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Abstract. Discriminant analysis has been used in many application for classification and
dimension reduction when the ratio of sample size to dimension diverges. However, the appli-
cability of this method is almost impossible whenever sample size is bigger than dimension of
the data. Efforts have been made to circumvent this problem by either regularise or penalise
sample covariance matrices of the competing classes of observations. However, presence of
redundant features in the data raises misclassification rates of discriminant rule. In this pa-
per, we explore shrunken centroid regularised discriminant analysis for gene selection and
regularised discriminant analysis as classification method based on various versions of regu-
larised covariance matrices of competing classes of gene expression levels. The performance
of the regularised linear and quadratic discriminant analysis in comparison with some other
classification methods is illustrated using some gene expression data sets as well as simulated
data.
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lasser la ligne vide
Résumé. L’analyse discriminante a été utilisée dans beaucoup d’application pour la classifi-
cation and das la réduction de dimension lorsque le rapport taille de l’échantillon/Dimension
diverge. Toutefois, l’applicabilité de cette méthode est problématique si la taille de
l’échantillon est plus grande que la dimension de données. Des efforts ont été faits pour
régler cette difficulté soit en régularisant soit en pénalisant la matrice empirique des
variances-covariances des classes d’observations en compétition. Cependant, la présence de
caractéristiques redonnantes conduit à accroitre le taux de mal classement dans la dis-
crmination. Dans ce papier, we explorons la méthode dite shrunken centroid regularized
discriminant Analysis pour l’expression des gènes et celle de la méthode de l’analyse dis-
criminate régularisée come outil de classement, relative à plusieurs versions de régularisatin
des matrices de covariances des classes en compétitions relatives aux niveau d’espression des
gènes. La performance de la régularization linéaire et quadratique de l’analyse discriminante
en comparaison avec certaines autres méthodes de classification est illustrée par une étude
de cas avec des jeux de données rélles et une étude de simulation.

1. Introduction

Classification methods like discriminant analysis has been considered in many important
applications. For example, in classifying textile fabric data(Kiruthika and Chandrasekaran,
2012), iris data(Johnson et al., 2007), etc. Linear and quadratic discriminant analysis are
known for their optimal performance in classification when competing populations are
normally distributed. In practice, one may have to work with samples from competing
populations. These methods become practically difficult to implement when dimen-
sion of the data is greater than sample sizes. This is because covariance matrix Σ of
the data becomes singular, making it practically impossible to compute distance func-
tion (x−µ)>Σ−1(x−µ) in executing discriminant analysis, where µ is the mean of the data.

In handling singularity of estimate of covariance matrix, approaches in literature to
circumvent these problem can be categorised into three. One may choose to penalise the
covariance matrix Σ(Hastie et al., 1995; Witten and Tibshirani, 2011). Second, Dudoit et
al. (2002) suggested that correlation among variables should be ignored and demonstrated
a better performance of the approach using simulation and real data. This approach,
referred to as Diagonal linear discriminant analysis (DLDA), involves replacing Σ in the
discriminant function by D, the diagonal of pooled covariance matrix of the competing
classes. Then the discriminant rule based on the transformed discriminant function is
carried out on the test data. Bickel and Levina (2004) argued that DLDA is not much lower
in performance compared to Bayes rule in terms of proportion of correct classification. Fan
et al. (2012) argued that it may perform very poor when using all the features in data
because of accumulation of noise in estimating population centroids in high dimensional
feature space and showed that optimal risk using DLDA increases as correlation among
features increases.

Another approach is to regularise Σ. Use of regularized Σ has gained significant attention.
Friedman (1989) considered this regularisation for classification in low dimension and refer
to it as regularized discriminant analysis. Guo et al. (2007) presented some regularized
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versions of covariance matrix and a detailed discussion on regularized discriminant analysis
with application to gene expression data. Baldovin et al. (1997) presented a comparative
study among some classifiers: regularized discriminant analysis(RDA), linear and quadratic
discriminant analysis, nearest mean classifier, nearest weighted mean classifier and partial
least square classifiers using industrial pollution datasets. In another development, Fan et
al. (2012) proposed regularised optimal affine discriminant. Calis and Erol (2012) modified
discriminant analysis and proposed a per-field classification method based on Gaussian
mixture discriminant analysis for classifying remotely sensed multispectral image data.

Execution of usual discriminant analysis for classifying gene expression data is not possible
because gene expression data is characterised by huge number of genes (as features) with
very small gene profiles (as sample points). One may reduce the dimension of the data and
carry out the usual discriminant analysis. Data reduction techniques available in literature
include sparse principal component analysis (Zou et al., 2002) and multivariate adaptive
stochastic search method (Tian et al., 2010). However, data reduction methods will lead to
loss of important information. Reduced data may also suffer from poor interpretability.

Another intuitive feature of gene expression data is the presence of redundant genes.
These are noisy genes and are not contributing to classification in terms of accuracy of
the method employed. In dealing with this problem, Tibshirani et al. (2002) suggested
shrinking each class mean vector towards overall mean vector and proposed a classification
method based on distance to each shrunken mean. In this way, only contributing genes
are extracted and used for classification. Guo et al. (2007) proposed shrunken centroid
regularized discriminant analysis (SCRDA), a gene selection technique and classification
method which combine shrunken mean vector and regularized covariance matrix. However,
the performance of SCRDA depends on the choice of parameters employed in its execution.

In this paper, SCRDA with parameters (α, ∆) is employed to extract genes that best con-
tribute to classification. That is, SCRDA is employed in this study as tool for selecting
informative gene subset and not as a classifier. In extracting the best subset of genes that
contribute to classification by minimising the cross validation error of training samples, the
number of genes in the subset may be greater than sample size. This implies that the num-
ber of contributing genes p∗ > n, the sample size. In this case, we suggest performing some
versions of regularized linear discriminant analysis on the reduced data. We also apply the
notion of regularizing covariance matrices in non linear classification case. In this case, reg-
ularized covariance matrices of competing classes is suggested to replace Σ̂j in quadratic
discriminant function.

2. Methodology

Suppose X is a random vector in Rp. Classification rule based on linear discriminant analysis
can be expressed, for two competing classes π1 and π2, as

assign x to π1 if (µ1 − µ2)
>Σ−1(µ1 + µ2 − 2x) > log

(
p2

p1

)
, (1)

where p1 and p2 are prior probabilities, µ1 and µ2 are mean vectors of π1 and π2 respectively,
and Σ is pooled covariance matrix. The RHS of (1) is zero if p1 = p2. The empirical
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classification rule uses estimates of µ1, µ2 and Σ. The classification rule in (1) can be
extended for J > 2 classes. Similarly, the quadratic discriminant rule for discriminating
between observations in π1, π2, . . . , πJ can be expressed as

assign x to πj if (x− µj)
>Σ−1

j (x− µj) + loge |Σj | − 2 log pj is minimum, (2)

where Σj , µj and pj are covariance matrices, mean vector and prior probability of πj

respectively. However, the estimate of Σj , j = 1, 2, . . . , J , denoted by Σ̂j , becomes
ill-conditioned or singular when the dimension is greater than sample size (p > n).

A number of regularized versions of Σ̂j have been suggested, starting from the study of

Friedman (1989) who suggested the use of Σ̃
(0)

j in place of the usual Σ̂j , where

Σ̃
(0)

j = (1− α)Σ̂j +
α

p
trace

(
Σ̂j

)
I,

α ∈ (0, 1), Σ̂j is the estimate of covariance matrix of jth class in low dimension and I is a
p× p identity matrix. However, this can be extended to very high dimension (p >> n).

In another development, Guo et al. (2007) suggested the four regularized versions of Σ̂j .
These are

Σ̃
(1)

j = αΣ̂j + (1− α)I for α ∈ (0, 1);

Σ̃
(2)

j = λΣ̂j + I for λ > 0;

Σ̃
(3)

j = Σ̂j + λI forλ > 0;

Σ̃
(4)

j = D̂1/2
j R̃jD̂

1/2
j ,

where R̃j = αR̂j +(1−α)I, R̂j = D̂−1/2
j Σ̂jD̂

−1/2
j and D̂j = diag

(
Σ̂j

)
. It is observed that

Σ̃
(1)

j and Σ̃
(2)

j tend to look like I as α and λ are very close to 0. It is also observed that

Σ̃
(2)

= Σ̃
(3)

j when λ = 1.

Wu et al. (1996) considered another regularized covariance matrix (Σ̃
(5)

j ) for discriminant
analysis, where

Σ̃
(5)

j = (1− λ)Σ̂j + λΣ̂pooled

and Σ̂pooled is the covariance matrix of pooled sample. Baldovin et al. (1997) proposed

Σ̃
(6)

j =
(1− λ)Σ̂j + λΣ̂pooled

(1− λ)nj + λn

where nj is the sample size of jth group and n =
∑

j nj . It is observed that the perfor-

mance of Σ̃
(6)

j in discriminant analysis is equivalent to that of Σ̃
(5)

j when nj/
∑J

j=1 nj → 1/J .

We refer to the classification rule in (1) using regularized pooled covariance matrix in
place of usual covariance matrix as regularized linear discriminant analysis(denoted by
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RLDA). Similarly, we refer to the classification rule in (2) using regularized covariance
matrices of competing classes in place of usual covariance matrices as regularized quadratic
discriminant analysis(denoted by RQDA). Wu et al. (1996) illustrated the use of LDA,

QDA and RLDA based on Σ̃
(0)

j for spectrum NIR data. Due to ill-condition of the datasets,
feature selection was employed. In their deduction, it was shown that LDA and QDA
perform well and should be recommended for practical use. As noted in Wu et al. (1996),

RLDA based on Σ̃
(0)

j performs well for spectrum NIR data but the optimisation is time
consuming.

The use of Σ̃
(1)

j and Σ̃
(4)

j for some values of α was explored in Guo et al. (2007) for
SCRDA. SCRDA combines shrunken centroid approach to remove noisy features from
the data and perform classification on the reduced data. However, performance of Σ̃

(k)

j ,
k = 0, 1, 2, 3, 4 in regularized linear and quadratic discriminant analysis needs to be explored.

SCRDA is similar to nearest centroid classifier (NCC) of Hastie et al. (2001), except for
use of shrunken centroid in place of the usual mean vector and individual test vector by
its transformed version. In SCRDA, regularised pooled covariance matrix Σ̃ is employed in
shrinking class mean vector x̄ towards overall mean vector. That is,

x̄
′
= sign(x̄∗)(|x̄∗| −∆)+,

where
x̄∗ = Σ̃

−1
x̄.

Tibshirani et al. (2002) proposed nearest shrunken centroid (NSC) classifier. In NSC, x̄
′
=

sign(x̄)(|x̄|−∆)+. The corresponding classification rules for SCRDA and NSC are to assign
x to class j if

j = arg min
k

(x∗ − x̄
′

k)>D̂−1(x∗ − x̄
′

k)− log pk

and
j = arg min

k
(x− x̄

′

k)>D̂−1(x− x̄
′

k)− log pk

respectively, where x∗ = Σ̃
−1

x,D̂ = {s2
1, s

2
2, . . . , s

2
p}, x̄

′

k is the shrunken centroid of class k,
s2

p is the pooled variance of gene p.
Dudoit et al. (2002) suggested diagonal linear discriminant analysis (DLDA) which assumes
no correlation among features. DLDA involves replacing pooled covariance matrix Σ̂ by
its diagonal matrix D̂ = diag

(
Σ̂

)
. Pang et al. (2009) suggested a modified diagonal

linear and quadratic discriminant analysis. Ackermann and Strimmer (2009) argued that
correlation among features, especially micro-array data and clinical outcomes, is an essential
characteristic and is not always negligible. To illustrate this, we applied SCRDA with
parameters α = 0.1 and ∆ = 2.5 to Lymphoma data. 20 genes were returned. We computed
correlation matrix for the 20 returned genes. Also, we applied SCRDA with parameters
α = 0.2 and ∆ = 0.3 to colon cancer data. 28 genes were returned. We also computed the
correlation matrix for the 28 genes.
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Fig. 1. Correlation plots of genes in lymphoma (left) and colon cancer (right) datasets.

Figure 1 presents plot of correlation matrices for lymphoma and colon cancer genes. It
can be seen from the figure that correlation among genes in micro-array experiment is not
always negligible and any classification rule based on D̂, and not on covariance matrix Σ̂,
may have high misclassification rate.

We denote the classification rule in (1) based on Σ̃
(k)

by RLDA-k and classification rule in

(2) based on Σ̃
(k)

j by RQDA-k, where k = 0, 1, 2, 3, 4, j = 1, 2, . . . , J . It is observed that

RLDA-2 and RLDA-3 are equivalent when λ = 1 because Σ̃
(2)

j = Σ̃
(3)

j when λ = 1.

3. Data analysis and result

3.1. Application to gene expression data

Classification of gene expression data was considered in Yeang et al. (2001), Guo et al.
(2007), among others. Here we apply RLDA and RQDAs to gene expression data, which
are colon cancer data, leukaemia data and lymphoma data.

Regularised linear and quadratic discriminant analyses as well as diagonal linear and
quadratic discriminant analyses can not be applied directly to gene expression data be-

Journal home page: www.jafristatap.net



0. S. Makinde, African Journal of Applied Statistics, Vol. 4 (1), 2017, pages 273–286. A
comparative study on the regularized versions of discriminant analysis: An application to gene
expression data. 279

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
05

0.
10

0.
15

0.
20

RLDA−1

α

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
05

0.
10

0.
15

0.
20

RLDA−2

λ

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
05

0.
10

0.
15

0.
20

RLDA−3

λ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
05

0.
10

0.
15

0.
20

RLDA−4

α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

RQDA−1

α

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
05

0.
10

0.
15

RQDA−2

λ

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
05

0.
10

0.
15

0.
20

RQDA−3

λ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

RQDA−4

α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

RLDA−1

α

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
05

0.
10

0.
15

RLDA−2

λ

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

RLDA−3

λ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

RLDA−4

α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

RQDA−1

α

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

RQDA−2

λ

0.5

1

1.5

2

2.5

3

3.5

4

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

RQDA−3

λ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

RQDA−4

α

Fig. 2. Boxplots of misclassification rates of regularized linear and quadratic discriminant
analysis obtained from Leukaemia data (first two rows) and colon cancer data (last two
rows) for various values of α and λ.
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Fig. 3. Boxplots of misclassification rates of regularized linear and quadratic discriminant
analysis obtained from Lymphoma data for various values of α and λ.

cause some genes are zero-valued. Possibility of using SCRDA with parameters α and ∆
for extracting subsets of genes that contribute best to classification was raised in Guo et al.
(2007). It is important to mention that Guo et al. (2007) applied SCRDA for classification
and chose the parameters of the model by minimising cross validation error of the training
samples. Here, SCRDA is only employed to select gene expression features that contribute
most to classification, RLDAs and RQDAs are then performed on the reduced data.
Leukemia data consists of two classes of sizes 27 and 11 with 3051 genes. SCRDA was
employed to select informative gene subset. The parameters α and ∆ are taken to be 0.1
and 0.9 respectively. SCRDA returns 28 genes on which RLDAs and RQDAs are applied.
Random training samples of sizes 15 and 7 and random test samples of sizes 12 and 4 are

Journal home page: www.jafristatap.net



0. S. Makinde, African Journal of Applied Statistics, Vol. 4 (1), 2017, pages 273–286. A
comparative study on the regularized versions of discriminant analysis: An application to gene
expression data. 281

RLDA−0
RLDA−1
RLDA−2
RLDA−3
RLDA−4
RQDA−0
RQDA−1
RQDA−2
RQDA−3
RQDA−4

DLDA
DQDA

SCRDA

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Leukaemia

Proportions of misclassification

RLDA−0
RLDA−1
RLDA−2
RLDA−3
RLDA−4
RQDA−0
RQDA−1
RQDA−2
RQDA−3
RQDA−4

DLDA
DQDA

SCRDA

0.
0

0.
2

0.
4

0.
6

0.
8

Colon

Proportions of misclassification

RLDA−0
RLDA−1
RLDA−2
RLDA−3
RLDA−4
RQDA0

RQDA−1
RQDA−2
RQDA−3
RQDA−4

DLDA
DQDA

SCRDA

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Lymphoma

Proportions of misclassification

Fig. 4. Box plots for the misclassification rates of classifiers obtained from leukaemia data,
colon cancer data and lymphoma data.

selected from the two classes respectively. The experiment is repeated 999 times and the
misclassification error rates are computed and presented using boxplot. Figure 2 (row 1 and
2) presents boxplots of misclassification error rates of some regularized linear discriminant
analyses (RLDA-1, RLDA-2, RLDA-3 and RLDA-4) and regularized quadratic discriminant
analyses (RQDA-1, RQDA-2, RQDA-3 and RQDA-4) for some values of regularization
parameters (α and λ) for leukaemia. It is observed that RLDA-0, RLDA-1, RLDA-2 and
RLDA-3 achieve 100% proportion of correct classification when α ∈ [0.1, 0.2], α ∈ [0.1, 0.2],
λ ∈ [0.5, 1.0] and λ ∈ [1, 4] respectively. RLDA-4 achieves 100% proportion of correct
classification when α = 0.1. This indicates that leukaemia data is linearly separable.
Similarly, RQDA-1, RQDA-2 and RQDA-3 perform well for some values of α and λ.
Misclassification error rates of RQDA-4 is a bit high.
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Colon cancer microarray data consists of two classes of sizes 22 and 40 with 2000 genes.
SCRDA(α, ∆) was employed to select informative gene subset. The parameters α and ∆
are taken to be 0.2 and 0.3 respectively. 28 genes were returned. Random training samples
of sizes 11 and 20 and random test samples of sizes 11 and 20 are selected from classes 1
and 2 respectively. The experiment is repeated 999 times and the misclassification error
rates are computed and presented using boxplot. Figure 2 (row 3 and 4) presents boxplots
of misclassification error rates of some regularized linear discriminant analyses (RLDA-1,
RLDA-2, RLDA-3 and RLDA-4) and regularized quadratic discriminant analyses (RQDA-1,
RQDA-2, RQDA-3 and RQDA-4) for various values of regularization parameters for colon.
It is observed that error rates of RLDA-1 are similar for all values of α except α = 0.1
where the mean error rates is a bit high. It is evident that RQDA-1, RQDA-2 and RQDA-4
perform much better for lower values of α and λ.

Lymphoma data consists of three classes of sizes 42, 9 and 11 with 4026 genes. SCRDA(0.1,
2.5) was employed to select 20 informative genes. Random training samples of sizes 30,
6 and 7; and random test samples of sizes 12, 3 and 4 are selected from classes 1, 2 and
3 respectively. This experiment is also repeated 999 times and the misclassification error
rates are computed and presented using boxplot. Figure 3 presents boxplots of proportions
of misclassification of RLDAs and RQDAs for leukaemia for various values of regularization
parameters.

Figure 4 presents comparison of RLDA and RQDA with DLDA, DQDA and SCRDA for
Leukaemia data, colon cancer data and lymphoma data. For Leukemia data, we set α
to be 0.7, 0.2, 0.3, 0.4, 0.1 and 0.1 for RQDA-0, RQDA-1, RQDA-4, RLDA-0, RLDA-1
and RLDA-4 respectively. λ is chosen to be 0.5, 1.5, 0.5 and 1.0 for RQDA-2, RQDA-3,
RLDA-2 and RLDA-3 respectively. DLDA also achieves 100% proportion of correct
classification. SCRDA achieves mean proportion of misclassification of 0.0075. All the
competing classification methods perform equivalently as shown in the figure. For colon
data, we set α to be 0.2, 0.1, 0.2, 0.8, 0.5 and 0.8 for RQDA-0, RQDA-1, RQDA-4, RLDA-0,
RLDA-1 and RLDA-4 respectively. λ is chosen to be 1.0, 2.0, 1.0 and 1.0 for RQDA-2,
RQDA-3, RLDA-2 and RLDA-3 respectively. RLDAs and RQDAs perform competitively
with DLDA and SCRDA except RLDA-0. RLDA-0 performs worst. For lymphoma
data, α to be 0.6, 0.1, 0.8, 0.4, 0.6 and 0.9 for RQDA-0, RQDA-1, RQDA-4, RLDA-0,
RLDA-1 and RLDA-4 respectively. λ is chosen to be 1.5, 2.5, 0.5 and 3.5 for RQDA-2,
RQDA-3, RLDA-2 and RLDA-3 respectively. All the classifiers perform well except RQDA-0.

Table 1 presents the average and standard error of misclassification error rates of RLDAs,
RQDAs DLDA, DQDA and SCRDA for 1000 repetitions. It is observed that use of Σ̃

(0)
,

Σ̃
(1)

, Σ̃
(2)

and Σ̃
(3)

in classification rules defined in (1) and (2) for some values of tuning
parameters yields perfect classification of Leukemia data. Similarly, DLDA and DQDA-
4 achieve perfect classification while their quadratic forms do not. For colon data, all the
classifiers perform equivalently except RQDA-4 and SCRDA. For lymphoma data, we observe
that regularized linear discriminant analyses (RLDA-0, RLDA-1, RLDA-2, RLDA-3, RLDA-
4) outperform their quadratic counterpart. RQDA-0 performs worst.
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Table 1. Average error rates, with standard error of the proportions of misclassification in
parenthesis, of classifiers for Leukemia data, Colon cancer data and Lymphoma data.

Classifiers Leukemia Colon Lymphoma

RQDA-0 0.014(0.037) 0.075(0.037) 0.252(0.036)

RQDA-1 0.000(0.000) 0.088(0.034) 0.003(0.012)

RQDA-2 0.000(0.000) 0.044(0.030) 0.010(0.021)

RQDA-3 0.000(0.000) 0.085(0.036) 0.007(0.018)

RQDA-4 0.043(0.047) 0.116(0.048) 0.019(0.025)

RLDA-0 0.000(0.000) 0.682(0.144) 0.000(0.006)

RLDA-1 0.000(0.000) 0.081(0.039) 0.001(0.006)

RLDA-2 0.000(0.000) 0.075(0.041) 0.000(0.005)

RLDA-3 0.000(0.000) 0.070(0.038) 0.000(0.004)

RLDA-4 0.000(0.000) 0.064(0.045) 0.000(0.003)

DLDA 0.000(0.000) 0.082(0.035) 0.014(0.026)

DQDA 0.043(0.040) 0.098(0.049) 0.039(0.046)

SCRDA 0.059(0.058) 0.179(0.062) 0.009(0.020)

3.2. Simulation study

Simulation studies are presented to illustrate the performance of various regularized versions
of discriminant analysis in high dimension. This will in practice, provide an answer to the
question that which regularized covariance matrix be employed for discriminant analysis
in high dimension. Suppose C1 and C2 are two competing classes of observations in high
dimension. Each class has training sample and test sample of size 50. Each experiment
consists of assigning an observation in the test set to each of the two competing classes
based on measurements on p features of each class.

[Simulation 1] Suppose ith observation is in kth class, then Yi ∼ N(µk,Σ), where
µk = (µk1, µk2, . . . , µkp)> with µ1j = 0 for 1 ≤ j ≤ p, µ2j = 0.7 if 1 ≤ j ≤ 100
and µ2j = 0 otherwise and k = 1, 2. The covariance structure Σ consists of 5 × 5
blocks, each block of dimension 100× 100 with (j, j′) element 0.6|j−j′|.

[Simulation 2] Suppose each experiment consists of measurements on independent
features such that Xkj ∼ N(µkj , 1) where µ1j = 0 for 1 ≤ j ≤ p, µ2j = 0.7 if
1 ≤ j ≤ 100 and µ2j = 0 otherwise.

Simulation 1 consists of dependent features with block. Simulation 2 consists of independent
and identically normally distributed features. Figure 5 present the comparison of RLDA-1,
RLDA-2, RLDA-3 and RLDA-4 for various values of α and λ in simulation 1. In Figure 5,
proportions of misclassification in RLDA-2 are similar for some values of λ. It is observed
that higher values of λ yield lower misclassification error rates. Misclassification error rates
of RLDA-1 and RLDA-4 decrease as values of α decrease.

For simulation 2, mean error rates of RLDA-1 and RLDA-4 increase monotonically with
increase in α ∈ (0, 1) while mean error rates of RLDA-3 decreases monotonically with
increase in the value of λ. Performance of RLDA-1, RLDA-2, RLDA-3 and RLDA-4 are
similar in terms of averages of proportions of misclassification. That is, mean error rate
of each of RLDA-1, RLDA-2, RLDA-3 and RLDA-4 approaches zero for all values of α and λ.
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Fig. 5. Box plots for the misclassification rates of various versions of regularised linear
discriminant analysis obtained from simulated data example 1(first row) and 2(second row)
for various values of α and λ.

Comparing various versions of RLDA with NSC, DLDA and SCRDA, we observe that the
performances of RLDA-1, RLDA-2, RLDA-3 and RLDA-4 are competitive with NSC and
DLDA except for RLDA-0 in simulation 1 as shown in Figure 6. Except DLDA and RDLA-0
in simulation 2, all the classifiers achieve perfect classification. However, all the classifiers
perform well.

4. Conclusion

In low dimension, testing significant difference among mean vectors of competing classes
of observations if the classes have a common covariance matrix before carrying out
classification exercise can provide a clue whether linear discriminant rule will make
sense or not. In high dimension, where dimension of each observation is bigger than
sample size, there is no simple way of conducting such test due to singularity of com-
mon covariance matrix. We have considered notions of various regularized covariance
matrices in regularized discriminant analysis. The performance of various versions of
regularized linear and quadratic discriminant analyses is illustrated using simulated data as

Journal home page: www.jafristatap.net



0. S. Makinde, African Journal of Applied Statistics, Vol. 4 (1), 2017, pages 273–286. A
comparative study on the regularized versions of discriminant analysis: An application to gene
expression data. 285

● ●●● ●● ●● ●●● ●● ●

●●● ●●●●●●●● ●●●● ●●●●●●●● ●

● ●●● ●●●●●●● ●●● ●●●●●●

●●● ●● ●● ●●● ●● ●●

●● ●● ●● ●●●

●● ●●

RLDA−0

RLDA−1

RLDA−2

RLDA−3

RLDA−4

DLDA

NSC

SCRDA

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Simulation 1

Proportions of misclassification

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●● ●●●

RLDA−0

RLDA−1

RLDA−2

RLDA−3

RLDA−4

DLDA

NSC

SCRDA

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Simulation 2

Proportions of misclassification

Fig. 6. Box plots for the misclassification rates of classifiers obtained from simulated data
examples.

well as real data. The real data are gene expression data that arose from micro-array studies.

From real data and simulated data examples, regularized linear and quadratic discriminant
analyses compete favourably with SCRDA and diagonal discriminant analysis. To choose
values of turning parameter(λ or γ) for Σ̃

(k)
, k = 0, 1, . . . , 4, that maximise the proportion

of correct classification, we suggest use of leave-one-out cross validation of error rates, as
also suggested by Baldovin et al. (1997).
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