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Abstract. This paper considers the problem of networks reconstruction from heterogeneous
data using a Gaussian Graphical Mixture Model (GGMM). It is well known that parameter
estimation in this context is challenging due to large numbers of variables coupled with
the degenerate nature of the likelihood. We propose as a solution a penalized maximum
likelihood technique by imposing an l1 penalty on the precision matrix. Our approach shrinks
the parameters thereby resulting in better identifiability and variable selection.

Résumé. Cet article considère le problème de la reconstruction de réseaux à partir
de données hétérogènes en utilisant le modèle graphique gaussien mémangé (GGMM en
Anglais). Il est connu que l’estimation paramétrique, dans ce contexte, n’est pas aisé à
cause du grand nombre de variable et de la nature dégénérée de la vraisemblance. Nous
proposons comme une solution une méthode de pénalisation du maximum de vraisemblance
en imposant une pénalité de type L1 sur la précision de la matrice. Notre méthode réduit les
paramètres et ainsi aboutit à une meilleure identification et à un meilleur choix des variables.
.

Key words: Gaussian graphical mixture model; Expectation maximization algorithm;
Graphical LASSO.
AMS 2010 Mathematics Subject Classification : Primary 62-09, Secondary 62H12,
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1. Introduction

Biologists aim to describe the dependency structure among large number of genes. This
is often done without taking into consideration the heterogeneity nature of the samples.
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By heterogeneity, we mean networks may be different for different subgroups of samples.
Our population of individuals may come from several distinct subpopulations each with
their own underlying dependency structure. However, typically little information is known
about an individual’s group membership. In this setting, parameters may change for
different subgroups of observations. We want to model such heterogeneity and recover the
underlying networks from such data with some sparsity constraint. The problem becomes
more complex if the number of components that made up the population is unknown.
Statistical methods for analyzing such data are subject to active research currently (Agakov
et al., 2012). Gaussian graphical mixture models (GGMM) are ways to model such data.

A Gaussian graphical model (GGM) for a random vector Y = (Y1, ..., Yp) is a pair
(G,P) where G is an undirected graph and P =

{
N(µ,Θ−1)

}
is the model comprising

all multivariate normal distributions whose inverse covariance matrix or precision matrix
entries satisfies (u, v) ∈ G ⇐⇒ Θuv 6= 0. The conditional independence relationship among
nodes are captured in the precision matrix Θ. Consequently, the problem of selecting the
graph is equivalent to estimating the off-diagonal zero-pattern of the concentration matrix.
Further details on these models as well interpretation of the conditional independency on
the graph can be found in (Lauritzen, 1996).

Mixture distributions are often used to model heterogeneous data or observations supposed
to have come from one of K different networks or components. Under Gaussian mixtures,
each component is suitably modelled by a family of Gaussian probability density. This paper
deals with the problem of structural learning in reconstructing the underlying graphical
networks (using a graphical Gaussian model) from a data supposed to have come from a
mixture of Gaussian distributions.

A natural way for parameter estimation in GMMs is via a maximum likelihood estimation.
However some performance degradation is encountered owing to the identifiability of the
likelihood and the high dimensional setting. To overcome these problems, Banfield et al.
(1993) proposed a parameter reduction technique by re-parameterizing the covariance
matrix through eigenvalue decomposition. In doing so, some parameters are shared across
clusters. As a result of a continuous increasing number of dimensions, this approach can
not totally alleviate the (n << p) phenomena. Recently proposals to overcome the high
dimensionality problem involve estimating sparse precision matrix. Among these proposals
is the penalized log likelihood technique of Friedman et al. (2008), an L1 regularization
approach which encourages many of the entries of the precision matrix to be 0. Our method
is based on this idea. The L1 penalty promotes sparsity. We provide sufficient conditions
for consistency of the penalized MLE.

In this work we propose a penalized likelihood approach in the context of Gaussian
graphical mixture model, which constraints the networks to be sparse. The parameters
in the networks are estimated by incorporating an existing Graphical LASSO (GLASSO)
method for covariance estimation into an EM algorithm. In effect, we view each network as
an instance of a particular GGM. Therefore we aim at recovering the underlining various
networks from which the data originate from. Additionally, we assess how well the resultant
graphs obtained through GLASSO relate to the true graphs and we provide consistency
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results of the estimates. Throughout this article we assume K, the number of components
of mixture models is known.

The reminder of this article is organized as follows. We introduce the model, set up the
Penalized Maximum Likelihood Estimate (PMLE) approach and summarize the main result
in connection with the consistency of the estimates obtained from the mixture model in
section 2. We then proceed with the inference procedure through a penalized version of the
EM algorithm in section 3. In section 4 we present some simulations and an example of
applications to illustrate our results. We conclude with a brief discussion and future works
in section 5.

2. Penalized maximum likelihood estimation

In this section we introduce the Gaussian Graphical Mixture Model, then we derive the
penalized likelihood upon which statistical inference via the EM algorithm is based and
prove consistency of the Penalized Maximum Likelihood Estimates (PMLE).

2.1. The Mixture model

Mixture models are very popular for the analysis of complex data. A mixture model repre-
sents the given data as a mixture of K networks or components, each of which has different
characteristics. We introduce our model in Figure (1), where we assume a genetic popula-
tion. We suppose sample of expression level of these genes comes from two different networks
after observing their metabolism structure. We then fit two Gaussian distribution N(µ1,Θ1)
and N(µ2,Θ2) for these clusters. Figure (1) represents the above via a mixture model. The
question now is how can we infer the underlying networks from which the data come from?

Suppose we are given a training data set {Y1, ...,Yn}, assumed to be a random sample from
K mixture components. Our model consists of assuming that the variable Zi, describing
which network an individual originates, is a multinomial random variable with parame-
ters, πk, denoting the mixture proportions or the mixing coefficients with (0 < πk < 1),∑K
k=1 πk = 1, and K is known. In essence

P (Zi = k) = πk.

We wish to model the data by specifying a joint distribution

P (Yi, Zi) = P (Yi|Zi)p(Zi).

We model each subpopulation separately by assuming a GGM where (Yi|Zi = k) ∼
N (µk,Σk). Our model posits that each Yi was generated by randomly choosing Zi from
{1, ...K}, or Yi was drawn from one of the k Gaussian depending on Zi.

In this work we assume that ∀ k, µk = 0 . In practice, this means that the data is assumed
to be normalized by subtracting the mean. Since Yi is dependent on Zi, we say that Zi
represents the class that produced Yi and we know Yi fully if we know which class Zi
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Fig. 1: Mixture models: we assume the data is composed of 2 separate mixtures of Gaussian
(MOG), each with a corresponding graphical model or network.

falls. Also note that the Zi’s are latent random variables, meaning that they are hidden or
unobserved. The density of each Yi can be written as

fγ(yi) =

K∑
k=1

πkϕk(yi|Zi = k)

fγ(yi) =

K∑
k=1

πkϕk(yi|Θk)

(1)

where ϕ(yi|Θk) denotes the density of Gaussian distribution with mean 0 and inverse co-
variance covariance matrix Θk; fγ represents the “incomplete” mixture data density of the
sample i.e y ∼ fγ . We introduce the parameter set of mixture namely

Ω =
{
{Θk}Kk=1 |Θk � 0, k = 1, ...,K

}
,

Θ � 0 indicates that Θ is positive-definite matrix, and

J =
{
{πk}Kk=1 |πk > 0, k = 1, ...,K

}
and

Γ = Ω× J (2)
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denotes the parameter space with the true parameter defined as γ0 = (Θ0, π0) ∈ Γ.

In order to characterize the mixture model and estimate its parameters thereby recovering
the underlying graphical structure from the data (seen as mixture of multivariate densities),
several approaches may be considered. These approaches include graphical methods, meth-
ods of moments, minimum-distance methods, maximum likelihood (Ruan et al., 2011; Zhou
et al., 2009) and Bayesian methods (Bernardo et al., 2003; Biernacki et al., 2000). In our
case we adopt the penalized maximum likelihood method in a graphical model set up.

2.2. The penalized model-based likelihood

We can now write the likelihood of the incomplete data density as

Ly(γ) =

n∏
i=1

[
K∑
k=1

πkϕk(yi|Θ−1
k )

]
,

whose log-likelihood function is given by

ly(γ) =

n∑
i=1

log fγ(yi) (3)

The goal is to maximize the log-likelihood in (3) with respect to γ. Unfortunately, a unique
global maximum likelihood estimate does not exist because of the permutation symmetries
of the mixture subpopulation; (Day, 1969; Lindsay et al., 2006). Also the likelihood function
of normal mixture models is not a bounded function on γ as was put forward by Kiefer
et al. (1956). On the question of consistency of the MLE, Chanda (1954), Cramer (1946)
focus on local ML estimation and mathematically investigate the existence of a consistent
sequence of local maximizers. These results are mainly based on Wald’s technique (Wald,
1949). Redner (1981) later extended these results to establish the consistency of the MLE
for mixture distributions with restrained or compact parameter spaces. It was proved that
the MLE exists and it is globally consistent in a compact subset Γ̂ of Γ that contains γ0; i.e

given γ̂n|ly(γ̂n) = max
γ∈Γ

ly(γ), γ̂n → γ0 in probability, for n→∞

In addition to the degenerate nature of the likelihood (Kiefer et al., 1956) on the set Γ, the
“high dimensional, low sample size setting”- where the number of observations n is smaller
that the number of nodes or features p- is another complication. Estimating the parameters
in the GGMM by maximizing criterion (3) is a complex one. The penalized likelihood-based
method (Friedman et al., 2008; Yuan et al., 2007) is a promising approach to counter the
degeneracy of ly(γ) while keeping the parameter space Γ unaltered. However, to make the
PMLE work, one has to solve the problem of what kind of penalty functions are eligible.
We opt for a penalty function that prevents the likelihood from degenerating under the
multivariate mixture model. We assume that the penalty function P : Γ→ R+

0 given by

P (Θ) = exp(−λ||Θ||1),

satisfies:
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lim
|Θk|→∞

P (Θk)|Θk|n = 0 ∀k ∈ {1, 2, ...,K} ∀n (4)

where λ > 0 is a user-defined tuning parameter that regulates the sparsity level, |Θ| denotes
determinant of Θ, and ||.||1 is the L1 norm or the sum of absolute values of the entries of a
matrix or a vector i.e ||X||1 =

∑n
i=1 |Xi|.

This results in placing an L1 penalty on the entries of the concentration matrices so that
the resulting estimates are sparse and zeroes in these matrices correspond to conditional in-
dependency between the nodes similar to (Meinshausen et al., 2006). Numerous advantages
result from this approach. First of all, the corresponding penalized likelihood is bounded
and the penalized likelihood function does not degenerate in any point of the closure of
parameter space Γ and therefore the existence of the penalized maximum likelihood estima-
tor is guaranteed. Next, in the context of GGM, penalizing the precision matrix results in
better estimates and sparse models are more interpretable and often preferred in application.

We define the L1 penalized log-likelihood as:

lpy(γ) = ly(γ)− λn
K∑
k=1

||Θk||1 (5)

where λn ∝ λ√
n

, ||Θ||1 =
∑
i,j |θij |, K is the number of mixing components assumed fixed.

The hyperparameters K and λ determine the complexity of the model. The corresponding
PMLE are defined as

γ̂λn
= arg max

γ
lpy(γ) (6)

Our method penalizes all the entries of the precision matrix including the diagonal elements.
We do this in order to avoid the likelihood to degenerate. To see this, consider a special case
of a model consisting of two univariate normal mixtures π1ϕ(y|σ1) + π2ϕ(y|σ2). By letting
σ1 → 0 with other parameters remaining constant, the log-likelihood tends to infinity for
values of y = 0, i.e the log-likelihood degenerates due to mixture formulation whereby a
single observation mixture component with a decreasing variance on top of the observation
explodes the likelihood. For that matter an L1 penalty which does not penalize the diagonal
elements tend to result in a degenerate ML estimator especially when n→∞.

2.3. Consistency

At this stage we want to characterize the solution obtained in Equation (6). The general
theorem concerning the consistency of the MLE (Redner, 1980; Wald, 1949) can be extended
to cover our type of penalized MLE. This is because if a likelihood function which yields a
strong consistent estimate over a compact set is given, then our L1 penalty would not alter
the consistency properties. Consistency of the PMLE is given in theorem 1. The latter uses
results in (Wald, 1949) under the classical MLE over a compact set.
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Before we present our result relating to the consistency of our PMLE, we summarize the
corresponding MLE version in the following lemmas. First the following assumptions will be
needed.

A1: There is a neighborhood ρ of γ0 such that for all γ ∈ ρ; for almost all y ∈ Rn; and for

for l, j and s = 1, ..., υ; ∂f
∂γl
, ∂2f
∂γl∂γj

, ∂3f
∂γl∂γj∂γs

exist and satisfy∣∣∣∣ ∂f∂γl
∣∣∣∣ < gl(y);

∣∣∣∣ ∂2f

∂γl∂γj

∣∣∣∣ < glj(y);

∣∣∣∣ ∂3f

∂γl∂γj∂γs

∣∣∣∣ < gljs(y),

where gl, and glj are integrable and gljs(y) satisfies∫
Rn

gljs(y)fγ0(y)dy <∞.

A2: The matrix δ(γ) =
(∫

Rn
∂ ln f
∂γl

∂ ln f
∂γj

fdy
)

is positive definite at γ0.

Lemma 1. If conditions A1 and A2 are satisfied, then, given any sufficiently small neigh-
borhood ρ0 of γ0 with probability equals 1 as the sample size n approaches infinity, there is
a unique solution to the likelihood equations in ρ0 and this solution is an MLE.

Lemma 1 indicates that, by restricting attention to a fixed neighborhood of γ0, we have a
unique and consistent solution to the likelihood equations.

The next lemma considers a situation where the likelihood is an unbounded function. For
that one must assume a compact (closed and bounded) parameter space. It will be assumed
that there is a σ- finite measure µ such that for each γ ∈ Γ the probability measure µγ is
absolutely continuous w.r.t. µ. We let fγ(y) denote any representative of the density of µγ
w.r.t µ. The following assumptions are made in addition:

A3: The parameter space Γ is a closed and bounded subset of Rl for some positive number
l. In particular, T = {(Θ1, ...,ΘK)} | s.t. ||Θk||1 ≤ M∗ and ||Θk||2 ≥ ε∗, k = 1, ...,K,
for some positive number M∗ and ε∗.

A4: Let Br (γ) be the closed ball of radius r about γ. Then for any positive real number r,
let:

fγ(y, r) = sup
η∈Br(γ)

fγ(y, η); f∗γ (y, r) = max [1, fγ(y, r)] .

Then for each γ and for sufficiently small r∫
ln f∗γ (y, r)dµγ0 <∞.

A5: ∫
|ln fγ0(y)| dµγ0 <∞.

A6: if γl → γ, then fγl(y)→ fγ(y).

Lemma 2. Given assumptions (A3-A6), and let
C = {γ ∈ Γ|fγ(y) = fγ0(y) almost everywhere}. If S is any open neighborhood containing
C, then with probability equals 1, the MLE is eventually in S.

Journal home page: www.jafristat.net



A. Lotsi and E. Wit, Afrika Statistika, Vol. 11(2), 2016, pages 1041–1059. Sparse Gaussian
graphical mixture model. 1048

The two lemmas show that the MLE converges to the set C. Since C is the set of all
parameters for which the density is the true density, it may be said that the MLE converges
strongly to the true set of parameters.

We then define two further conditions upon which our theorem 1 holds.

A7: Let Γ̄ denotes the quotient topological space obtained from Γ and suppose that Γ̄ is
any compact subset containing γ0.

A8: ∫
|ln fl(y, γl)| dµγj <∞ for γl ∈ Γl and γj ∈ Γj .

Theorem 1. Suppose that the mixing distributions satisfy conditions (A3-A8). Define
|γ0| = ||π0||2 + ||Θ0||F . Suppose that πk is bounded away from zero, and the penalty is
set as λn ∝ (1/

√
n). It follows that for a fixed p, the penalized likelihood solution γ̂λn

is
consistent in the quotient topological space Γ̄, i.e ∀ε > 0

lim
n→∞

P (|γ̂λn − γ0| > ε) = 0.

Proof.

P (|γ̂λn − γ0| > ε) = P (|γ̂λn − γ̂ + γ̂ − γ0| > ε)

≤ P (|γ̂λn − γ̂| > ε/2) + P (|γ̂ − γ0| > ε/2)

Want to show:
lim
n→∞

P (|γ̂λn
− γ̂| > ε/2) = 0 (7)

Fig. 2: Sketch of the likelhood and the penalized likelihood function

We have the followings:

lpn(γ) = l(γ)− λn||Θ||1
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with

γ̂λn = arg max
γ

lpn(γ)

and

γ̂ = arg max
γ

l(γ)

∀n > n1, we have
∂2l

∂γ2
(γ̂) = Op(−nM) (8)

and suppose that lpn uniformlly converges to l.

We know that given ε/2, we can find δ s.t |γ − γ̂| > ε/2

l(γ) < l(γ̂)− δ (9)

We also know that ∃n2 s.t ∀ n > n2

lpn(γ) > l(γ)− δ (10)

Now let assume that

|γ̂λn − γ̂| > ε/2 (11)

then from (9), we have

lp(γ̂λn
) < l(γ̂λn

)

< l(γ̂)− δ
(12)

But from (10),

lp(γ̂) > l(γ̂)− δ.

So γ̂λn did not maximize lp because at γ̂, it is higher. Therefore assumption (11) is flase.
This completes the proof

3. Penalized EM algorithm

In order to maximize the penalized likelihood function (5) we consider a penalized version
of the EM algorithm of Dempster et al. (1997). To do that we first augment our data Yi

with Zi so that the complete data associated with our model now becomes Ci = (Yi,Zi)
and an EM algorithm iteratively maximizes, instead of the penalized observed log-likelihood
lpy in (5), the conditional expectation of the penalized log-likelihood of the augmented data.

Suppose ci ∼ hci
(γ), i.e hci

(γ) is the density of the augmented data ci. Now the penalized
log-likelihood of the augmented data can be written as
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lpc(γ) = ln [hci(γ)]− λ
K∑
k=1

||Θk||l1

lpc(γ) =

n∑
i=1

(
lnπk + lnϕk(yi|Θ−1

k )
)
− λ

K∑
k=1

||Θk||l1

=

n∑
i=1

K∑
k=1

1{Zi=k}
[
lnπk + lnϕk(yi|Θ−1

k )
]
− λ

K∑
k=1

||Θk||l1 (13)

The indicator function 1{Zi=k} simply says that if you knew which component the observa-
tion i came from, we would simply use its corresponding Θk for the likelihood. For illustration
purpose, and suppose we have 3 observations and we are certain that the first two were gen-
erated by the Gaussian density N(0,Θ2), and the last came from N(0,Θ1). Then we write
the full log-likelihood as follows:

lc(Θ) = ly1
(Θ2) + ly2

(Θ2) + ly3
(Θ1) (14)

3.1. The E-step

From Equation (13) we compute the quantity Q(γ|γ(t)) as follows

Q(γ|γ(t)) = EZi

[
lc(γ)− λ||Θ||1|y; γ(t)

]
=

n∑
i=1

K∑
k=1

[
lnϕk(yi|Θ−1

k ) + lnπk
]
EZi

[
1{Zi=k}|yi; γ

(t)
]
− λ||Θk||1

=

n∑
i=1

K∑
k=1

[
lnϕk(yi|Θ−1

k ) + lnπk
]
P
(
Zi = k|yi; γ(t)

)
− λ||Θk||1

=

n∑
i=1

K∑
k=1

[
lnϕk(yi|Θ−1

k ) + lnπk
]
ω

(t)
ik − λ||Θk||1 (15)

The E-step actually consists of calculating ωik, the probabilities (conditional on the data
and γ(t)) that Yi’s originate from component k. It can also be seen as the responsibility
that component k takes for explaining the observation Yi and it tells us for which group an
individual actually belongs. Using Bayes theorem, we have:

ω
(t)
ik = P

(
Zi = k|yi, γ(t)

)
=

P (yi|Zi = k; γ(t))P (Zi = k, γ(t))∑K
l=1 P (yi|Zi = l; γ(t))P (Zi = l, γ(t))

=
ϕ

(t)
k (y|Θ−1

k )π
(t)
k∑K

l=1 ϕ
(t)
l (yi|Θ−1

k )π
(t)
l

(16)
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3.2. The M-step

The M-step for our mixture model can be split in to two parts, the maximization related to
πk and the maximization related to Θk.

1. M-step for πk:
For the maximization over πk we make use of the constraint that

∑K
k=1 πk = 1 i.e

πK = 1 −
∑K−1
k=1 πk and πk > 0. It turns out that there is an explicit form for πk. Let

k0 ∈ {1, ...,K − 1}. Then

∂Q

∂πk0
=

n∑
i=1

[
ω

(t)
ik0

πk0
−

ω
(t)
iK

1−
∑K−1
k=1 πk

]
(17)

Setting ∂Q
∂πk0

= 0, yields the following:

ω
(t)
.k0

K−1∑
k=1

πk + πk0ω
(t)
.K = ω

(t)
.k0

(18)

It can be shown that a unique solution to Equation (18) is

π
(t+1)
k0

= ω
(t)
.k0
/n

=

n∑
i=1

ω
(t)
ik0
/n (19)

2. M-step for Θk:
Next, to maximize (15) over Θk, we only need the term that depends on Θk. The first
thing we do here is to try to formulate the maximization problem for a mixture component
to be similar to that for Gaussian graphical modeling with the aim of applying graphical
LASSO method. The latter applies LASSO penalty to the inverse covariance matrix Θ
with the aim of estimating sparse graphs.
Now from Equation (15), for a specific cluster k0, the term that depends on the cluster
specific covariance matrix Θk0 is given by

Q (Θk0) =

n∑
i=1

ω
(t)
ik0

lnϕk0(yi|Θ−1
k0

)− λ||Θk0 ||1

=

n∑
i=1

ω
(t)
ik0

[
1

2
ln |Θk0 | −

1

2
y
′

iΘk0yi

]
− λ||Θk0 ||1

=

n∑
i=1

ω
(t)
ik0

2
ln |Θk0 | −

1

2
tr

(
n∑
i=1

ω
(t)
ik0

(yiy
′

i)Θk0

)
− λ||Θk0 ||1

=
ω

(t)
.k0

2

[
ln |Θk0 | − tr

(
S̃k0Θk0

)
− 2λ

ω
(t)
.k0

||Θk0 ||1

]

=
ω

(t)
.k0

2

[
ln |Θk0 | − tr

(
S̃k0Θk0

)
− λn||Θk0 ||1

]
(20)
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where

ω
(t)
.k0

=

n∑
i=1

ω
(t)
ik0

S̃k0 =

∑n
i=1 ω

(t)
ik0

(yiy
′

i)

ω
(t)
.k0

(21)

is the weighted empirical covariance matrix, and

Θ̂k0 = arg max
Θ

{
ln |Θk0 | − tr(S̃k0Θk0)− λn||Θk0 ||1

}
(22)

subject to the constraint that Θk0 is positive definite with λn = 2λ

ω
(t)
.k0

.

Therefore the maximization of Θk consists of running the graphical LASSO procedure
(Friedman et al., 2008) for each cluster where each observation Yi for Θk gets a weight
and the sampling covariance matrix Sk is transformed to a weighted sampling covariance.
This is a major innovation in our work where we formulate the Gaussian mixture modelling
problem in a Gaussian graphical modelling framework. We summarize the algorithm below:

Initialize π1, ..., πKmax, Θ1, ...,ΘKmax

repeat
for λ ∈ (λ1, ..., λK)
Compute:

1. E-step: ωik =
ϕk(y|Θ−1

k )πk∑K
l=1 ϕl(yi|Θ−1

k )πl

2. M-step:

– π̂k =
∑n
i=1 ωik/n

– Θ̂k = arg max
Θ

{
ln |Θk| − tr(S̃kΘk)− λn||Θk||1

}
, where

S̃k =

∑n
i=1 ωik(yiy

′

i)

ω.k

and

λn =
2λ

ω.k
.

4. Simulation and Real-data Example

We generate data from two component mixtures and consider two different schemes based on
λ. We study the consistency properties of the PMLE by allowing the sample size to grow. We
subsequently applied our method to two real data “Mathematics scores” and “CellSignal”
data.
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Fig. 3: True graphical model of the 2 clusters

4.1. Simulation

We investigate the consistency properties of the PMLE using our penalized EM algorithm
described in section 2. We simulate data Y1, ...,Yn from two-component multivariate nor-
mal mixture models each with probability (true mixture proportion) equals 0.5 and inverse
covariance matrix Θk built according to the following schemes.

Θ1(i, j) =

 1 if i = j
−0.4, if |i− j| = 1
0, elsewhere

(23)

Θ2(i, j) =

 1 if i = j
−0.4, if |i− j| = 2
0, elsewhere

(24)

The corresponding graphical model structures are depicted in Figure (3). For a fixed p, we
consider two schemes one with λ ∝

√
n log p where λn ∝ 1√

n
and the other with λ ∝

√
log p,

where λn ∝ 1
n each with increasing sample sizes, n = (100, 300, 800, 2000, 5000) to examine

the consistency of the PMLEs. In all cases, parameter estimation is achieved by maximizing
the likelihood function via our penalized EM-algorithm. The results of our penalized
EM-algorithm approach are compared based on the two different schemes corresponding to
different values of λ.

Due to the effect of label switching, we are not able to assign correctly each parameter
estimate to the right class. As a result, the estimates
{(π1,Θ1), (π2,Θ2)} will be interchangeably represented. We compute the Absolute Devia-
tion (AD) of the mixture proportions, and compare the Frobenuis norm of the difference
between the true and estimated precision matrices for each cluster. In addition we compute
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Model Bias(AD)/Frobenuis F1 score TP FP Precison

n=100
π AD=0.1125

Θ1 F=1.7280 0.555 5 5 0.5
Θ2 F=1.6221 0.529 9 15 0.375

n=300
π AD=0.067

Θ1 F= 0.9702 0.5333 8 14 0.3636
Θ2 F= 0.8432 0.5882 10 14 0.4167

n=800
π AD=0.0625

Θ1 F=0.9279 0.5882 10 14 0.4166
Θ2 F=0.4804 0.4705 8 18 0.3076

n=2000
π AD=0.0263

Θ1 F=0.4170 0.5925 8 11 0.4210
Θ2 F=0.4465 0.625 10 12 0.4545

n=5000
π AD=0.002

Θ1 F=0.3529 0.6153 8 10 0.444
Θ2 F=0.2883 0.6060 10 13 0.4347

Table 1: The Absolute Deviation (AD), Frobenuis norm (F), the F1 score, the True Positive
(TP), the False Positive (FP) and the Precision of the PMLE for two-component mixture
with λ ∝

√
n log p.

the F1 score, True positive (TP), False positive (FP), Precision and Recall for the PMLE.

Example 1. We considered the simulated two-component multivariate normal mixture
models above and choose sequence of values of λ such that c1

√
n log p ≤ λ ≤ c2

√
n log p.

On experimental basis we set (c1, c2) = (0.1, 0.25). The performances of the penalized
EM-algorithm corresponding to different sample sizes are presented in Table 1.

The results show that as the sample size increases, the AD (for the mixture proportions)
and the Frobenuis norms (for the precision matrices) decrease indicating the consistency of
the PMLEs. At n = 5000, the AD for the mixture proportion is almost 0, indicating that
our method has recovered precisely the true mixture distribution. We reported also the F1

score, the True Positive (TP), the False Positive (FP), the Precision and the Recall of the
PMLE. We recorded an overall improvement in the F1 score as n increases.

Example 2. In this example, we again choose the same two-component multivariate Gaus-
sian mixture models. In contrast to the model used in example 1, we have fixed the tuning
parameter λ such that c1

√
log p ≤ λ ≤ c2

√
log p and (c1, c2) remain unchanged. The perfor-

mances of the penalized EM-algorithm corresponding to different sample sizes are presented
in Table 2. We again observe a decrease in both the Frobenuis norm and the AD as n in-
creases even though we suffer from a deficiency in the AD of π for the case n = 800. However
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Fig. 4: Graphical model of the 2 group of students

the AD is almost 0 at n = 5000. We note that this penalty decreases to 0 faster and as result
tends to produce full graph as can be seen in the higher value recorded for false positive.
Comparing the two examples, we observe that the choice of λ plays a strong role in param-
eter estimation and graph selection consistency of the resultant networks. The consistency
properties of the PMLEs was achieved in both cases but our results indicate that the overall
performance of the asymptotic behavior of λ ∝

√
n log p is more satisfactory. Even though

both penalty decrease to 0 as n increases, λ ∝
√
n log p decreases slower resulting in a

relatively sparser networks as compared to λ ∝
√

log p.

4.2. Real-data Examples

4.2.1. Mathematics Scores Data

As a simple example of a data set to which mixture models may be applied, we consider the
data set on marks in five mathematics exams score. This data set consists of 88 students
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Fig. 5: Graphical models of the CellSignal data with two mixtures of Gaussian distributions

who took examinations in 5 subjects namely mechanics, vectors, algebra, analysis, statistics.
Some were with open book and others with closed book. Mechanics and vectors were with
closed book.

We fit a two-mixture components to the data with a strong indication that there are two
groups of students each with similar subjects interest. We applied our PMLE algorithm to
the data with λ based on scheme 1. The pattern of interactions among the two groups were
depicted in Figure (4). The network differences as well as similarities are also shown. The
results indicate that 61% of students have similar subjects interest while 39% falls in other
group of interest. In one group, we observe no interactions between mechanics and analysis
nor statistics and vectors while in the other group such interactions do exist.

4.2.2. Analysis of cell signalling data

We consider the application of our method on the flow cytometry dataset (cell signalling
data) of Sachs et al. (2005). The data set contains flow cytometry of p = 11 proteins
measured on n = 7466 cells. The CellSignal data were collected after a series of stimulatory
cues and inhibitory interventions with cell reactions stopped at 15 minutes after stimulation
by fixation, to profile the effects of each condition on the intracellular signaling networks.
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Model Bias(AD)/Frobenuis F1 score TP FP Precison

n=100
π AD=0.0307

Θ1 F= 3.4081 0.3446 10 32 0.2380
Θ2 F= 3.4018 0.3181 7 29 0.1944

n=300
π AD=0.0356

Θ1 F=1.0539 0.3703 10 34 0.2272
Θ2 F=0.8657 0.3137 8 35 0.1860

n=800
π AD=0.0669

Θ1 F=0.6419 0.3703 10 34 0.2272
Θ2 F=0.7605 0.3018 8 37 0.1777

n=2000
π AD=0.0312

Θ1 F=0.5081 0.3168 8 34 0.1882
Θ2 F=0.4150 0.3636 10 35 0.2222

n=5000
π AD=0.0065

Θ1 F=0.2771 0.3703 10 34 0.2272
Θ2 F=0.2857 0.2692 7 37 0.1590

Table 2: The Bias(AD), Frobenuis norm (F), F1 score, True Positive (TP), False Positive
(FP) and the Precision of the PMLE for two-component mixture with λ ∝

√
log p.

Each independent sample in the data set is made up of quantitative amounts of each of the
11 phosphorylated molecules, simultaneously measured from single cells.

We again fit a two-mixture component to the data. The result of applying our PMLE al-
gorithm to the data set using the first scheme is shown Figure (5). The result indicates
that 90% of the observation falls in one component whiles 10% falls in the other cluster.
We also display the differences and similarities in the two components. The following pro-
teins interaction were seen to be present in each of the two components: (pakts473, P IP2),
(PKC,PIP2), (PKA, pjnk), (pmek, PKA) to mention but few. Differences in the inter-
action occur among the following proteins: (pakts473, praf), (PIP2, p44.42), (PKC, plog);
see Figure (5) for details.

5. Conclusion

We have developed a penalized likelihood estimator for Gaussian graphical mixture models.
We have imposed an L1 penalty on the precision matrix with extra condition preventing the
likelihood not to degenerate. The estimates were efficiently computed through a penalized
version of the EM-algorithm. By taking advantage of the recent development in Gaussian
graphical models, we have implemented our method with the use of the graphical lasso
algorithm. We have provided consistency properties for the penalized maximum likelihood
estimator in Gaussian graphical mixture model. Our results indicate a better performance
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in parameter consistency as well as in graph selection consistency for λ = O(
√
n log p) or

λn ∝ 1√
n

. Our method is suitable for large networks recovering from non homogeneous data.

Another interesting situation is when K, the number of mixture components in the model
is unknown. This is a more practical problem than the one we have discussed and probably
involves simultaneous model selection.
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