"'(¢q,t) € M for te (0,Inj(g)) be the metric z-sphere centered at ¢ and
A,(q,1) for pe S""(q,1) the shape operator at p of S"!(¢,). From the point of
view of Riemannian geometry, Proposition 1 gives a general guiding principle to
characterize metric spheres in a complete Riemannian manifold. The proof of
Proposition 1 is straightforward from the standard variation technic, and left to
readers.

PROPOSITION 1. Let 1: M — M be an isometric immersion of a complete
Riemannian (n — 1)-manifold into a complete Riemannian n-manifold M. Let
r: M — R be a smooth function such that r(p) € (0,Inj(i(p))) for all p e M. If the
shape operator Ay of 1 at every point g € M coincides with A4(yn(,)(1(q)),7(q)) at q
of S”‘l(yN(q)(r(q)),r(q)) © M, then r is constant, say ry, and In(g) (7o) is a fixed
point in M. Further, (M) = S" Nyny (ro),ro) and 1 is an embedding.

2. Preliminaries

The global behavior of geodesics on M"(c) is referred to [2]. For a point

pe M"(c) and for a unit vector v e M"(c),, we denote by y, : [0, 0) — M"(c) a

geodesic with y,(0) := p and p,(0) := v. Th]:*:re are three submanifolds determined
by ve M "(¢); which are usefull for the proof of our Theorem. They are the
K-line S**!(¢), the cut locus Cut(p) to p, which is the hyperplane at infinity with
respect to p, and the real projective (1 — A)-space RP"*(c/4) of constant sec-
tional curvature c/4. Clearly, K-line and Cut(p) are totally geodesic. The S/*!(c)
is isometric to the standard (4 + 1)-sphere of constant sectional curvature ¢, and

its tangent space at p,(¢) is expressed by

SZ'JFI (C)“/L.(f) = Span{j}v([)} @ %/l(l)
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The tangent space to RPf_i(c/4)yv(t) at y,(¢) is expressed by
RP;(c/4), (o, = span{j, (1)} ® o/, ).

The vector y,(n/+/c) is normal to Cut(p), /e = AH; (n/ye- Let X be a unit
parallel field defined on a small neighborhood U < Cut(p) around y,(n/+/c)
such that X (y,(n/\/¢)) = —7,(n/\/c). We then have a portion of RP"*(c/4) as
follows:

- - - 7T -
{exp; 1X(q)|t€[0,7/\/c],ge U} and p=e><pq7EX(q), geU.

Let {E,...,E,} be an orthonormal parallel frame field along p, with
E,:=7,0). Let R(f) be the matrix representation of R(-,7,(¢))y,(t) on

span{Ej,...,E, 1}. We consider the (n — 1) x (n — 1)-matrix Jacobi equation as
follows:
(4) D"(t) + R(t)D(t) = 0.

If D(t) is a solution of (4) and if a vector x e M "(¢)p, x L v is identified with the
parallel field along y, generated by x = x(0), then Y(¢) = D(¢)x is the repre-
sentation of a Jacobi field. Let Dy(7) and D;(z) be the fundamental solution of (4)
such that

(5) Do(0) =0, D)(0)=1,;, and Dy(0)=1,, DI!(0)=0.

Here I, is the m x m identity matrix. Then, every Jacobi field Y along y, is
expressed uniquely by

Y(t) = Dy(t)x + Di(t)y, x:=Y'(0), y:=Y(0).

Clearly both #; ;) and /4; ) are the eigenspaces of the curvature transfor-
mation corresponding to the eigenvalues ¢ and c¢/4 respectively.

From now on, let {E\,...,E;} and {E;\\,...,E,} be parallel orthonormal
Sframe fields of #; and </ H; along 7y, respectively. We then have

1
R(z):[“ . } t>0.
i
Therefore we have

L sin /et
Dy(r) = | ¥*

\/% sin %ll,,,i,l }
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and

cos /ctl,

D](I) = NG .
cos 51l

Let ry € (0,7/\/c) be a fixed number and take a point §e S" ! (p,r).
For a smooth curve c: (—¢&e) — S" 1(p,ro) such that ¢(0):=g and ¢é(0) :=
xeS”*l([),rO)q, we set v(s) eM”(c)ﬁ, s € (—¢,¢) such that c(s) := expj; rov(s).
Then the Jacobi field Y(¢) along p, associated with the geodesic variation
(¢,5) = exp; to(s) is an N-Jacobi field for this metric sphere. We then have

Y (1) = Do(1)0'(0), ©'(0) L v.

From construction, we have Y(rg) = x and hence the shape operator Az(p,ro)
at g of S"!(p,ry) is given as

Ag(p.ro) = Dj(ro)Do(ro) "

Let 1: M — M"(c) be an isometric immersion and N a unit normal field
along : defined in a small neighborhood around ge M. Let 4, be the shape
operator at ¢ of 1. An N-Jacobi field Y along yy, is a Jacobi field associated
with the geodesic variation whose variational geodesics at ¢t = 0 are fitting N, and
is written as

Y(t) = —Dy(t)Ayx + Dy (1)x,

where Y (0) = xe M, and Y'(0) = —A4,x. Therefore, the matrix N-Jacobi tensor
is written as

D(t) = —Dy(t)Ay + Dy (1), t=>0.

3. Metric Spheres

We now discuss the shape operator of smooth metric spheres with radius
re (0,7/+/c). When our discussion is local, we may identify points and vectors on
M with those on (M) = M"(c).

Let y be a geodesic with y(0) =p and y(¢) = . As is observed at the end
of §2, the shape operator A4(p,1) of S"~'(p, 1) = M"(c) at a point § is expressed
as

Ve cot \Jetl;
A; = D}()Do(1) " =
g = Do(1)Do(1) Voot étlnﬂq

2
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with respect to {E;(¢),...,E,(t)}. The principal curvatures x(z) and r,(f) of
S"1(p,t) with respect to the inward unit normal at § are given as

k1(f) = Vccot et and ro(t) = \/TE cot ?l.

Clearly, they satisfy
¢ = 4ic5(1)? = dicy (ica (1),

3.1. Principal Curvatures and Zeros of N-Jacobi Field

Let M be a hypersurface in M"(c¢) and ge M. Let veM”(c)q be a unit
normal vector to M at ¢ and y,() :=exp, tv, t > 0. Then the matrix N-Jacobi
tensor along y, is expressed as

JL; sin y/ctl; cos +/ctl;,
D(1) = — 2 gin Yoo q Ve
7 Sin 7[ n—i—1 €os 5-tl,—;-1
with respect to Ei(f),..., E,_1(t). If x € M, is an eigenvector corresponding to an

eigenvalue k& and if x = x| + x3, x| € #, and x; € &/, we then have

D(t)x = —Dy(t)Agx + D1 (1)x

= <COS \/Et\l;E sin\/Et)xl + (cos \gzt\z/kz sin \ézt>x2.

Therefore, D(¢)x = 0 holds for some ¢ if and only if one of the following is true.

(1) x=x; € #, and k = \/c cot /ct.

(2) x=x2 € AH, and kz% cot‘/TEt.

LeMMA 1. Let M be a hypersurface in M"(c) and qe M. If there exists
for every x € M, a number t(x) such that D(t(x))x =0, then t(x) is independent
of the choice of x € M,. Setting t,:= t(x) for x € My, the shape operator A, =
Do(tq)lel(tq) at q satisfies

p Ve cot /ety
“ \/TE cot %lqln,j',l ’
In particular, A, has two distinct eigenvalues ki(q) = +/c cot \/cty and K>(q) =

JTZ cot %th, satisfying ¢ = 4ry(q)* — 4xc1(q)K2(q).
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Proor. Let x1,...,x,—1 € T,M be an orthonormal basis consisting of eigen-
vectors of A, such that A,x; =kix; for i=1,...,n—1. From what we have
discussed above, we may suppose without loss of generality that xi,...,x; € #,
and Xj41,...,X,-1 € #H#,. By assuming A > 1, we assert that k; = k; holds for
l<i#j<Aand for A+1<i#j<n—-1 Let x=x;+x for 1 <i#j<Ai
Since A x = k;x; + kjx;, we have

D(1(x))x = —Do(t(x)) Agx + Dy (1(x))x

- % sin \/Et(x)>x,~ + <cos Vet(x)

- ﬁ sin \/Et(x)) X

- (cos Vet(x) Ve

=0.

We therefore have k; = \/c cot \/ct(x) and k; = /c cot \/ct(x). If A > 1, we then
have k; = k; for all i,j=1,...,4, say, xi. In the same way we can prove that
ki=1k; for all 2=1,3,7 and for all i,j=A+1,...,n—1, say, xo. Apply the
same method to any x = x] + x5 with x] € #, and x} € &/%#,. We then have

K1 = ccotet(x) and Ky = \/72 cot %t(x).

Therefore #(x) is independent of the choice of xe M, say t,, and c¢=
4K§ — 4K k7. O

3.2. Decomposition of the Shape Operator

Let 1: M — M"(c) be an isometric immersion and N a unit normal field
along 1 defined in a small neighborhood of ¢. Let yy, : [0,0) — M"(c) for
a point g € M be a geodesic with yy(,(0) = ¢ and jy(, = N(g). We recall that
Ay = sPan{Ei(1),..., E;(0)} and /A, () = span{E;1(1), ..., Enr(0)}.

Assume that the shape operator A, for 1 satisfies

Aq|:%\,(q) =xi(g)l; and Aq|,;w/;w> = 12(q) -1

Then the matrix N-Jacobi tensor along yy(, is written as

_ Dl(qvt)
D(q7 t) - DZ(q, t) )
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where

Di(q,1) = (cos Vet — Fi(9) sin \/Zt> I,

Ve
Ds(q,t) = (Cos %t - ZK\Z/(Eq) sin %t) L1

Let ®: M x [0,00) — M"(c) be defined by
®(g,1) :==exp, tN(q), qeM,t>0,

and the t-parallel submanifold M(f) of (M), by M(t):= {®(q,1)|qe M}. If
det D(q, 1) # 0, then the shape operator A, of M(t) at a point Yn(q)(?) 18 given as

Agi
A —_ q‘,
“ { Aqtl]’

where

\/Zsin\/_t—iq( )cos\/—t

Aq[‘l = K']
cos \/ct — sin \/ct
—% sin %l — x2(g) cos %Zt
Aqt‘Z -

. —— L, 1.
cos%t—z’c\z/g{> i ‘ft !

LemMmA 2. The decomposition of A, and D(q,t) has the following properties:
(1) Di(q,t) =0 if and only if xi1(q) = v/c cot \/ct.

(2) Da(q,1) =0 if and only if >(q) = % cot Y1,
(3) Ag,1 =0 if and only if xi(q) = —/c tan \/ct.
(4) Agi,2 =0 if and only if K(q) = f tan %t

The following Lemma 3 is usefull for the proof of Theorem 1.

LEmMMA 3. Let v be a unit tangent vector in M"(c). Let & be an equator
hypersphere in a K-line S!*'(c). Then the shape operator of every t-parallel
hypersurface M = M"(c) for te (0,n/(2/<)) of & does not satisfy (1).

Proor. Recall that both K-line and RP”""*(c/4) have constant sectional
curvature. Without loss of generality we may assume that 7, is the tangent
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space to & at a point p e & Then M NS/*!(c) is a small sphere of dimension A
and M ﬂRPf_’l(c/4) is a metric t-sphere centered at p. Suppose that the shape
operator of M satisfies (1) at each point of M. Take a unit vector v, € M ()
such that

(1) vy makes a small positive angle with v

(2) vy is normal to &.
Setting ¢ := y,(¢) and ¢; := y,,(¢), we observe that the inward unit normal field ¥
to M satisfies N(q) = —7,(1), N(q1) = —7,,(¢), and hence

Ker d®|, , = A/ Hy), Kerd®|, , = oAy

q)» q)-

The tangent space to the focal submanifold & of M at p is given as
dDH () = d®H () = b-

Since #;, ;) is parallel along y,, we have &; = J#, = #,, a contradiction. []

3.3. Integral Submanifolds

We prove that the distributions #y and .«/#)y for a unit normal field N
along : are integrable. Let x and y be vector fields defined in a small neigh-
borhood of ge M such that x(q), y(q) € #ny), (or x(q),y(q) € LAy, Te-
spectively). Let X and Y be parallel fields along yy(, such that X(0) = x,
Y(0) = y. We assert that [x, y|(q) € #n(y), (or [x, y](q) € L H(,, respectively) for

ge M. Let r: M — R be a smooth function such that r;(g) = \/c cot \/cr(q) (or

K2(q) = \/75 cot ér(q), respectively) for ¢ € M. Setting ¢(q) := ®(q,r(q)), g€ M,

we have

do,(x) = (xX(@))inig) (1), doy(y) = (¥(@)r)Pw(g (1))

do,([x, ¥]) = D(q,7(q))([x, ¥](q) + ([x, ¥(@)) P (r(@)),
for every point g € M. Since

Vi, x) d0(¥) = X(@) (077w (o) (1(9)) + (x(q)r)D'(q,7(q)) Y

Vag, () d94(x) = (@) (x1)Pw (g (r(q)) + (¥(9)r) D' (¢, 7(9)) X,
we have

D(q,r(q))([x,¥)(q)) = (x(q)r)D'(¢q,1(q)) Y — (¥(q)r)D'(¢,7(9)) X
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This implies that [x, y](q) € #y(, (or [x, y](q) € A Hy ), respectively) for g e M,
since

D'(q,0)X = (—xy cos \/ct — /e sin \/ct) X
D'(q,1)Y = (—Ky cos \/ct — /e sin \/ct) Y

(or similar relations are obtained for .o/#y, by replacing x| by a2, respectively.)

4. Proof of Theorem 1

For the proof of Theorem 1, we only need to show that r; = r, is constant on
M, for the rest of the proof is direct from (1). Recall that the matrix N-Jacobi
tensor along 7y, Is written as

(cos Vet — 5L sin \/—z)
D(q,t) = ) :
(cos %t — 2'"—\/?) sin %t)ln,,pl

for any ge M. If r(q) is given as x(q) = v/c cot v/cri(q), then

0
D(g,r1(q)) = l (cos %Zrl (q) — 2'(\’/(;) sin %m (q))ln—)ﬁl ]’

and also if r(q) is given as ry(gq) = i cot ﬁrz( ), then

D(q,r2(q)) = [(COS Ver(g) =22 sin \/Erz(Q))Iz } |
0

LeEMMA 4. The functions k, and ry for all A=1,3,7 are constant on M.
Moreover, if Quy(q) is the maximal integml submanifold through q e M, then
1(Q(q)) is the metric ry-sphere in RPy, (0/4) centered at yy, (r2) with radius r».

ProOOF. Let N(g) be chosen such that x»(g) > 0. We first prove that
and r, for all A =1,3,7 are constant along each integral submanifold Q. (q),
ge M. If x and y are vector fields on M such that x(q) € o/H#y(, and y(q) €
o/ Hn, and if X and Y are parallel fields along yy(, such that x(¢q) = X(0),
»(q) = Y(0), we then have

D(q,m(q))([x, ¥l(q)) = (x(9)r2)D"(q,72(q)) Y — (¥(q)r2)D'(q,12(q)) X = 0.

If x and y are linearly independent everywhere on M, we then have

x(q)r=0 and y(q)rn=0 for all ge M.
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Therefore, the functions r, and k, are constant along each Q. (g), g € M. We
then observe by the completeness of M that 1(Q.(g)) is the metric r,(q)-sphere
in RPX,?;B(C/‘]-) centered at yy, (r2(q))-

We next prove that r, and x, for all 1 =1,3,7 are constant on M. We
observe that N is defined on an open set of M containing Q. (g). From the
above discussion, yy, : [0,0) — M"(c) at each point ¢ € M has the properties:

Pn)(0) =N(q), vng(2r2(q) € (Qun(g)) and
PN (2r2(q)) = =N (yn(y (2r2(q)))-

Therefore, yy,[0,2r2(¢)] hits 1(M) orthogonally at its endpoints. Thus the first
variation formula for this family of geodesics implies that ;(¢g) is constant on an
open set of M containing Q. (q), and hence on M. O

LemMmaA 5. The functions i1 and ry for all A =1,3,7 are constant on M. The
ry-parallel submanifold M(ry) of 1(M) degenerates to a point, and we have r| = r).

ProoF. Let N(g) be chosen such that ri(¢) > 0.

Assuming A # 1, we can prove that the functions x; and r; are constant on M
by the same manner as developed in Lemma 4. Further, if Q(g) is the maximal
integral submanifold through ¢ e M, then 1(Qx(g)) is the metric rj-sphere in
S)'“)(c) centered at yy, )(rl) with radius r;. Setting p := yN<q>(r22, we observe
that a unit vector &e M"(c ); is mormal to span{yy,(r2)} @ M(r2); if and
only if e /A;, (). We also observe that exp; ro € l(Qq/#(q)) if and only if
e AH; () The symmetric property of the metric on M"(c) implies that the
shape operator Ay, 1 of M (ry) with respect to & € K, coincides with that

g (r2)
with respect to —¢. We then have from Lemma 2 that A4,, 1 = —A44,1 and

(6) —+/csin v/cry — K1 cos v/cry = 0.

Therefore, M(r,) is totally geodesic (and a great shpere) in va?ql( ¢). However,

Lemma 3 implies that M(r,) degenerate to a point. This proves r; = r;.
Assuming A =1, we notice that M(r,) is the limiting submanifold of

t-parallel hypersurfaces {M(1)},. 0,,) @ ¢ — 12 and that each M(1) for te[0,r)

is foliated by geodesics tangent to 7 J)')N(q)(t). Here J is the complex

v (0 = -
structure. Thus we see that M(r;) is a geodesic in M"(c). In fact, setting

X(q,t) == Jjyy (1), we have

V(g0 X (g, 1) = Agr17n(g) (2)-
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From lim,_,, X(q,?) = X(p) we have

VxpX = A‘[”z-,lj)N(q)(rz)'

Since the left hand side is independent of the choice of g€ Q. (p), we have
Ay, 1 =0, and hence M(ry) is a geodesic in M"(c). However, Lemma 3 implies
that M(r,) degenerate to a point. This proves r; = r. I

Assuming finally that M(r;) is non-degenerate, we observe that M(r) is the
hyperplane at infinity with respect to yy(, (r1 — %) Then (M) is the ri-parallel
hypersurface around M(r;), which is nothing but the metric (7/\/c — ry)-sphere
centered at yy, (rl — %) Here N is defined as the outer normal with respect to
this metric sphere. Therefore we have x, < 0, and conclude the proof of r| = r,
for all real numbers x, # 0.
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