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JACOBI OPERATORS ALONG THE STRUCTURE FLOW
ON REAL HYPERSURFACES IN A NONFLAT COMPLEX
SPACE FORM

By

U-Hang Ki, Hiroyuki KURIHARA and Ryoichi TAKAGI

Abstract. Let M be a real hypersurface of a complex space form
with almost contact metric structure (¢,¢&,#,¢g). In this paper, we
study real hypersurfaces in a complex space form whose structure
Jacobi operator R: = R(-,&)¢ is &E-parallel. In particular, we prove
that the condition V:R: =0 characterizes the homogeneous real
hypersurfaces of type 4 in a complex projective space or a complex
hyperbolic space when R:¢S = S¢Rs holds on M, where S denotes
the Ricci tensor of type (1,1) on M.

1. Introduction

Let (M,(c),J,§) be a complex n-dimensional complex space form with
Kiébhler structure (J,§) of constant holomorphic sectional curvature 4¢ and let M
be an orientable real hypersurface in M,(c). Then M has an almost contact
metric structure (¢, &, %, g) induced from (J,g).

It is known that there are no real hypersurface with parallel Ricci tensors in
a nonflat complex space form (see [6], [8]). This result say that there does not
exist locally symmetric real hypersurfaces in a nonflat complex space form. The
structure Jacobi operator R: = R(-,£)¢ has a fundamental role in contact geo-
metry. Cho and the first author started the study on real hypersurfaces in a
complex space form by using the operator R: in [3], [4] and [5]. Recently Ortega,
Pérez and Santos [12] have proved that there are no real hypersurfaces in P,C,
n >3 with parallel structure Jacobi operator VR: = 0. More generally, such a
result has been extended by [13] due to them.
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Now in this paper, motivated by results mentioned above we consideer the
parallelism of the structure Jacobi operator R: in the direction of the structure
vector field, that is V:R: = 0.

In 1970’s, the third author [14], [15] classified the homogeneous real
hypersurfaces of P,C into six types. On the other hand, Cecil and Ryan [2]
extensively studied a Hopf hypersurface, which is realized as tubes over certain
submanifolds in P,C, by using its focal map. By making use of those results and
the mentioned work of Takagi, Kimura [10] proved the local classification
theorem for Hopf hypersurfaces of P,C whose all principal curvatures are
constant. For the case H,C, Berndt [1] proved the classification theorem for Hopf
hypersurfaces whose all principal curvatures are constant. Among the several
types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a particular
type of tubes over totally geodesic PyC or H;C (0 <k <n-—1) adding a
horosphere in H,C, which is called type A, has a lot of nice geometric properties.
For example, Okumura [11] (resp. Montiel and Romero [10]) showed that a real
hypersurface in P,C (resp. H,C) is locally congruent to one of real hypersurfaces
of type A if and only if the Reeb flow ¢ is isometric or equivalently the structure
operator ¢ commutes with the shape operator H.

Among the results related R: we mention the following ones.

THEOREM 1 (Cho and Ki [5]). Let M be a real hypersurface in a nonflat
complex space form M,(c) which satisfies V:R: =0 and at the same time
R:H = HR;. Then M is a Hopf hypersurface in M,(c). Further, M is locally
congruent to one of the following hypersurfaces:

(1) In cases that M,(c) = P,C with n(HE) # 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < /2 and r # n/4;
(A2) a tube of radius r over a totally geodesic P,C (1 <k <n—2), where
0<r<mn/2 and r # /4.
(2) In cases M,(c) = H,C,
(o) a horosphere;
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H, C;
(A42) a tube over a totally geodesic HC (1 <k <n-—2).

In this paper we study a real hypersurface in a nonflat complex space form
M, (c) which satisfies VeR; =0 and at the same time R:$S = S¢R;, where S
denotes the Ricci tensor of the hypersurface. We give another characterization
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of real hypersurfaces of type 4 in M,(c) by above two conditions. The main
purpose of the present paper is to establish Main Thoerem stated in section 5. We
note that the condition R:¢S = S¢R; is a much weaker condition. Indeed, every
Hopf hypersurface always satisfies this condition.

All manifolds in this paper are assumed to be connected and of class C* and
the real hypersurfaces are supposed to be oriented.

2. Preliminaries

We denote by M,(c), ¢ # 0 be a nonflat complex space form with the Fubini-
Study metric g of constant holomorphic sectional curvature 4c¢ and Levi-Civita
connection V. For an immersed (27 — 1)-dimensional Riemannian manifold
7: M — M,(c), the Levi-Civita connection V of induced metric and the shape
operator H of the immersion are characterized

VyY =VxY +g(HX,Y)y, Vyv=-HX

for any vector fields X and Y on M, where g denotes the Riemannian metric of
M induced from § and v a unit normal vector on M. In the sequel the indeces
i,j,k,l,... run over the range {1,2,...,2n— 1} unless otherwise stated. For a
local orthonormal frame field {e;} of M, we denote the dual 1-forms by {6;}.
Then the connection forms 0, are defined by

i +> 05 A0;=0, 0z +0; =0.
J
Then we have

Ve =Y Oyleer = Trjex,
k

k

where we put 0; = >, I';x0r. The structure tensor ¢ =), ¢;e; and the structure
vector & =), &e; satisfy

;mj = &ig; — 0y, ij%‘ =0, Zfiz =1 ¢;+¢;=0,
Jj i

(2.1) dg; = Z(¢ik‘9ki = @ Oki — CiljxOr + EihiOy),
k

&= &0i =D ¢
j I
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We denote the components of the shape operator or the second fundamental
tensor H of M by h;. The components /., of the covariant derivative of H are
given by Y, hyiOr = dhij — > haOri — > hibri. Then we have the equation of
Gauss and Codazzi

(2.2) Ry = c(Owdj — Sudjk + Py — budbjc + 2¢5b11) + huchy — huhjc,
(2.3) hijk — hij = c(Cxdy + Eithy — &b — Eidbie )

respectively.
From (2.2) the structure Jacobi operator R: = (Z;) is given by

(2.4) Ej = Zhikhﬂikfl - Zhijhklfkfz + c&;&j — oy,
k.1 k.1
From (2.2) the Ricci tensor S = (Sj) is given by
(2.5) Sy = 2n+1)cdy — 3¢&i&; + hhy =Y hichyg,
3

where h = Zihii'
First we remark

LEMMA 1. Let U be an open set in M and F a smooth function on U. We put
dF =Y, F;0;. Then we have

Fj—F; = ZFkrkij - ZFkaji-
X x

Proor. Taking the exterior derivate of dF =), F;0;, we have the formula
immediately. O

Now we retake a local orthonormal frame field ¢; in such a way that (1)
e1 =¢, (2) e is in the direction of Efznz_l hy;e; and (3) e3 = ¢ger. Then we have

(2.6) &G=1 &=0 (i=2), hj=0 (j=3) and ¢3 =1.

We put o:=hyy, f:=hp, y:=hyn, ¢:=hy and 0 := hs;.

ProMmise. Hereafter the indeces p,q,r,s,... run over the range {4,5,...,
2n — 1} unless otherwise stated.
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Since d&; =0, we have

012 = &0y + 005+ > h3,0,,
p
(2.7) 013 = —pOy — 705 — &3 — Y _ hyy0p,
»

O = bphptr+ Y $yphes0s + ) byphart;.
q q q.r

We put
(2.8) 023 = ZX,H,», 02y = Z Y,i0i, 03 = Zzpiei.

Then it follows from d¢,; =0 that Y, =—3" ¢,,Zs or Zpi=>_, $,,Ys. The
equations (2.4) and (2.5) are rewritten as

(29) E!‘/ = —O{h[j + h][hlj + C5,‘15j1 — 6'5,'/‘,

(2.10) Sy = hhy — > hichy — 3030, + (2n + 1)cdy,
k

respectively.

3. Real Hypersurfaces Satisfying V:R: =0 and R:¢S = S¢R;

First we assume that V¢R:=0. The components Z;.; of the covariant
derivativation of R: = (Z;) is given by

> Byl = dZ; — > Eibii — Y Euliy.
%

k k
Substituting (2.9) into the above equation we have

(3.1) > Bkl = —(dohy — adhy + (dhyi)hy + hyi(dhy;)
k
+a Z hijOri — 0thy;01; — Bhyj0x — 6,104,
%
+ azhikgkj — othy;01; — Bh1;05; — ;104
k

In the following, we assume that £ # 0.
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Our assumption V¢R: = 0 is equivalent to Z;.; = 0, which can be stated as
follows:

(3.2) e=0, a0+c=0, h3 =0,
(33) (B —op), =20 hyY, =0,

p

(34) (ﬁz — oy — C)Xl + o ZthZpl - O,
P

(3.5) (othop)y + “thq Yo + (ﬁz — )Yy — “Zthrqpl =0,
q q

(3.6)  ahyyXi = (thyy + Bpg)Zy =0,
q

(37)  —(athpg)y + othag Ypr + Y hipgUrpt + cthop Y + 00> Iy Ty = 0.

Hereafter we shall use (3.2) without quoting.
Furthermore we assume that R:¢S = S¢R:. Under the assumption V:R: =0,
we have the following additional equations

(3.8) (hd — 0% + (2n + 1)c)hy, = 0,
(3.9) RegA =0,
(3.10) R:4S = S¢R:.

where 4 = l(h24,h25, e ,hzﬁznfl), va = (qu), ¢~= (¢pq>7 S = (Spq).

Now, properly speaking, we should denote the equation (2.3) by, e.g., (23) ik
In this paper we denote it by (ijk) simply. Then we have the following equations
(112)-(¢1p).

(112) o —p; =0,

(212) ﬁz -~ ZZth Ypl = 07
p
(312) (a_é)y_ﬁX2+ (V_J)Xl _ﬂz_thprl = —¢
P

(113) o3 + 30 — af + X, =0,

(13) By—ad+75+ ()X — =3 hyZn =,
P
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pXs+01 =0,
73— 2042 Y+ (7 —0)Xa =By — > hopZp =0,
p p

> hapZys =62 — (y = 0) X3 =0,

06: +BY, =0,

By 42D gy + BYpr + 2y § 0y =0,
qr q

—20h2p + BYp3 + ooy — fX), =0,

Vp +2 Z h2q qu - h2112 - Z hqp Yq2 + ﬁ Z ¢qph2q +7 YpZ + Z thquZ = Oa
q q

q q

0Xp + Bhay — X + Z hagZgp — hops — Z hgp Yo +7 Y3 + Z hogUgps = 0,
q q q
5[, + h2pX3 - thqu3 +5Zp3 =0,
q
ﬁp + Z h2q¢rthp — hop1 — Z hyp Y +yYp + Z hagLyp1 =0,
q,r q q

—Ohyp + thyy — BXy + hopXi =Y hgpZyy +0Zp1 =0,
q

OXy + Bhoy — Xy + > hagZyp + hopXo = > hpgZyp +6Z3 = 0,
q

q

2 Z hipPgihisg — o Z Prplrg + Z Prghep = BYpg + BYgp = =2¢4),
s - -
h2pq + Z hrp Yy — p Z ¢rphrq — 7Y — Z h2rrrpq - h2qp
- Z g Yip + B Z Prghp + 7 ¥gp + Z horUrgp = 0,
Z hrgphgp — Z Drghep — BYgp — It
s r
hog Ypr + > Uyt + hop Yor + Z hpLrgl = ¢y
hgp —&Ygp —0Zyp — Z h3y gy — Mg X + Z hgrZyy — hyp3

+hp Y3 +hpZys + Z haUips +hpp Y3 + W3 Zyz + Z hpe gz = 0.



46 U-Hang Ki, Hiroyuki KURIHARA and Ryoichi TAKAGI

ReEmMARK. We did not write (p2q), (3pg) and (pgr) since we need not use
them.

4. Formulas and Lemmas

Promise. In the following, we shall abbreviate the expression “‘take account
of the coefficient of 6; in the exterior derivative of ---” to “see 0; of d of ---”.

In this section we study the crucial case where f # 0. By (3.6) and (31p) we
have

(4.1) pX, = (a0 —0)hyp.
This and (13p) imply that
(4.2) PY,3 = 0hy,.

The equation (3.9) can be rewrittened as

(4.3) > (athpy + Bpg)pyrhia = 0,

q.r

which, together with (4.2), implies
ﬂz(h’"’ = 00p) 23 = 52(}’1"/ = 00pg)dy Yi3 = 0.
q,r ar

Hence it follows from (33p) and (1pl) that

(4.4) Op = —hyXs and o, =—fY,.

Thus since (4.4) and 0,0 + ad, = 0 obtained from (3.2) we have
(4.5) poY, = —ahoy X,

and so > hy,Z, =0. By (4.2), we have
p DL

0
(46) Z thZp3 = Z h2p¢pq Yq3 = BZ hzﬁ¢pqh2fl =0.
P X P.q
From (3.6), (4.3) and (4.5) we have
(4.7) hy X1 = 0.

Now we shall prove the following key lemma.

LemMAa 2. H(ey) € spanfe;, ez }.
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ProOF. Suppose that /1y, # 0. Then from (4.7) we have X; =0. We can
select the vector e4 so that /ipg # 0 and hys = -+ - = hy 2,1 = 0. We put es := dey
and p := hy4(#0). Note that ¢s, = 1. Then by (4.3) we have

hss =0, hys=0 (p#5).

Put p =5 in (32p). Then by above equation and (4.1) we have X5 =0 and so
Z45 = 0. Thus we have Yss = 0. Furthermore, put p = ¢ = 5 in (¢lp). Then, since
I'ss; = Y55 =0, we have

(48) 4] :51 =0.
Thus, from (313), (323), (4.6) and (112) we have

(4.9) X3 =0,
(4.10) 0y = 52 = 07
(4.11) B, =0.

By (4.4) and (4.9) we have o, =J, = 0. Thus it follows from (1pl) that
(412) Oy :51, = Ip = Zpl =0.

Now we put F=o, i=1 and j= p in Lemma 1. Then, from (2.7), (4.8),
(4.10) and (4.12) we have

0=oay—op = Z o lk1p — Z o Lipr = 03(T31, — T3p1) = azhyy.
% %

Thus we have a3 = 0. Hence it follows from (4.8), (4.10) and (4.12) that o and ¢
are constant, which, together with (113), imply

(4.13) o = 30.
On the other hand, seeing 0; A 03 of d of 63, we have
(4.14) X, = -28.
Thus, from (312) and (4.13) we have
(4.15) 20y + f* = —c.

Seeing 0; and 6, of d of (4.15) and taking account of (4.8), (4.11) and (212), we
have
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Moreover, seeing 0s of d of (4.15), we have

From (3.5) and (4.12) we have

hopt =Y hagTypt = 0.
q

This, together with (21p) and (12p), implies

B, + phs, =0,

B, + 2phsy + oppy, + Y, = 0.
Put p=4,5,6,...,2n—1 in above two equations to get

L (p #5) L (p #5)
ﬂp{p& (p=>5) "2{p(a5)/l>’ (p=>5)

4.18
( ) Z,— {0 (p #4)
g —pla—0)/f (p=4)
Hence from (4.1), (4.2), (4.17) and (4.18) we have
:{0 (p#4) :{0 (p#4)
o) P \pe—=0)/p (p=4) P \-pd/p (p=4)
' 0 (p #5) (0 (p#5)
= {—pé/ﬁ (p=5" """ {—pﬁ (p=5)

Now, by (213), (223), (4.15) and (4.19) we have
By =B =90 = —ay —c =366 — ),

73 = 3fy — 4p°/P.

On the other hand, if we put F = and y in Lemma 1, then from (4.11),
(4.12), (4.15), (4.16), (4.18) and (4.19) we have

(4.20)

B3 + pBs =0,
(4.21)
73 +pys = 0.
Eliminating S, fs, 3, 75, p and f from (4.17), (4.18), (4.20) and (4.21), we have
4> — 690 —c=0.

Consequently, y is constant, which contradicts y5; = pp. O
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Owing to Lemma 2 the matrix (4,,) is diagonalizable, that is, for a suitable
choice of a orthonormal frame field {¢,} we can set

hpq = Ap&prp

Then it is easy to see

Re = —((ady + ¢)opq),
(4.22) )
S = ({hiy = (2)* + K30y,
where we put K = (2n+ 1)c.
Here we shall sum up all equations obtained from Lemma 2.
From (4.1), (4.2) and (4.4) we have

(423) Xp = Ypl = Zpl = Yp3 = Zp3 = 0, op = 51, =0.
This, together with (3.3) and (3.4), imply

(4.24) (B —op), =0,

(4.25) (B2 —ay—c)X; =0.

Put p=g¢ in (3.7). Then we have
(4.26) (2dp); = 0.

Moreover, from (112)-(32p) we have

(4.27) % — B =0,
(4.28) By =7 =0,

(4.29) (x=8)y = pXa+ (y =) X1 — > = —¢,
(4.30) o3 + 360 — off + fX; = 0,

(4.31) By —ad+90+(y—0)X; — f* =c,
(4.32) O + X3 =0,

(4.33) 13 =20+ (7 =) X2 — By =0,

(4.34) 02+ (y—0)X; =0,

(4.35) B, =0,

(4.36) Y =0, Zy=0,

(4.37) y, = 0.
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It follows from (¢lp) and (3.7) that
(4.38) B Yy = o0dplyby, — otz/lp(/ﬁpq + 01 40pg — CO,,-

From this, (2pg) and (¢3p) we have
(4.39)  B2(Up + 2g)bpy — (Bp — 7) Uiy — g — )8,
— (g = 1) (Aphyg = 0hp = )y = 0,
(4.40)  (2g —0)[ef(2g)* — why — €}Opg + o1 2qbpg] — B hgps + (2 — 2)Typa} = 0.
If p =¢ in above equation, then we have
(4.41) (2 = O{()” = ady = ¢} = B(p)y = 0.

5. Proof of Main Theorem

In this section we prove

MAIN THEOREM. Let M be a real hypersurface of a complex space form
M,(c), ¢ #0, n >3 which satisfies VeR: = 0. Then M holds R:¢S = S¢pR: if and
only if M is locally congruent to one of the following:

(I) in case that M,(c) = P,C with n(H¢E) # 0,
(A1) a geodesic hypersphere of radius r, where 0 <r < /2 and r # n/4,
(42) a tube of radius r over a totally geodesic P,C (1 <k <n-—2),
where 0 <r < 7/2 and r # /4,
(I) in case that M,(c) = H,C,
(Ao) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H, |C,
(42) a tube over a totally geodesic HyC (1 <k <n-—2).

ProoOF. FIRST STEP. We prove f = 0.
Suppose that f # 0. It follows from (4.22) that (3.10) is equivalent to

(PpOq = OpPy)Ppg = 0,
where p, = o, + ¢, 0, = hip — (4,)* + K. Therefore if $,p # 0, then we have

(5.1) (Ap — Ag){—ch + 0dpiyg + c(Ap + Ag) + 0K} = 0.
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Here we assert that if ¢,, # 0, then 4, = 4;,. To prove this, we assume that
there exist indices p and ¢ such that

Bog %0, 2y — 2 #0.

First we prepare three Lemmas.
LemMA 3. (Ko? — cah), = 0.

Proor. From (5.1) we have
(02K — ahe) + (ady)(0dy) + c(ad, + ady) = 0.

Lemma 3 follows from this and (4.26). O
Lemma 4. dnooy — (ay), = 0.

PrOOF. From (4.26) we have («},4,); = 0. Combining this equation with
h=o+y+d+3,4, we have
(alh — 5~ 7~ 3)), = 0.

Eliminate / from this and Lemma 3. O
LEmMMA 5. (y—0J —2na)oy =0 and (y — 3 —2na)f, = 0.
Proor. From (4.24) we have 286, — (ay); =0. Hence it follows from
Lemma 4 that
(5.2) 2nooy — pp; = 0.

On the other hand, by (4.32) and (4.34) we have (y—0)d; — o, =0, and
therefore (y —d)o; — fop = 0. Thus Lemma 5 follows from (4.27) and (5.2).
O

We need to consider four cases.

Case 1. Suppose that oy #0 and X; =0. Owing to Lemma 5, we have
y —0 — 2no. = 0. Seeing 05 of d of this equation and making use of (4.29), (4.30)
and (4.33), we have

(5.3) 2no®(2na® — 8% 4 2ne) + B2{30° + (6n + 4)c — 2na*} = 0.
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Seeing ) of d of (5.3) and taking account of (3.2) and (5.2), we have
(5.4) 4n’o* + 210 {36% + (8n + 4)c} — p*(30% + 2na?) = 0.
Eliminating # from (5.3) and (5.4), we have a polynomial of degree four with
respect to J containing the term 12n026* # 0. This shows that ¢ is constant since
a0 + ¢ = 0, which contradicts the assumption of Case I.
Casg II.  Suppose that a; #0 and X; # 0. By (4.25) we have
B —oy—c=0.
Then from (4.39) we have
(—Aphq +2¢)(Ap + Ag) + 2(a + p)Aplg — 2¢cy = 0.

Multiply above equation by o and see 0; of d of this equation. Then, from

Lemma 4 and (4.26) we have
c(ady + odg — ap) + (2n+ 1)(ad,) (ady) — 2¢na? = 0.
Again, seeing 0; of d of above equation, we have cnoo; = 0, which is a con-
tradiction.
Cast III. Suppose that oy =0 and > — oy —c #0. From (4.24), (4.25),
(4.27), (4.28), (4.32) and (4.34) we have
(55) 51:(}(2:52:X3:ﬁ1:ylzﬁzz){lzo.

Seeing 0, A 03 of d of 0y; we have ff; — 2% = 30 + 2¢, which, together with (4.31)
and (5.5), imply
aé—yé—ﬂzzyé—i—c.

Substituting of (4.14) and (5.5) into (4.29) we have
(5.6) ay — 90+ f* = —c.
Eliminating f from above two equations, we have
(5.7) o0 — 3y0 +ay = 0.

Seeing 0, of d of (5.6) and (5.7), we have («—9)y, =0 and (x— 30)y, =0.
Hence we have y, =0.
Now put F=oa,f,y and i=1, j=2 in Lemma 1. Then, we have

w3y = 3y =37 =0.
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If y # 0, then from (4.14) and (4.33) we have a contradiction. Thus y = 0, which
contradicts (5.7).

Case IV. Suppose that
(5.8) o =0,
(5.9) p—oay—c=0.
Seeing 0, of d of (5.9), we have

(5.10) (B> = )3 = 23 — yos —op3 = 0.
From (4.29)—(4.31), (4.33) and (5.9) we have the following:

(5.11) 0y — BXa+ (y —6)X; =0,
(5.12) o3+ 385 — af + BX; =0,

(5.13) fs+(—0)Xi+p0—ay—c=0,
(5.14) 133 —=200+ (y—0) X+ fy=0.

Substituting of (5.12)—(5.14) into (5.10) we have
(6= 7)(X1 —40) =0,
by virtue of (5.11). If 6 =y, then by (5.9) we have a contradiction. Thus
(5.15) X; = 4o.

Substituting of this equation into (5.11)—(5.13) we have

(5.16) pX> = 4da(y —90) — dy,
(5.17) o3 + 360 + 30 =0,
(5.18) Py + 3oy — 300+ 79 = 0.

It follows from (4.33), (5.9) and (5.16) that
(5.19) oy + f(30y — 600 — p0) = 0.

From (4.32), (5.2) and (5.8) we have X3 =0 and f; = 0 and therefore ay =, =0
because of (4.27). Hence, seeing 6, of d of (5.9), we have y, =0, and so f, = 0.
Now put F =a and f in Lemma 1. Then we have

wi(y+X1) =0, pi(y+X1)=0.
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If y+ X7 # 0, then we have o3 = ff; = 0. It follows from (4.23) and (4.35) that o,
p and 0 are constant and that o; = ff; = 0 for i = 1,2. Furthermore, by (5.9) we
see that y is constant. Thus from (5.17)—(5.19) we have

«+0=0,
3oy — 300 + 90 =0,

3oy — 600 — y6 = 0.

Hence, by (3.2) and (5.9) we have o> —c=0 and 2> +c¢ =0, which is a
contradiction. Therefore X; = —y, which, together with (5.15), implies y = —X; =
—4o. Thus it follows from (5.17) that y; = —4o3 = 12(0 + ). Hence from (5.19)
we have a contradiction ad = 0.

Consequently, for all p, g such that ¢,, # 0, we have 4, = 4,. We take p, ¢
such that ¢,, # 0. Then by (4.39) we have

(5.20) By = (7 — V){(’lp)z —odp —c} =0.
Furthermore, from (¢3p), (4.38) and (4.26) we have
(ip)l(ip —6)=0.

If (4,), =0, then (4.26) implies o; =J; = 0. Thus it follows from (4.32), (4.34)
and (4.27) that X3 =0y =0J, =, =0. Seeing 0; of d of (520), we have
{(ip)2 — ol —c}y; =0.If (/1,,)2 — o, — ¢ =0, then from (5.20), we have 4, =0,
which contradicts the assumption. Hence we have y; = 0. Thus, from (4.28) we
have f, = 0. If X; =0, then by the same argument as that in Case III, we have
a contradiction. Thus we have X; # 0 and therefore %> — oy — ¢ = 0 because of
(4.25). By the same argument as that in Case IV, we have contradiction. Hence
we have A4, =J. From (4.41) and (113) we have (4,); =d3 =03 =0 and
X, = o — 39,. Thus by (4.25) we have (% —oay—c)(x—30)=0. If & —35=0,
then o and J are constant and therefore by the argument as above, we have a
contradiction. Thus > — ay — ¢ = 0. From (5.20) we have (x+0)(0 —y) = 0. If
o+0 =0, then o« and 0 are constant, which is also a contradiction. Hence
0 —y=0. However from (5.20) we have f =0, which is a contradiction.
Consequantly we proved = 0.

SEcOND sTEP. Since (2.6) and f = 0, we see that « is constant in M (see [7]).
Thus from (3.1) our assumption Z;.; = 0 is equivalent to af;;; =0. Put j=1in
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(2.3). Then by above equation we have ok, = —cog,.. Therefore since (2.1) and
dé; =0, we have

o ; hixd i + o> 2}: Prilg = —ohirj = cogy,

which implies that o?(¢H — H¢) = 0.

Here, we note the case « = 0 corresponds to the case of tube of radius z/4
in P,C (see [2]). However, in the case of H,C it is known that o never vanishes
for Hopf hypersurfaces (cf. [1]). Owing to Okumura’s work or Montiel and
Romero’s work stated in the Introduction, we complete the proof of our Main
Theorem. O
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