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ABSTRACT. We study the notions of acs, luacs and uacs Banach spaces which
were introduced by Kadets et al. and form common generalisations of the usual
rotundity and smoothness properties of Banach spaces. In particular, we are
interested in (mainly infinite) absolute sums of such spaces. We also introduce
some new classes of spaces that lie inbetween those of acs and uacs spaces and
study their behaviour under the formation of absolute sums as well.

1. INTRODUCTION

First let us fix some notation. Where not otherwise stated, X denotes a real
Banach space, X* its dual, By its unit ball and Sx its unit sphere.

Since we will deal with various generalisations of rotundity and smoothness
properties for Banach spaces, we start by recalling the most important of these
notions.

Definition 1.1. A Banach space X is called

(i) rotund (R in short) if for any two elements x,y € Sy the equality ||z + y|| =
2 implies z = v,

(ii) locally uniformly rotund (LUR in short) if for every € Sy the implication

|z +2|| =2 = |z, —2| =0
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holds for every sequence (x,)nen in Sk,

(iii) weakly locally uniformly rotund (WLUR in short) if for every = € Sx and
every sequence (,)nen in Sy we have

|zn +2|| = 2 = x, — = weakly,

(iv) uniformly rotund (UR in short) if for any two sequences (z,)nen and (Y, )nen
in Sx the following implication holds:

[0 +yull = 2 = llzn = ynull =0,

(v) weakly uniformly rotund (WUR in short) if for any two sequences (,)nen
and (Y, )nen the following implication holds:

ltn +ynll = 2 = x, — y, — 0 weakly.

UR spaces where introduced by Clarkson in [1], LUR spaces by Lovaglia in [22].
The obvious implications between all these notions are summarised in the chart
below and no other implications are valid in general, as is shown by the examples
in [20].

WUR

TS

WLUR — R

UR
~ - Fia. 1

LUR

Note that, by standard normalisation arguments, X is UR iff for all bounded

sequences (T, )nen and (Y, )nen in X which fulfil the conditions ||z, + Y|l —||Zn]| —
lynll = 0 and ||z,| — |lynl] — 0 we have that ||z, — y,|| — 0 and further that
the two conditions ||z, + yn|| — ||znll — |lynl| — 0 and ||z,| — ||yl — O can be

replaced by the single equivalent condition 2 ||z,||* + 2||ynl|> = |2 + yal|* = 0.
Similar remarks apply to the definitions of LUR, WUR and WLUR spaces. Also,
for a finite-dimensional space X all the above notions coincide (by compactness
of the unit ball).

Recall also that the modulus of convexity of the space X is defined by dx(¢) =
inf {1 —1/2|Jz+y| : z,y € Bx and ||z — y|| > €} for every ¢ in the interval ]0, 2.
Then X is UR iff 6x(¢) > 0 for all 0 < e < 2.

Concerning notions of smoothness, the space X is called smooth (S in short) if
its norm is Gateaux-differentiable at every non-zero point (equivalently at ev-
ery point of Sx), which is the case iff for every z € Sx there is a unique
functional z* € Sy« with z*(z) = 1 (cf. [14, Lemma 8.4 (ii)]). X is called
Fréchet-smooth (FS in short) if the norm is Frécht-differentiable at every non-zero
point. Finally, X is called uniformly smooth (US in short) if lim, o px(7)/7 =
0, where px denotes the modulus of smoothness of X defined by px(7) =
sup{1/2(||lx + 7y|| + ||z — Ty|| — 2) : x,y € Sx} for every 7 > 0.
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Obviously, FS implies S and from [14, Fact 9.7] it follows that US implies F'S.
It is also well known that X is US iff X* is UR and X is UR iff X* is US (cf. [14,
Theorem 9.10]).

There is yet another notion of smoothness, namely the norm of the space X is
said to be uniformly Gateauz-differentiable (UG in short) if for each y € Sx the
limit lim, o (||z + 7y|| — 1) /7 exists uniformly in x € Sx. The property UG lies
between US and S. It is known (cf. [9, Theorem I1.6.7]) that X* is UG iff X is
WUR and X is UG iff X* is WUR" (which means that X* fulfils the definition
of WUR with weak- replaced by weak*-convergence).

In [18] the following notions were introduced.

Definition 1.2. A Banach space X is called

(i) alternatively convex or smooth (acs in short) if for every x,y € Sx with
|z + y|| = 2 and every z* € Sx~ with 2*(z) = 1 we have 2*(y) = 1 as well,

(ii) locally uniformly alternatively convex or smooth (luacs in short) if for every
x € Sy, every sequence (z,)neny in Sx and every functional z* € Sy« we
have

|zn + || = 2 and 2" (z,) > 1 = z"(x) =1,
(iii) uniformly alternatively convexr or smooth (uacs in short) if for all sequences
(Zn)nen, (Un)nen in Sx and (z))nen in Sx+ we have

|t + yn|| = 2 and a2} (z,) = 1 = 2 (y,) — L.

Clearly, R and S both imply acs, WLUR implies luacs and UR and US both
imply uacs. Again by standard normalisation arguments one can easily check
that X is uacs iff for all bounded sequences (z,)nen, (Yn)nen in X and (z),en

in X* with z,(z,,) — ||}, || ||| _>207 [fe ‘f‘anH — [zl = HQ:UTZH — 0 and [[z,[ —
lynll — 0 (or equivalently 2 ||z,||” + 2 ||ynll” — ll&n + ynll” — 0) we also have
H(Yn) — |z lynll — 0 and a similar characterisation holds for luacs spaces.

Note also that, again by compactness, in the case dim X < oo the notions of acs,
luacs and uacs spaces coincide.

The acs, luacs and uacs spaces were originally introduced in [18] to obtain
geometric characterisations of the so called Anti-Daugavet property, which was
introduced in the same paper. We will briefly recall this property and the con-
nection to the geometric notions.

Firstly, it is well-known and easy to see that a bounded linear operator 7" on
any Banach space X with ||T'|| € o(T) satisfies the so called Daugavet—equation
|id+T|| = 1+ ||T|| (here, o(T") denotes the spectrum of T'). In fact, the following
more general statement holds (this is surely known as well, but a proof is included
here since the author was not able to find it explicitly in the literature).

Lemma 1.3. For any (real) Banach space X and every T € L(X) the inequality
[id + T[] = 1+ [T = d([|T[], o (T))
holds, where d(||T||,o(T")) denotes the distance of || T|| to o(T).
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Proof. If the claim was not true, there would be A € o(T') such that |||T]| — A| <
1+ |7 — |lid + T'||, hence ||id + T'|| < 1 + A. Consequently, the operator S :=
(1 4+ A)~7'(id + T') has norm less than 1, so id — S is invertible. But then the
operator (1 + A\)(id — ) = Aid — T would be invertible as well, contradicting
A€ a(T). O

Now X is said to have the Anti-Daugavet property with respect to some class
M C L(X) of operators, if the implication

lid+T) =1+ 7] = |[T] €a(T)

holds for every T' € M.

The results from [1%] then read as follows: X has the Anti-Daugavet property

for rank-1-operators iff X has the Anti-Daugavet property for compact operators
iff X is luacs (see [18, Theorem 4.3]); if X is even uacs, then it has the Anti-

Daugavet property with respect to all operators (see [18, Theorem 4.5], it is not
known whether the converse of this stament is true). For more information about
the Daugavet-equation, the reader is referred to [18] and [27].

Let us now discuss the acs spaces and their relatives a little further. First note
the following reformulation of the definition of acs spaces, which was observed in
[18]: A Banach space X is acs iff whenever z,y € Sx such that ||z + y|| = 2 then
the norm of span{z,y} is Gateaux-differentiable at = and y.

Recall that a Banach space X is said to be uniformly non-square if there is some
§ > 0 such that for all x,y € Bx we have ||z + y|| < 2(1-9) or ||z — y|| < 2(1-9).
It is easily seen that uacs spaces are uniformly non-square and hence by a well-
known theorem of James (cf. [2, p.261]) they are superreflexive, as was observed
in [18, Lemma 4.4].

Actually, to prove the superreflexivity of uacs spaces it is not necessary to
employ the rather deep theorem of James, as we will see in the next section.

In [24] it is shown by Sirotkin that for every 1 < p < oo and every measure
space (€2, %, u) the Lebesgue—Bochner space LP(Q, %, p; X) is uacs (resp. luacs,
resp. acs) whenever X is an uacs (resp. luacs, resp. acs) Banach space. To get
this result, Sirotkin first proves the following characterisation of uacs spaces.

Proposition 1.4 (Sirotkin, cf. [21]). A Banach space X is uacs iff for any two
sequences (Tp)nen and (Yn)nen in Sx and every sequence (z3)nen in Sx+ we have
|Tn + ynl|l = 2 and 2z (2z,) =1Vn €N = 27 (y,) — L
Instead of repeating the proof from [21] here, we shall give a slightly different
proof below (see Proposition 2.1), which—unlike Sirotkin’s proof—does not use

any reflexivity arguments (but see also the proof of Lemma 2.10).

Now with this characterisation we can define a kind of ‘vacs-modulus’ of a
given Banach space.

Definition 1.5. For a Banach space X we define
Dx(e) ={(z,y) € Sx x Sx : Jz* € Sx+ 2" (x) =1 and 2% (y) <1 —¢€}
r+y

uacs

and 02 () = inf {1 -

D (x,y) € DX(g)} Ve €]0,2].
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Then by Proposition 1.4 X is uacs iff 6% ..(¢) > 0 for every € €]0, 2] and we clearly
have dx(g) < 6% _.(¢) for each ¢ €]0,2]. For the connection to the modulus of
smoothness see Lemma 2.6. The characterisation of uacs spaces given above
coincides with the notion of U-spaces introduced by Lau in [20] and our modulus
6X .. is the same as the modulus of u-convexity from [15]. Also, the notion of
u-spaces which was introduced in [11] coincides with the notion of acs spaces.
The interested reader may also have a look at [13], where two notions of local
U-convexity are introduced and studied quantitatively. The U-spaces (= uacs
spaces) are of particular interest, because they possess normal structure (cf. [16,
Theorem 3.2] or [24, Theorem 3.1]) and hence (since they are also reflexive)
they enjoy the fixed point property (the reader is referred to [17, Section 2] for
definitions and background).

It seems natural to introduce two more notions related to uacs spaces, namely

the following.
Definition 1.6. A Banach space X is called

(i) strongly locally uniformly alternatively convex or smooth (sluacs in short) if
for every x € Sx and all sequences (z,)neny in Sx and (z)),en in Sx« we
have

|zn + || = 2 and z)(z,) = 1 = z(z) — 1,
(i) weakly uniformly alternatively convex or smooth (wuacs in short) if for any
two sequences (2, )nen, (Yn)nen in Sy and every functional * € Sx- we have

|len + yn|| = 2 and 2*(z,) = 1 = 2%(y,) — 1.

With these definitions we get the following implication chart.

uacs luacs —— acs

\ / Fic. 2

Including the rotundity properties finally leaves us with the diagram below.

WUR

P N

UR_ wuass WLUR——R
|

> >< | |

uacs LUR luacs — acs

~. | Fic. 3

sluacs

Let us further remark that every space whose norm is UG is also sluacs, thus we
have the following diagram illustrating the connection to smoothness properties.
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US UG S

]

uacs —— sluacs —— acs

In the next section we collect some general results on uacs spaces and their
relatives.

2. SOME GENERAL FACTS

We start with the promised alternative proof of Proposition 1.4 which does not
rely on reflexivity. Instead, we shall employ the Bishop—Phelps—Bollobas theorem
(cf. [3, Chap. 8, Theorem 11]), an argument that will also work for the case of
sluacs spaces. This idea was suggested to the author by Dirk Werner.

Proposition 2.1. A Banach space X is uacs iff for any two sequences (xp,)nen,
(Yn)nen in Sx and every sequence ()nen in Sx+= we have

|Tn + yn|l = 2 and 2 (2z,) =1 Vn €N = 27 (y,) — L. (2.1)

X is sluacs iff for every x € Sx and all sequences (Ty)nen, (T )nen in Sx resp.
Sy« we have

|z +z|| = 2 and 2} (2z,) =1Vn eN = z)(z) = L (2.2)

Proof. We only prove the statement for uacs spaces, the proof for the sluacs case
is completely analogous. Furthermore, only the ‘if” part of the stated equiva-
lence requires proof. So suppose (2.1) holds for any two sequences in Sx and all
sequences in Sx«.

Now if (2,,)nen and (¥, )nen are sequences in Sx and (z7),en is a sequence in
Sx~ such that ||z, + y,| — 2 and 27 (x,) — 1 we can choose a strictly increasing
sequence (ng)reny in N such that ) (z,,) > 1 — 2726=2 holds for all £k € N.
By the already cited Bishop—Phelps-Bollobas theorem we can find sequences
(Zr)ren in Sy and (7} )ren in Sy« such that 75 (7x) = 1, [|Zr — .|| < 27% and
|z — a3, || < 27" for all k € N.

It follows that ||Z — @, || — 0 and ||Z} — 2% || — 0 and since ||z, + yn|| — 2
we get that ||Zg + yn, || — 2.

But then we also have #}(y,,) — 1, by our assumption, which in turn implies
Ty, (Yny) = 1.

In the same way we can show that every subsequence of (x (y,))nen has another

subsequence that tends to one and hence z(y,) — 1 which completes the proof.
0J

Next we would like to give characterisations of acs/sluacs/uacs spaces that do
not explicitly involve the dual space. As mentioned before, a Banach space X is
acs iff x and y are smooth points of the unit ball of the two-dimensional subspace
span{z,y} whenever z,y € Sx are such that |z + y|| = 2.

It is possible to reformulate and refine this statement in the following way.
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Proposition 2.2. For any Banach space X the following assertions are equiva-
lent:

(i) X s acs.

(ii) For all x,y € Sx with ||z + y|| = 2 we have
iy Nyl + e —tyl| -2 _
im -
t—0+ t

(iii) For all x,y € Sx with ||x + y|| = 2 we have

0.

o~ tyl —1

lim —1.

t—0+ t
(iv) For all x,y € Sx with ||z + y|| = 2 there is some 1 < p < oo such that
et ety 2

t—0+ tP
(v) For all x,y € Sx with ||z + y|| = 2 there is some 1 < p < oo such that
lim A+t +llz—tyl"—2 _

t—0+ 174

=0.

0.

The analogous characterisation for sluacs spaces reads as follows.
Proposition 2.3. For any Banach space X the following assertions are equiva-
lent:

(i) X is sluacs.

(ii) For every e > 0 and every y € Sx there is some § > 0 such that for all
t €10,9] and each x € Sx with ||z + y|| > 2(1 —t) we have

o+ tyll + [lo — tyl| < 2+et.
(iii) For every e > 0 and every y € Sx there is some § > 0 such that for all
t €10,9] and each x € Sx with ||x + y|| > 2 — t§ we have
|z —ty|]| < 14+t(e—1).

(iv) For every y € Sx there is some 1 < p < oo such that for every e > 0 there
exists 6 > 0 such that for allt € [0,6] and each x € Sx with ||z+y|| > 2(1—t)
we have

|z + ty||” + ||z — ty||” <2+ et?.

(v) For every y € Sx there is some 1 < p < oo such that for every € > 0 there
exists § > 0 such that for allt € [0,0] and each x € Sx with ||x+y| > 2—1t6
we have

(1+t)P + ||z — ty||’ <2+ et?.

Finally, we have the following characterisation for uacs spaces.

Proposition 2.4. For any Banach space X the following assertions are equiva-
lent:

(i) X is uacs.
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(ii) For every e > 0 there exists some 6 > 0 such that for every t € [0, 4] and all

x,y € Sx with ||z +y|| > 2(1 —t) we have
I+ tyll + e — ty]l < 2+ et

(iii) For every e > 0 there exists some 6 > 0 such that for every t € [0, ] and all

r,y € Sx with ||z + y|| > 2 — 0t we have
|z —ty]| <14+t(e—1).

(iv) There exists some 1 < p < oo such that for every € > 0 there is some 6 > 0

such that for all t € [0,9] and all z,y € Sx with ||x +y|| > 2(1 —t) we have
e+ tyll” + [l — tyll? < 2+ et

(v) There exists some 1 < p < oo such that for every € > 0 there is some 0 > 0
such that for all t € [0,6] and all x,y € Sx with |z + y|| > 2 — t6 we have

(1+t)P + ||z —ty||’ <2+ et?.
Proof. We will only explicitly prove the characterisation for uacs spaces. First

we show (i) = (ii). So suppose X is uacs and fix € > 0. Then there exists some
0 > 0 such that for all z,y € Sx and z* € Sx+ we have

o +yl| >2(1 = 0) and *(z) > 1 -3 = 2*(y) > 1—«.

Now if we put § = §/2 and take ¢t € [0, 8] and z,y € Sy such that ||z+y| > 2(1—t)
then we can find a functional z* € Sx« such that z*(x — ty) = ||z — ty|| and
conclude that

(z) = |z —ty| +tz*(y) > 1 —t—t=1-2t>1-9.
>

By the choice of 0 this implies 2*(y) > 1 — & and hence

|z +ty|l + llx — ty|| = ||z + ty]| + 2" (x —ty) < 1T+t +1—tz"(y) <2+ te.

Now let us prove (ii) = (iii). For a given € > 0 choose 6 > 0 to the value £/2
according to (ii). We may assume § < min{1,e/2}.

Then if ¢ € [0,0] and x,y € Sx such that ||z + y|| > 2 — dt we in particular
have ||z + y|| > 2(1 — ¢) and hence

£
|z + ty|| + ||z —ty|| <2+ t5-
But on the other hand
€

|lz+tyl| >z +yl|— Q1 —0)]y]| >2—-0—-1+t= 1—6t+t21—§t+t.
It follows that ||z — ty|| < 14 t(e — 1).

Next we prove that (iii) = (i). Fix sequences (x,)neny and (y,)neny in Sy
such that ||z, + y,|| — 2 and a sequence (z}),en of norm-one functionals with
xf(z,) — 1. Also, for every n € N we fix y* € Sy- such that y(y,) = 1.

For given ¢ > 0 we choose 6 > 0 according to (iii). For sufficiently large n we
have ||z, + yn| > 2 — 6% and % (z,) > 1 — & and hence

(Y, — x;)((Syn) = *'E:;(xn — 0Yn) — x;(xn) +4 < ||$n - 5yn|| +0— $Z(5Un)
< | —0ynl| +0 =14+ <1+ —1)+—1+¢ed = 20,
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where the last inequality holds because of ||z, + .|| > 2 — §? and the choice of 4.
It follows that 27 (y,) > v (yn) — 26 = 1 — 2¢ for sufficiently large n.
The implications (ii) = (iv) and (iii) = (v) are clear. To prove (iv) = (ii)
recall the inequalities
(a+ b)Y <2071 (a? +bP) Ya,b>0,V¥p € [1,00]
(a+0)* <a®+b* Va,b>0,Va €]0,1].

They imply that for all z,y € Sx, every ¢ > 0 and each 1 < p < oo one has

o+ tyll + llz =ty =2 _ (22~ (o + tyll” + o — tyl"))"” — 2

t t
— 1
_ (27 et ty]” o+l = tyll”) — 22\
< -
T (Hw + iyl + |z — ty|” - 2)1”’
tp ’

which shows (iv) = (ii). If we replace ||z + ty|| by 1+ ¢ in the above calculation,
we also obtain a proof for (v) = (iii). O

If we define the modulus pX . by

Punes(T) = sup {1/2([lz + 7yl| + l|lz — 7y[l) = 1: (z,y) € Sx(7)},

where 7 > 0 and Sx(7) = {(z,y) € Sx X Sx : ||z +y|| > 2(1 — 7)} then because
of the equivalence of (i) and (ii) in Proposition 2.4 X is uacs iff lim, ¢ pX (7)/7 =
0 and obviously pX .(7) < px (7).

Let us also define

- 1
(551265(8) = inf {max {1 — §Hx +yl,1— x*(x)} cx,y € Sx,x" € As(y)} ,

where 0 < e <2 and A.(y) = {z* € Sx- 1 2*(y) <1 —¢€}. )
From the very definition of the uacs spaces it follows that X is uacs iff 6% _(g) >
0 for every 0 < e < 2.

Examining the proof of the implication (i) = (ii) in Proposition 2.4 we see that
the following holds.

Lemma 2.5. If X is a Ba]mch space and 0 < € < 2 such that 551‘;65
for every 7 > 0 with 27 < 6% . (g) we have 2p% (7)) < T¢.

uacs

(€) > 0 then

The reverse connection between p _and 62 is given by the following lemma.

Lemma 2.6. Let X be any Banach space and 7 > 0 as well as 0 < e < 2. Then
the 1nequality

er — 2p% (T)
6X > uacs
uacs(g) — 2(7_ + 1)

holds.
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Proof. We may assume 7 — 2pX (7) > 0, because otherwise the inequality is
trivially satisfied. Let us put R = (e7 —2pX .(7))(2(7 +1))~* and take z,y € Sx
and z* € Sy« such that 2*(z) = 1 and ||z +y|| > 2(1 — R).
Then we can find z* € Sx« with 2*(x+y) > 2(1— R) and hence z*(z) > 1 —-2R
and z*(y) > 1 —2R.
It follows that
(2" =a")(ry) = " (x + 7y) + 2" (v — Ty) — 2" (x) — 2" (x)
< llo+ 7yl + o = 7yl = 1= 2"(2) < 2050(7) +1 = 27(2)
< 2(Paes(T) + R)-

Hence
z*(y) > 2" (y) —;(puXaCS(T)+R) >1-2R - ;(puXaCS(T)+R) =1l-c
and we are done. O

Now we turn to the proof of the superreflexivity of uacs spaces without us-
ing James’s result on uniformly non-square Banach spaces. A key ingredient to
James’s proof is the following lemma of his, which may be found in [2, p.51].

Lemma 2.7. A Banach space X is not reflexive iff for every 0 < 6 < 1 there
is a sequence (zx)ren n Bx and a sequence (x))nen in Bx« such that for every

n € N we have
2 (2x) = 0 ifn<k
R0 i > ke

Even armed with this lemma it is still difficult to prove the superreflexivity of
uniformly non-square Banach spaces, but it easily yields the result for uacs spaces.
We can even prove a stronger result: it is a well known fact that a Banach space
X is reflexive if it satisfies liminf; o+ px (t)/t < 1/2 (cf.[25, Theorem 2]).! We
will see that the same holds if we replace px by pa.., even a bit more is true.

Proposition 2.8. If there is some 0 < t such that pX . (t) < t/2, then X is
superreflezive (actually, it is uniformly non-square).

Proof. Put 6 = 2pX _(t)/t < 1 and choose € > 0 such that § + ¢ < 1. Also, put
n = min {te/5,¢/5}.

If 2,y € Sy such that ||z +y| > 2(1 —n) and 2* € Sx- with 2*(z) > 1 — 7 fix
y* € Sx« such that y*(x+y) > 2(1—n). Then y*(z) > 1—2n and y*(y) > 1—2n
and hence

(" —2")(ty) = y"(z + ty) + 2" (x — ty) — 2" (x) — y"(2)
3
<z +ty| + |l — tyll — 2+ 30 < 2pe(t) +3n =10+ 3n < (6 + 58)15-

Consequently, 2*(y) > y*(y)—0—32e > 1-2n—0—2c > 1-2e—0—32c = 1—(0+<).
Next we fix 0 < 7 < 1/2 such that 7(1 + (1 — 27)™) < n and put 8 =
1-(1-7)(1=27)(1—-0—¢). Then 0 < g < 1.

INote that the definition of px given there differs from our definition by a factor 1 /2.
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Claim. If z,y € Bx such that ||z +y| > 2(1 — 7) and 2* € Bx- such that
x*(x) > 1—7 then z*(y) > 1 — 5.

To see this, take z,y and x* as above and observe ||z||, ||y|| > 1 — 27. Hence

vyl syl |11
N N I
ERr e
1 1
2Hx+y|!—’———’22(1—7>— > 2(1— 1)
I o

and moreover, since [|z*[], ||z|| < 1,

ﬂf_*(i) S1-r>1-n.
[ \ [

Thus by our previous considerations we must have
() Z =" lyll(1=0—e) = (1 =7)(A —27)(1 =0 —¢) =1 - f.

From the above claim together with the fact that 5 < 1 it could be easily deduced
that X is uniformly non-square and hence superreflexive, but if we just want to
prove the superreflexivity an application of Lemma 2.7 is enough. For if X was
not reflexive then by said Lemma we could find sequences (zj)reny in Bx and
(2} )nen in By« such that zf(x;) = 0 for n > k and x}(xy) =1 — 7 for n < k.

We only need the first two members of the sequences to derive a contradiction,
namely we have ||x; + xo| > z5(x1) + 25(22) = 2(1 — 7) and a3(z2) = 1 — 7 but
x3(z1) =0 < 1 — (3 contradicting our just established claim.

Thus X must be reflexive and to prove the superreflexivity it only remains to
show that for every Banach space Y which is finitely representable in X there
exists 0 < #’ such that pY _(¢') < t//2 which we will do in the next Lemma. O

Lemma 2.9. If there is some 0 < t such that pi.(t) < t/2 and Y s finitely
representable in X then there is 0 < t' such that pY,.(t') < t'/2.

Proof. Let 0,e,n,7 and [ be as in the previous proof. Put v = 7/4.
Claim. If z,y € By such that ||z+y| > 2(1—v) then ||x4vy|+|z—ry| < 2+v0.

To establish this, take x,y € Bx as above and also fix x* € Sy« such that
x*(x — vy) = ||x — vy||. Observe as before that ||z||,||y|| > 1 — 7/2. Hence we
have

v(x) = |z —wyll + 2% (vy) = |zl = vllyll + va*(y) > fJzfl =20 > 1 =7

The claim we established in the previous proof now gives us z*(y) > 1 — 5. It
follows that

[z + vyl + [z — vyl = [z +vy| + 2" (z —vy) <2+ v(1 —27(y)) <2+ vp.
Next fix 8 < @ < 1 and 0 < 7 < v such that (Bv + 37)(v —7)~' < a. Put
t" = v — 7. Finally, choose € > 0 such that (I — #)(1 +&)™' > 1 — v and
(1+&)2+vp) <24+vp+1.

Now take y1, y2 € Sy with ||y; 42| > 2(1—t) and put F' = span {y, y»}. Since

Y is finitely representable in X there is a subspace £ C X and an isomorphism
T:F — E such that ||T|| =1and |[T7!| <1+4¢. Let z; = Ty, fori = 1,2.
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It easily follows that ||z + zo|| > 2(1 — ¢/)(1 + €)' > 2(1 — v), whence ||z, +
vaa||+ ||z —vas|| < 24vF which implies ||y; +vys|| +||y1 —vye|| < (1+E8)(2+v0).
Thus we have

lyr + t'yell + [lyr — tyal| < v + vyl + llyr — vl +2|v =t
<(I4+8)2+vh)+2n<2+4vB8+3n<2+alv—1m)=2+at’.

So we have proved 2pY, (¢')/t' < a < 1. O

We remark that the uniform non-squareness of a space X satisfying 2pX (t) <t
for some 0 < ¢ could also be deduced from our Lemma 2.6 and [15, Theorem 2],
where it is observed that 6% (1) > 0 is sufficient to ensure that X is uniformly
non-square.

Now let us have a look at the quantitative connection between the moduli o
and 6%

uacs”

X
uacs

Lemma 2.10. If X is uacs then
550 2 0% (5a(e)

uacs uacs

for every 0 < e < 2.

Proof. Here we can adopt Sirotkin’s idea from the proof of Proposition 1.4 in [24].
Put 0 = 635 (05c(€)) and take z,y € Sx and z* € Sy~ such that ||z + y[| >
2(1—-¢) and z*(z) > 1 —4.

Since X is reflexive, there is some z € Sy with z*(z) = 1. It follows that
|lz+z|| > 2*(x+2) >2(1—9).

Now fix y* € Sx~ such that y*(x) = 1. Then by the definition of § we must have
y*(Z) >1- 51)1(acs(€) and y*(y> >1- 51)1;cs(€) and hence Hy + ZH > 2(1 - 51)1;cs(€))'

Because of x*(z) = 1 this implies *(y) > 1 — € and the proof is finished. [

It is claimed in [10, Lemma 3.10] that the modulus of U-convexity, which
coincides with our modulus 42 ., is continuous on ]0,2[, but it seems that the
proof given there only works in the case € < 1 (this is not a major drawback
since one is usually interested in small values of £). We wish to point out that for
values between 0 and 1 even more is true, namely §X _ is Lipschitz continuous on

la, 1] for every 0 < a < 1.

Lemma 2.11. For every Banach space X and all 0 < e,&' < 1 we have

6X0(0) — 6% ()] < == F

uacs = m :

X
uacs

Proof. Let 0 <e <land 0 < f <1 —¢. Put 7 = 3/(ec + ) and take z,y € Sx
and z* € Sx- such that z*(z) = 1 and z*(y) < 1—e¢. Let z = (y — 1) /||y — 72|
Note that, since ||y — 7z|| > 1 — 7 and € + 7 < 1, we have

x*(2)§1_5—_721_5(1+17 >:1—(5+5)

1—7 -7

In particular, o is Lipschitz continuous on [a, 1] for all 0 < a < 1.
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and hence

xr—+z

1- 25lﬁcs<€+ﬁ)'

Furthermore, we have

Iy =7zl =Dy +7af _ 27 _ 28

1—7 —1—7 g

ly — 2| <

It follows that

1—

> 53205(5 + B) - g

x—l—yH 15}

Thus we have

Thele +5) 2 60) 2 65+ 8) 2

€
forall 0 < e <1 and every 0 < 8 < 1 — ¢, which finishes the proof. 0
Next we will deal with some duality results. In [20, Theorem 2.4] a proof of the
fact that a Banach space X is a U-space iff its dual X* is a U-space is proposed
and in [13, Theorem 2.6] the stronger statement that the moduli of u-convexity

of X and X* coincide is claimed. Both proofs make use of the following claim
from [20, Remark after Definition 2.2]:

Claim. X is a U-space iff for every € > 0 there is some d > 0 such that whenever
x,y € Sy and x*,y* € Sy« with z*(z) = 1 = y*(y) and ||z + y|| > 2(1 — §) then
|lz* + y*|| > 2(1 —¢).

A U-space certainly has the above property. However, the converse need not be
true, not even in a two-dimensional space.

To see this, first note that if X is finite-dimensional then by an easy com-
pactness argument the condition of the claim is equivalent to the following one:
whenever z,y € Sx and z*,y* € Sx- with 2*(z) = 1 = y*(y) and ||z + y|| = 2 we
also have [|z* + y*|| = 2.

Therefore, if X is finite-dimensional it fulfils the condition of the claim if for
each z,y € Sx with ||z +y|| = 2 at least one of the two points x and y is a smooth
point of the unit ball. But as we have mentioned before, a two-dimensional space
is acs (equivalently a U-space) iff whenever x,y € Sx with ||z + y|| = 2 then both
points x and y are smooth points of the unit ball.

Taking all this into account, we see that the space R? endowed with the norm
whose unit ball is sketched below will be an example of a space which fulfils the
condition of the claim but is not a U-space.
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FiGc. 5

However, it is possible to modify the proof from [20, Theorem 2.4] to show that
the desired self-duality result is true nonetheless.

Proposition 2.12. Let X be a Banach space whose dual X* is uacs. Then we
have

53X (e) > 6%

uacs

Sones()) Ve €]0,2].

uacs ( uacs

In particular, X s also uacs.

Proof. Take any ¢ €]0,2] and put § = 6X.(¢) and § = 6X.(0).

Now if 2,5y € Sy and z* € Sy~ with *(z) = 1 and ||z + y|| > 2(1 — §) choose
y*, 2* € Sy« such that y*(y) = 1 and 2*(z +y) = ||z + y||.

Then we must have 2*(z) > 1 —20 and z*(y) > 1 — 2. It follows that
(z* +a*)(z) >2—26 and (2" +y*)(y) > 2 — 2§ and hence

>1-—4. (2.3)

>1—Sand’

Next we pick any z** € Sy« with 2**(2*) = 1. Then from (2.3) and the definition

of & we get that z**(z*) > 1 — & and 2™ (y*) > 1 — 6.
It follows that ||z* 4+ y*|| > 2(1 —0) and because of y*(y) = 1 and the definition
of § this implies 2* () > 1—& and thus we have shown 6. (¢) > 6 = 6.5, (6Xes(2)).
0J

Taking into account that uacs spaces are reflexive we finally get that being uacs
is a self-dual property.

Corollary 2.13. A Banach space X is uacs iff X* is uacs.

X o X* .
Ses = O that was claimed

The author does not know whether the equality o
in [13, Theorem 2.6] is actually true.

Alternatively, we could also derive the self-duality from the following lemma (cf.
the proof of [14, Lemma 9.9]). The modulus g\ is defined exactly as pi . except
that one replaces Sx by By. The argument that X is uacs iff lim, , pX . (7)/7 =
0 is analogous to the one for pX .

Lemma 2.14. If X is any Banach space then for every T > 0 and every 0 < e < 2
the following inequalities hold:

(1) Otacs(€) + Plaes (7) = 75
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(1) 0acs(8) + Alaes(T) = 75

Proof. We only prove the slightly more difficult inequality (ii). To this end, fix
x*,y* € Sx+ and ™ € Sx« such that z**(2z*) =1 and 2™ (y*) < 1 —e.
If |2* + y*|| < 2(1 — 7) then we certainly have 2 — ||z* + y*|| > 7e — 25X (7).
If ||la* + y*|| > 2(1 — 7) then take an arbitrary 0 < o < ||z* 4+ y*|| — 2(1 — 7).
By Goldstine’s theorem there is some z € By such that

2% (@*) — ()] < 5 and o™ (y") = y"(@)] <

| e

Now choose y € Sy such that (x* + y*)(y) > ||z* + y*|| — «/2. Tt follows that
(x* 4+ y*)(y) > 2(1 — 1) + a/2 and hence z*(y), y*(y) > 1 — 27 + «/2.
Thus we have

(@8] o
|z + vl 2x*(x+y)2x**(x*)—§+1—27'+§:2(1—7')

and hence
258 es(T) = Ny + 7| + |y — T2l =2 > 2*(y + 72) + y*(y — T2) — 2
= (@ + ")) + 72" (x) -y (2)) — 2
> |la* + ) = 5 + 7@ @) 2Ty —a) =2
> |la* + | - 5 + e —a) - 2.
For o — 0 we get 2 — ||z* + y*|| > 7e — 25X ..(7) and we are done. O

There are also some duality result on acs, luacs, sluacs and wuacs spaces which
we will treat in the following. The proof of the first statement is very easy and
will therefore be omitted.

Proposition 2.15. A Banach space X is acs iff for all x*,y* € Sx« and all
x,y € Sx the implication

(" +y*)(x) =2and 2"(y) =1 = y'(y) =1

holds. In particular, if X* is acs then so is X and the converse is true if X is
reflezive.

We will say that a dual space X* is luacs™ resp. wuacs* if it fulfils the definition
of an luacs resp. wuacs space with for all weak*-continuous functionals on X*.
With this terminology the following is valid.

Proposition 2.16. For any Banach space X we have the following implications.

(i) X* luacs® <= X luacs
(i) X* wuacs* <= X sluacs
(i) X* sluacs <= X wuacs

Proof. We only prove (iii). Let us first assume that X* is sluacs and take se-
quences (T, )nen, (Yn)nen in Sy and a functional z* € Sy« such that ||z, + y,| —
2 and z*(z,) — 1.

Choose a sequence (7 )nen in Sy« with @%(z, + yn) = ||z, + ynl| for every n.
It follows that z*(x,) — 1 and z%(y,) — 1.
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From x*(z,) — 1 and z}(z,) — 1 we get ||z} + z*|| — 2. Together with
x}(yn) — 1 and the fact that X* is sluacs this implies *(y,) — 1 and we are
done.

Now assume X is wuacs and fix a sequence (27),en in Sy« and 2* € Sy+ such
that ||z 4+ 2*|| — 2 as well as a sequence (2%),en in Sy« with 22*(z%) — 1.

Because of ||z} + z*|| — 2 we can find a sequence (z,)nen in Sx such that
xf(z,) — 1 and 2*(z,) — 1.

By Goldstine’s theorem we can also find a sequence (y,)nen in By which sat-
isfies

So we have z(z, + y,) — 2 and hence ||z, + y,|| — 2. Since X is wuacs and
x*(z,) — 1 we must also have x*(y,) — 1 and consequently z**(z*) — 1. O

If X is reflexive then by (i) and (ii) of the preceding proposition X* is luacs
(resp. wuacs) iff X is luacs (resp. sluacs). Next we would like to give necessary
and sufficient conditions for a dual space to be acs resp. luacs resp. wuacs that
do not explicitly involve the bidual space. We start with the acs case. The
characterisation is inspired by [28, Proposition 3].

Proposition 2.17. Let X be any Banach space. The dual space X* is acs iff
for all sequences (x,)nen and (Yn)nen in Bx and all functionals =*,y* € Sx+ the
implication

r(x, + yp) — 2 and y*(x,) > 1 = y*(y,) — 1
holds.

Proof. To prove the necessity, assume that X* is acs and take two sequences
(n)nen, (Yn)nen and functionals z*, y* as above. It follows that ||z* + y*|| = 2.
By the weak*-compactness of By« we can find for an arbitrary subsequence
(Yn, Jken a subnet (y%(i))ie] that weak*-converges to some y** € By«. It follows
that y**(z*) = 1 and since X* is acs we must also have y**(y*) = 1. Thus
Y*(Yn,,y) — 1 and the proof of the necessity is finished.

Now assume that X* fulfils the above condition and take z*, y* € Sx- and
x** € Sx« such that ||[z*+y*|| = 2 and **(z*) = 1. Then we can find a sequence
(Zn)nen in By such that x*(z,) — 1 and y*(z,) — 1.

By Goldstine’s theorem there is a sequence (y,)nen in Bx such that z*(y,) —
™ (z*) = 1 and y*(ya) — 2 (y").-

Thus we have x*(z, + y,) — 2 and y*(z,) — 1 and hence by our assumption
we get y*(yn) — 1, so x™(y*) = 1. O

The characterisations for the dual space to be luacs resp. wuacs are a bit more
complicated. They read as follows.

Proposition 2.18. Let X be a Banach space.
(i) X* is luacs iff for every x* € Sx+ and all sequences (x)nen and (Tg)ren in
Sx+ and By respectively, the implication
k,n—o0

|lo* + 27| = 2 and ) (xx) = 1 = 2%(zg) — 1
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holds.
(i) X* is wuacs iff for all sequences (x})nen, (Y )nen in Sx+ and (zx)ren in Bx
the implication

|z + yrll = 2 and z), (x) Er7001 = lim sup y,(zy) = 1.
k>n n—=00 >y

holds.

Proof. To prove (ii) we first assume that X* is wuacs and fix sequences (z7)nen
and (! )nen in Sx+ as well as (zg)reny in Bx as above. Since By« is weak™-
compact there is a subnet (z4(;))icr that is weak*-convergent to some z** € Bx--.
We will show that z**(x}) — 1.

Given any € > 0 by our assumption on (z%),eny and (zg)reny we can find an
N € N such that

|2y () — 1| <e Vk>n> N.
For every n > N it is possible to find an index i € [ with ¢(i) > n and
|25 (zo()) — 2™ (x7,)| < e. Tt follows that [2**(y;) — 1| < 22 and the convergence
is proved.

So we have ||z} + y!|| — 2 and 2™ (x}) — 1. Since X* is wuacs this im-
plies z**(y%) — 1. Thus for any § > 0 there is some ny € N such that
|z**(yx) — 1] < 0 for all n > ng and for any such n we find j € I with ¢(j) > n
and |y (z4) — 2™ (y;)| < 6. Hence |y;(z4)) — 1| < 26 and we have shown
SUDg>p, Vi (x) > 1 — 26 for all n > ny.

Now let us prove the converse. We take sequences (2% )nen, (4 )nen in Sx+ such
that ||z + v*|| — 2 and a functional z** € Sx« with x**(z}) — 1.

By means of Goldstine’s theorem we find a sequence (2 )ren in Bx that satisfies

1 1
(o) — 27 ()] < 7 and (o) — 2" (@) < ¢ Y <k

It is then easy to see that (z (zx))r>n tends to 1 and hence our assumption gives
us liny, o0 SUPLs, ¥ (2) = 1.

Thus for any € > 0 there exists N € N with sup,~,, (7)) > 1—cand 1/n < ¢
for each n > N. -

If we fix n > N we find & > n with y (zx) > 1—¢ and because of the inequality
|e** (y2) — yi(xp)| < 1/k < e it follows that 2**(y%) > 1 — 2¢ and the proof is
finished. Part (i) is proved similarly. O

One can also give some more characterisations of acs, luacs and sluacs spaces
by apparently stronger properties.

Proposition 2.19. For a Banach space X, the following assertions are equiva-
lent:

(i) X s acs.

(ii) For all sequences (x})nen, (Y} )nen in Bx+ and all x,y € Sx the implication
(27 +yn)(@) = 2and y(y) = 1 = ,(y) — 1
holds.
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(iii) For every sequence (x))nen in Sx+ and all x,y € Sx the implication
lz+y||=2and z)(z) =1 = z,;(y) =1
holds.

Proof. (1) = (ii) follows from Proposition 2.15 together with the fact that Bx- is
weak*-compact, the implication (iii) = (i) is trivial and (ii) = (iii) is also quite
easy to see. 0

By means of Goldstine’s theorem one can also prove the following characterisation
of luacs spaces (we omit the details).

Proposition 2.20. A Banach space X is luacs if and only if for every sequence
(5 Vnen in Sx, every x € Sx and each x* € Sx« the implication

|lzr* + z|| = 2 and 2" (") = 1 = 2"(z) = L.
holds.

Let us denote by X*) the k-th dual of X. Then X resp. X* naturally embeds
into X®*) resp. X@*+1 for each k. For sluacs spaces we have the following
stronger result.

Proposition 2.21. A Banach space X is sluacs iff for every k € N, for every
sequence (Zp)nen in Byxer, every x € Sx and each sequence (z3)nen in Bkt
the tmplication

l|zn + || = 2 and 25 (z,) = 1 = z:(z) =1
holds.

Proof. The sufficiency is obvious. To prove the necessity, we first take sequences
(5 )nen in By« and (25),en in By« as well as an element 2 € Sx such that
|z%* + z|] — 2 and 22 (2*) — 1. Then we can find a sequence (y),en in Sx~
such that z2*(y}) — 1 and yf(z) — 1.

By Goldstine’s theorem (applied to X*) there is a sequence (z)nen in Bxs
such that 2 (z3*) — z2*(2}) — 0 and z**(z) — 2} (x) — 0. Hence z*(2}) — 1.

Again by Goldstine’s theorem (now applied to X) there exists a sequence
(Tn)nen in Bx such that 2" (xf) — ¥ (z,) — 0 and z3*(y}) — yi(x,) — 0. It
follows that x}(z,) — 1 and vy (z,) — 1.

Taking into account that y(z) — 1 we get ||z, + x| — 2. Since X is sluacs it
follows z (z) — 1 and hence x**(z) — 1.

Thus we have proved our claim for £ = 1. Continuing by induction with the
above argument we can show it for all £ € N. O

If we use the preceding proposition and the technique of proof from Proposition
2.4 we see that the following holds.
Proposition 2.22. For a Banach space X the following assertions are equivalent:

(i) X is sluacs.
(ii) For every k € N, every e > 0 and every y € Sx there is some § > 0 such
that for all t € [0,0] and each z € Sxer with ||z + y|| > 2(1 —t) we have

|z + tyl| + ||z — ty|| <2+ et.
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(iii) For every k € N, every € > 0 and every y € Sx there is some 6 > 0 such
that for all t € [0,46] and each z € Sxer with ||z + y|| > 2 — td we have

|z —tyl]| <1+t(e—1).

Finally, let us consider quotient spaces. If U is a closed subpace of X then
(X/U)* is isometrically isomorphic to U+ (the annihilator of U in X*). Using
this together with Corollary 2.13 and the obvious fact that closed subspaces of
uacs spaces are again uacs, one immediately gets that quotients of uacs spaces are
uacs as well. An analogous argument using part (iii) of Proposition 2.16 works
for wuacs spaces, so in the summary we have the following proposition.

Proposition 2.23. Let U be a closed subspace of the Banach space X. If X is
uacs (resp. wuacs) then X/U is also uacs (resp. wuacs).

As for quotients of acs, luacs and sluacs spaces we have the following result
which is an analogue of [19, Proposition 3.2].

Proposition 2.24. If U is a reflexive subspace of the Banach space X then the
properties acs, luacs and sluacs pass from X to X/U.

Proof. Let w: X — X/U be the canonical quotient map. As was observed in the
proof of [19, Proposition 3.2] the reflexivity of U implies w(Bx) = Bx,u-

Now suppose that X is sluacs and take a sequence (2,)nen in Sx/u and an
element z € Sy/y such that ||z, + z|| — 2. Further, take a sequence (¢,)nen in
S(X/U)* with wn(zn> — 1.

Since w(Bx) = Bx,u we can find a sequence (z,)nen in Sx and a point z € Sx
such that z, = w(x,) for every n and z = w(x).

It easily follows from ||z, + z|| — 2 that we also have ||z, + z| — 2.

We put z} := 1), ow € Sy for every n and observe that = (x,) = ¥, (2,) — 1.
Since X is sluacs this implies 2% (z) = ¢, (2) — 1.

The proofs for acs and luacs spaces are analogous. 0

Using again the relation (X/U)* = U+ for every closed subspace U of X we
can derive the following from Propositions 2.15 and 2.16.

Proposition 2.25. IfU s a closed subspace of the Banach space X the following
implications hold.

(i) X* acs = X/U acs

(i) X* luacs = X/U luacs

(iii) X* wuacs = X/U sluacs

It is known (cf. [3, p.145]) that for any Banach space X the dual X* is R (resp.
S) iff every quotient space of X is S (resp. R) iff every two-dimensional quotient
space of X is S (resp. R). By an analogous argument we can get the following
result.

Proposition 2.26. For a Banach space X the following assertions are equivalent.
(i) X* is acs.

(ii) X/U is acs for every closed subspace U of X.

(i) X/U is acs for every closed subspace U of X with dim X/U = 2.
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Proof. (i) = (ii) holds according to Proposition 2.25 and (ii) = (iii) is triv-
ial, so it only remains to prove (iii) = (i). Obviously it suffices to show that
every two-dimensional subspace of X* is acs, so let us take such a subspace
V =span {z*,y*}. Then V = U+ = (X/U)*, where U = ker z*Nker y*. The quo-
tient space X / U is two-dimensional and hence by our assumption it is acs. Since
X/U is in particular reflexive it follows from Proposition 2.16 that (X/U)* =V
is also acs. 0J

By [19, Proposition 3.4] there is an equivalent norm ||-|| on ¢* such that (¢*, ||-||)
is R and every separable Banach space is isometrically isomorphic to a quotient
space of (£1,]|-]]), so in particular ¢! is a quotient of (¢!, -||). Thus quotients of
acs spaces are in general not acs and it also follows (in view of Proposition 2.26)
that the fact that X is acs is not sufficient to ensure that X* is acs.

There is also an analogue of Proposition 2.26 for uacs spaces which reads as
follows. (The corresponding result for UR spaces was proved by Day (cf. [7,
Theorem 5.5)).)

Proposition 2.27. For a Banach space X let S(X) denote the set of all closed
subspaces of X and Sy(X) the set of all closed subspaces U of X such that
dim X/U < 2. Then the following assertions are equivalent:

(i) X is uacs.
(ii) inf {532@%’( ) U e S(X)} >0 Ve €lo,2].

(iii mf{ lﬁ{fi U € So(X )} >0 Ve €]0,2].
) =

Proof. (i (ii) Let X be uacs. If U € S(X) then (X/U)* = U™, hence
Sl () > 6% () > 6% (625e5(€)) by Proposition 2.12 and the reflexivity
of X.

Using again Proposition 2.12 (now applied to X/U) and the monotonicity of
the uacs modulus we obtain

63;/(:[5( ) > 51?205 (&?acs (éﬁg‘cs (53205( )))) > 07
which finishes our argument.

Since (ii) = (iii) is obvious it only remains to prove (iii) = (i). Denote the
infimum in (iii) by d(¢) and take sequence (x})nen, (¥ )nen in Sx+ such that
|z + yx|| — 2 and a sequence (23%),en in Sy« with 22*(z%) — 1.

We put V,, = span{z},y’} and U, = kerz} Nkery; for every n. Then V,, =
Ut = (X/U,)*. Again by Proposition 2.12 (and reflexivity of X/U,) we get that

OVies(2) = ™ (80 (2)) = 6 (0(2)).
Let ¢, denote the restriction of x* to V,, and fix any ¢y > 0. Because of
|z + v — 2 we have 1 — 27|22 + y7|| < §(8(g0)) < 6V (g0) for sufficiently
large n.
Since @, (z}) = 1 this implies that we eventually have ¢, (y}) = x*(y) > 1—¢o.
Thus we have shown that X* is uacs and by Proposition 2.12 X is uacs as
well. O
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In the next section we will study absolute sums of uacs spaces and their rel-
atives, but first we have to introduce two more definitions that will be needed,
namely “symmetrised” versions of the notions of luacs and sluacs spaces.

Definition 2.28. A Banach space X is called

(i) a luacs™ space if for every x € Sy, every sequence (,)neny in Sx with
|z, + x| — 2 and all 2* € Sx+ we have

(z,) > 1 = 2% (z)=1,

(ii) a sluacs® space if for every € Sy, every sequence (r,)ney in Sy with
|z, + || = 2 and all sequences (z}),en in Sx+ we have

zh(r,) > 1 <= x(r) = L

If we include these two properties in our implication chart we get the following.

WUR

P N

UR_  wuacs WLUR ——R
|

> < |

uacs LUR luacs™
~. | |
sluacs™ luacs — acs
. FiG. 6
sluacs

Let us mention that Proposition 2.24 also holds for luacs™ and sluacs™ spaces
(with the same argument). Also, Propositions 2.20 resp. 2.21 hold accordingly
for luacs™ resp. sluacs™ spaces.

In analogy to Proposition 2.4 one can prove that for any Banach space X the

following conditions are equivalent:

(i) For all sequences (z,)nen in Sx, (z))neny in Sx+ and every z € Sy with
|zn + || = 2 and 2} (z) — 1 one has x}(z,) — 1.

(ii) For every z € Sx and every € > 0 there exists a § > 0 such that
|z + ty|| + ||z — ty|| <2+ et
whenever t € [0,0] and y € Sx with ||z 4+ y|| > 2(1 —¢).

In particular, every F'S space fulfils (i) and hence a space which is FS and sluacs
is sluacs™. In the context of FS spaces we also have the following proposition.

Proposition 2.29. If X is FS and X* is acs then X is luacs™. In particular,

every reflexive FS space is luacs®.

Proof. By our previous considerations we only have to show that X is luacs.
Take a sequence (z,)nen in Sx and a point x € Sx with ||z, + x| — 2 as well
as a functional z* € Sy- with 2*(z,,) — 1. Choose a sequence (y})nen in Sx~



316 J.-D. HARDTKE

such that y(z, + z) = ||z, + z|| for every n € N. It follows that y%(x,) — 1 and
Because of ||yf +z*|| > v (z,) + 2" (x,) for every n it follows that ||y} + 2*| —

2. If y* € Sx- is the Fréchet-derivative of ||.|| at = then y’(z) — 1 implies
lys —y*|| = 0. Hence we get ||z* + y*|| = 2 and y*(z) = 1.
Since X* is acs we can conclude that z*(z) = 1. O

We conclude this section with a simple lemma that will be frequently used in
the sequel. It is the generalisation of [I, Lemma 2.1] to sequences, while the proof
remains virtually the same.

Lemma 2.30. Let (2,)nen and (Yn)nen be sequences in the (real or complez)
normed space X such that ||z, + yn| — |znll — ||ynl] — 0.

Then for any two bounded sequences (y)nen, (Bn)nen 0f non-negative real num-
bers we also have ||, x, + Buynll — an |2all — Bn l|ynl| — 0.

Proof. Let n € N be arbitrary. If a,, > 3, then

||O[nxn + BnynH Z (679 ||mn + ynH - (an - Bn) ||yn”
=y (|20 + yull = llzall = lyall) + an l|zn ]l + Bn llyal
and hence
lnn + Baynll — an | Znll = B lynll = an (|20 + yall = llznll = lyall) -
Analogously one can show that
lon@n + Buynll — cn [|2n|l = Bu lynll = Bn (170 + yull = |20l = [lynl])

if a,, < B,. Since (ay)neny and (Bn)nen are bounded we obtain the desired con-
clusion. ]

3. ABSOLUTE SUMS

We begin by recalling some preliminaries on absolute sums. Let I be a non-
empty set, F a subspace of R? with e; € F for all i € I and ||.||; a complete
norm on E (here e; denotes the characteristic function of {i}).

The norm || . ||; is called absolute if the following holds

(ai)ier € E, (b)icr € R! and |a;| = |b;| Vi € I
= (bi)ier € E and |[(ai)ier|| g = [|(bs)ierll 5 -

The norm is called normalised if ||e;|| = 1 for every i € I.

Standard examples of subspaces of R! with absolute normalised norm are the
spaces (P(I) for 1 < p < oc.

We have the following important lemma on absolute normalised norms, whose
proof can be found for example in [21, Remark 2.1].

Lemma 3.1. Let (E,|.||z) be a subspace of RY with an absolute normalised
norm. Then the following s true.

(ai)ig S E, (bi)ie] & RI and |bz| < |az| Viel
= (bi)ier € £ and |[(bi)ierllp < [[(ai)icrll g -
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Furthermore, the inclusions (*(I) C E C (>°(I) hold and the respective inclusion
mappings are contractive.

For a given subspace (F, ||.||;) of R' endowed with an absolute normalised
norm we put

E = {(ai)ig eRl:  sup Z la;b;| < oo}

(b )ZGIGBE el

It is easy to check that E' is a subspace of R! and that
(@ierllp :=sup > laibi| V(ai)ier € E'
(bi)ier€BE ;o1

defines an absolute normalised norm on E'.
The map T : E' — E* defined by

T((aien)(bilier) = S aibi V(as)ier € B\ V(b)ies € B
il
is easily seen to be an isometric embedding. Moreover, if span {e; : ¢ € I} is dense

in F then T is onto, so in this case we can identify E* and E’.
Now if (X;)es is a family of (real or complex) Banach spaces we put

D], = { rier € [T X (Jolier € E}

el

It is not hard to see that this defines a subspace of the product space []
which becomes a Banach space when endowed with the norm

| @il = Ilzillierlp V(widier € [ X:]

i€l

ze]

We call this Banach space the absolute sum of the family (X;);c; with respect to

E. Again, the map
@, - @,

iel el

S((x)ier)((z)ier) ZHJ ;)
i€l

is an isometric embedding and it is onto if span {e; : ¢ € I'} is dense in E.
We also mention the following well-known fact, which will be needed later.

Lemma 3.2. If E is a subspace of R! endowed with an absolute normalised norm
and span{e; : i € I} is dense in E then E contains no isomorphic copy of (* iff
span{e; : i € I} is dense in E'.

If not otherwise stated, we shall henceforth assume E to be a subspace of Rf
with an absolute normalised norm such that span {e; : ¢ € I'} is dense in E.
Now let us first have a look at absolute sums of acs spaces.

Proposition 3.3. If (X)ic; is a family of acs spaces and E is acs then [@D,.; X] 5
1s also acs.
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Proof. Let x = (2;)ie; and y = (y;)ies be elements of the unit sphere of [@iel XZ-] 5
and z* = (z]);er an element of the dual unit sphere such that ||z + y||; = 2 and
x*(z) = 1. We then have

=D ai(@) <D _lailllzl < lallgllells = 1
il icl
and hence
zj () = |2 [[lz:]| Vi € T and Yy la|fl:l| = 1. (3.1)
iel
Moreover, by Lemma 3.1 we have
2= |lz+yllp = Iz + vilDiesllp < NCll2ill + gl )ies || g
<lzllg +llyllz =2
and thus
[l + Nyl Diesll = 2. (3.2)
Since E is acs (3.2) and the second part of (3.1) imply that
> Nyl = 1. (3.3)
il
Another application of Lemma 3.1 shows
I il + sl + el = 4 (3.4
Again, since E is acs we get from (3.4), (3.3) and the second part of (3.1) that
> il + will =2
iel
which together with (3.1) and (3.3) implies
[l | Cllll =+ ill = s + wall) = 0 Vi € 1. (3.5)
Next we claim that
wi (i) = =iyl viel. (3.6)
To see this, fix any o € I with x}, # 0 and y;, # 0. Define a; = ||z}]| for all
i€ I\{ip} and a;, = 0. Then (a;);er € Bgr, because of Lemma 3.1.
If z;, = 0 it would follow that > ., a;|lz;|| = > .o/ l|«}||||#:|| = 1 and hence
(because of (3.2) and since E is acs) we would also have ). ; a; ||ly;|| = 1. But by

(3.3) this would imply [|lys [ [z}, [| = D i/ llwill ([[27]] — ai) = 0, a contradiction.
Thus z;, # 0. From (3.5) and Lemma 2.30 we get that

-
ENN IIyzoll
Taking into account the first part of (3.1) and the fact that X, is acs we get

5, Wio) = 125, [[[[4io ], as desired.
Now from (3.6) and (3.3) it follows that z*(y) = 1 and we are done. O
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We remark that the special case of finitely many summands in the above
proposition has already been treated in [11] (for two summand) and [23] (for
finitely many summands) in the context of u-spaces and the so called -direct
sums.

Before we can get on, we have to introduce another technical definition.

Definition 3.4. The space E is said to have the property (P) if for every sequence
(@n)nen in S and every a € S we have

lan +allp =2 = a, — a pointwise.

If £ is WLUR then it obviously has property (P). The converse is true if E
contains no isomorphic copy of £* by Lemma 3.2.
With this notion we can formulate the following proposition.

Proposition 3.5. If (X;)ics is a family of sluacs (resp. luacs) spaces and E is
sluacs (resp. luacs) and has the property (P) then [@,., XZ}E is sluacs (resp.
luacs) as well.

Proof. We only prove the sluacs case. The argument for luacs spaces is analogous.
So let (x,)nen be a sequence in the unit sphere of [@id XJE and x = (2;)ier
another element of norm one such that ||z, + x|, — 2 and let (z}),en be a
sequence in the dual unit sphere such that x}(z,) — 1.
Write 2, = (2n)icr and x;, = (z}, ;)ics for each n. We then have

(@) = D i(@na) < Yl illlzasl < lallplleallz =1

i€l el
which gives us
lim Y ey el = 1 (3.7)
icl
and
lim (x;‘”(xm) — HleHHIMH) =0 Viel (3.8)
n—oo ’ ’

Applying Lemma 3.1 we also get

[z + 2l g < lznill + lzilDierll p < llnllg + N2l = 2

and hence
T ([l + Nzl Dier |l = 2. (3.9)
Since E has property (P) this implies
lm ||z,,|| = ||zl Viel. (3.10)
n—o0
Because F is sluacs we get from (3.7) and (3.9) that
Jim Sl =1 (3.11)

If we apply Lemma 3.1 again we arrive at

T (|l + @il] + 2l + zillierll 5 = 4. (3.12)



320 J.-D. HARDTKE

We further have

l2n + 2l g+ 12 ([([ens + zill + l2nil)ics |
2 [[(ln + ill + sl + lzall)ierll = 1

and thus it follows from (3.12) that

it (s il + el = 3 (.13
Analogously one can shown

T (s + 2l + el = 3. (3.14)
But because of Lemma 3.1 we also have

|(zni + zill + |2l ierll ; + 3
> (s + ]| + (| 2nll + 3|2 )ier |l
> 2 ||(|ons + o] + |2ill)icr |

and thus (3.14) and (3.13) imply
i W + 2l + ol + 3l = 6 (3.15)

Since E has property (P) it follows from (3.13) and (3.15) (and some standard
normalisation arguments) that

i (s + il + ) = 3l Vi€ 1
which together with (3.10) gives us
n—oo

Because each X; is sluacs it follows from (3.10), (3.16) and (3.8) (and again some
standard normalisation arguments) that

lim () ;(z;) = |3 |||lzil) =0 Viel (3.17)

n
n—oo

Now take any € > 0. Then there is a finite subset J C I such that

> lzilles = (lzill)ier|| <e. (3.18)
icJ E
By (3.17) we can find an index ng € N such that
> (@hales) = e lllall)| < e vn = no. (3.19)
icJ
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Then for all n > ng we have

h(x) =l Ml

> (aha@i) — IIwZ,iIIIIinI)‘

el i€l
<Y (@) = Nanalllaad) |+ D (@) = gl lla:])
ieJ i€I\J
(3.19) (3.18)
< e+2 ) aplllall <e+2( llwille = (lol)er|| < 3e.
ieI\J ieJ E

Thus we have shown x(z) — > .|z l/l|7s]] — O which together with (3.11)
leads to z(x) — 1 finishing the proof. O

In our next result we shall see that instead of supposing that £ possesses the
property (P) we can also assume that F is sluacs™ (resp. luacs™) to come to the
same conclusion.

Proposition 3.6. If (X;)icr is a family of sluacs (resp. luacs) spaces and E is
sluacs™ (resp. luacs®) then [@,;c; Xi] , is also sluacs (resp. luacs).

Proof. Again we only show the sluacs case, the luacs case being analogous.

So fix a sequence (z,,)nen, a point z and a sequence (z7),en of functionals just
like in the proof of the preceding proposition.

As in this very proof we can show

T S gl l] = 1 (3.20)
i€l
and
lim (27, (@ns) = i lllandl) =0 Vi ! (3:21)
as well as
i [zl + iliesl = 2 (3.22)
and
Tim Yl = 1. (3.23)
iel

Also as in the proof of Proposition 3.5 we can see

it (s + il + et = 3 (3:24)
and
i [[ (s ]+ sl + 3l il = . (3:25)

Since E is sluacs™ it follows from (3.24), (3.25) and (3.23) (with the usual nor-
malisation arguments) that

Jim Sl (s + 2l + llzail) = 3

i€l
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Together with (3.20) we get

Timn Sl (s + il = ol = [zl = 0

icl
and hence
i [l | ([[ns +2il| = [zl = llz:l)) = 0 Vi e L. (3.26)
Next we show that
Tim (2,4 (x) — |l l])) =0 Vie T (3.27)

To see this we fix ip € I with z;, # 0. If ||, || — 0 the statement is clear.
Otherwise there is some ¢ > 0 such that ||z, || > e for infinitely many n.
Without loss of generality we may assume that this inequality holds for every
n € N.

For each n € N we put a,; = ||z} ;| for i € I'\ {io} and a,; = 0. Then
(@n,i)icr € Bpr for every n.

16 ds 132 5e s (@ns — 2 D lznilll = g i 1m0l < llnio -

So if ||74,4, || — 0 then by (3.20) we would also have limy, o0 Y ;e @njil|Tnil| = 1.

But since E is a sluacs™ space this together with (3.22) would also imply
limy, 00 Y ies @nill2i|| = 1, which in turn implies (because of (3.23)) ||z}, ;. [[l|74 || =
2 ier(an — [l s[Dll|| = 0, where on the other hand ||z, ;, [[[[zio[| = &]|zio[] > 0
for all n € N, a contradiction.

So we must have ||z, | 7 0 and hence there is some 6 > 0 such that ||z, ;| > 0
for infinitely many (say for all) n € N.

Now since (||7}, ;. ||)nen is bounded away from zero (3.26) gives us that

Ap i

T (i + 2ll = 70| = i) = 0.

Because (||Zn,i, || nen is bounded away from zero as well, this together with Lemma
2.30 tells us that

Ln,ig 1 Lig
12 ioll il
Using (3.21) and the fact that X, is sluacs we now get the desired conclusion.

Now that we have established (3.27), the rest of the proof can be carried out

exactly as in Proposition 3.5. 0

=2.

lim
n—oo

The next two propositions deal with sums of luacs™ and sluacs™ spaces.

Proposition 3.7. If (X;)ics is a family of luacs® spaces and E is luacs™ and has
the property (P) then [@iel Xi]E is also a luacs™ space.

Proof. By Proposition 3.6 (or Proposition 3.5) we already know that the space
[D,c; Xi] , is luacs.

Now take a sequence (z,)n,eny and an element x = (x;);es in the unit sphere of
[D,c; Xi] , such that ||z, + z|| — 2 and a functional z* = (z});e; of norm one
with 2*(x) = 1. Write ,, = (2,,;)ies for al n € N.
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As in the proof of Proposition 3.3 it follows from z*(z) = 1 that
7;(z;) = |ailll|l Vi € T and Y [la7l|z]) = 1 (3.28)
iel
and as in the proof of Proposition 3.5 one can show that

i [l + il = 2 (3:29)

Since E is luacs™ it follows from (3.29) and the second part of (3.28) that we also
have

Tim i = 1 (3.30)

iel
Because E has property (P) it also follows from (3.29) that
nh_}rrolonmH = ||z;|| Viel. (3.31)
Exactly as in the proof of Proposition 3.5 we can see
nh_}n(;loﬂa:m + ;|| = 2||x;|| Vi€l (3.32)

Since each X; is luacs®™ we infer from (3.32), (3.31) and the first part of (3.28)
that

lim z}(z,,) = ||xf||||zi|| Viel. (3.33)
n—oo

Now take an arbitrary € > 0 and fix a finite subset J C I such that

<e. (3.34)

E

ZH%‘H&‘ = (lzil)ier

ieJ
From (3.28), (3.30) and (3.31) it follows that

T 3 el = 3 ]

i€\J i€\J

and by (3.33) we also have
tim Y () = 3l
ieJ ieJ

Hence there is some ng € N such that

> @ (xas) = lilllll)] < e and (3.35)
i€J

Dl Qlnall = llzal)| < & ¥n > no. (3.36)
eI\J
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But then we have for every n > ng

* (3.28) * *
[ (@) = 1] =" | (@5 (2a) — ll2F | l:l)

i€l

(3.35)

< et | Y @i (wag) = gl )

ieI\J
et Y M7l lznll + llzl)
i€l\J

(3-36) (3.34)

< 242) |lzllal < de.

i€l\J
Thus we have z*(x,) — 1 and the proof is finished. O

Proposition 3.8. If (X;)ic; is a family of sluacs™ (resp. luacs®™) spaces and E
is sluacs® then [@ig XZ»]E is sluacst (resp. luacs®) as well.

Proof. Suppose all the X; and E are sluacs™. Then by Proposition 3.6 [@iel Xz} 5
is sluacs.

Now take sequences (z,)neny and (z%),en in the unit sphere and in the dual
unit sphere of [@le I Xi] 5 tespectively, as well as another element z = (z;)ic; in
[D,c; Xi] , of norm one such that ||z, 4+ ||, — 2 and z}(z) — 1.

As usual we write 2, = (Zn)ics and x;, = (27, ;)ics for every n € N.

Much as we have done before we can show that

lim (a7,5(2:) = [l llli]]) =0 Vi € Tand Tim > o ifllall =1 (3.37)
n—00 ’ ’ n—00 Py )

as well as

Tinn [l + sl = 2 (3.38)

It follows from (3.38), the second part of (3.37), and the fact that E is sluacs™
that

Tim Sl = 1 (3.39)

iel
As in the proof of Proposition 3.6 we see that

i [ | ([[ns + ll = [zl = [lz:ll) = 0 Vi e L. (3.40)

Now using an argument analogous to that in the proof of Proposition 3.6 shows

lim (2} (2n) — |25 ]l[|znill) =0 Vie L (3.41)

n—oo
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Put by = (|zl))ier — D ;esllzilles and cn ;= D2, l|7; ;lleq for every n € N and
every finite subset J C I. Then for every n and J we have

D Ml — 1

[ena(([ilier) = 1 =

ieJ
<D Maallllall] + | Dl il llill = 1
iel\J i€l
< lballg + Dl ol llill =1 - (3.42)
i€l
Now take any € > 0. Because E is sluacs™ there is some § > 0 such that
a < SE, g € Bg« with Ha+ (”le)ZGIHE >2—90
and g((||zi]])ier) > 1 -0 = g(a) >1—c¢. (3.43)

Fix a finite subset Jy C I such that ||b,| < 0/2 and also fix an index ng such
that [l fllasll — 1] < 672 andd (2l + il et > 2 — 6 for all n > g
(which is possible because of (3.37) and (3.38)).

Then (3.42) and (3.43) give us

Cndo ((|Zn,ill)ier) ZHxnzHHxnl” >1—¢ Vn = ny. (3.44)

i€Jo

By (3.41) we may also assume that

> (@) =l lllznal)

i€Jp

<e VYn>ny. (3.45)

Then for every n > ng we have

= >l il

> (@) = Nl llznsl)

el icl
(3.45) . )
< et | Y (ahi@ag) = ek illllenll)
iEI\Jo

(3.44)
<e+2 Y ah il < 3e

€I\ Jo

Thus 2 (2n) = >/ ll2 il [|2n,i|| — 0 which together with (3.39) implies 7, (z,,) —
1.
The proof for the luacs™ case can be done in a very similar fashion. O

In our next result we consider sums of wuacs and luacs’ spaces for the case
that E does not contain ¢*.
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Proposition 3.9. If (X;)icr is a family of wuacs (resp. luacs™) spaces and if
E is wuacs (resp. luacs®) and does not contain an isomorphic copy of £* then
(Bic; XJE is also wuacs (resp. luacs™).

Proof. Let us suppose that E and all the X; are wuacs and fix two sequences
(Zn)nen and (yn)nen in the unit sphere of [@zel ] as well as a norm one
functional 2* = (27)ie; on [P;c; Xi] , such that |z, +ya |z = 2 and z*(2,) — 1.
Write ©,, = (2,4)ier and yn = (Yn,i)ier for each n.

As we have often done before we deduce

Tim (25 () — 25 lzai) = 0 Vi € T and T Sz llzad =1 (3.46)

icl
and
T [l + s il = 2 (3.47)
as well as
nh_{lolo H(“mn,z t Yn,i ,'“)iEIHE =4 (3'48)
Since E' is wuacs (3.47) and the second part of (3.46) imply
tim 3l = 1. (3.49)

i€l
Applying again the fact that F is wuacs together with (3.48), (3.49) and the
second part of (3.46) gives us

T S | (il + nill = i + i) = 0

iel
and hence
i ] (sl + [l = s+ vusl) =0 Vi€ L (3.50)
Now we can show
T (27 () — ooy = 0 Vi€ 1 (351)

The argument for this is similar to what we have done before but we state it here
for the sake of completeness. Fix 4o € I with xj # 0 and y, 4, / 0. Then there
is 7 > 0 such that ||y, || > 7 for infinitely many (without loss of generality for
all) n € N.

Put a;, = 0 and a; = ||z}|| for every i € I\ {ip}. If ||z 4] — O then because
of the second part of (3.46) it would follow that limy, o > ;c; @il|Znl| =1

Since E is wuacs this together with (3.47) would imply that we also have
limy, o0 D ser @il|Ynil| = 1 which because (3.49) would give us ||z ||[|4ni|| — 0, a
contradiction.

Hence there must be some ¢ > 0 such that ||z, | > d for infinitely many (say
for every) n € N.

Now since the sequences (||| )nen and ( Jnen are bounded away from
zero it follows from (3.46), (3. o() and Lemma 2.30 that

T n,i ‘T;k Tn,i
10 yoH—Qand lim 0 ( ’O)zl.

[[Yn.io nvoe [l [\l 5|

lim
n—oo

ioll
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Since X;, is wuacs this implies our desired conclusion.
Now we fix any € > 0. Because /! € E by Lemma 3.2 there must be some
finite set J C I such that

‘ (lz71)ier = D _llaflles]| <. (3.52)
ieJ E
By (3.51) we can find some ny € N such that
> @ W) = i llynill)| <& ¥n > no. (3.53)
ieJ

We then have for every n > nyg

(3.53)
< e | D (@ (i) = i ynal)
eI\J

2 (ya) = D l=F 1yl

iel

(3.52)
<e+2 ) |laflllynll < 3e.

iel\J

So we have z*(yn) — D> i/ ll@iIlynill — 0. From (3.49) it now follows that
x*(yn) — 1.
The luacs™ case is proved analogously. O

Note that the above Proposition especially applies to the case that E is WUR
because a WUR space cannot contain an isomorphic copy of ¢! (cf. [29, Remark
4]). Frankly, the author does not know whether a wuacs space can contain an
isomorphic copy of ¢! at all, but at least it cannot contain particularly “good”
copies of ¢! in the following sense (introduced in [12]).

Definition 3.10. A Banach space X is said to contain an asymptotically iso-
metric copy of ! if there is a sequence (2, )neny in Bx and a decreasing sequence
(€n)nen in [0, 1] with &, — 0 such that for each m € N and all scalars ay, ..., a,,

we have
m m m
> —eail < || <D ail.
1=1 =1 =1

Likewise, X is said to contain an asymptotically isomorphic copy of ¢y if there
are two such sequences (x,)nen and (e;,),en which fulfil

m
max (1 —¢g;)]a;] < g a;z;|| < max |a
i=1,....m 1=1,....m
i=1
for each m € N and all scalars aq, ..., ay,.

We then have the following observation.

Proposition 3.11. If the Banach space X is wuacs then it does not contain an
asymptotically isometric copy of (*.
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Proof. Suppose that X contains an asymptotically isometric copy of £!. Then fix
two sequences (Z,)nen and (€, )nen as in the above definition.

We can find o > 1 such that ag, < 1 for every n € N. Put z,, = (1 —ae,) 'z,
for each n. Then for every finite sequence (a;)™, of scalars we have

3w >y 11__;; 0 > S Jal. (3.54)
i=1 i ¢ i=1

1=1

In other words, the operator T': ¢! — X defined by T((an)nen) = Y ey Andn 18
an isomorphism onto its range U = ran T with ||[T7']| < 1.

Define (b, )pen € £ = (£1)* by b, = 1 if n is even and b, = 0 if n is odd. Then
u* = (T7')*((bp)nen) € By~. Take a Hahn-Banach extension z* of u* to X.

Note that because of (3.54) we have in particular ||Z,| > 1 for every n and on
the other hand ||z, < (1 — ae,)™" and &, — 0, hence ||z, || — 1. Again because
of (3.54) we have ||z, + Zp41]] > 2 for every n. It follows that ||Z,, + Zpi1|| — 2
and thus in particular ||Ze, + Zoni1]| — 2.

But we also have x*(Zs,) = u*(Z2,) = be, = 1 and likewise 2*(Zo,,41) = bopi1 =
0 for every n and hence X cannot be a wuacs space. O

m

>
T
1—0&81' ‘

i=1

If the space X contains an asymptotically isometric copy of ¢y then by [12,
Theorem 2] X* contains an asymptotically isometric copy of ¢! and thus we get
the following corollary.

Corollary 3.12. If X is a Banach space whose dual X* is wuacs then X does
not contain an asymptotically isometric copy of cy.

We also remark that since ¢7(I) is UR for every 1 < p < oo we can obtain the
following corollary from our above results.

Corollary 3.13. If (X;):es is a family of Banach space such that each X; is acs
resp. luacs resp. luacs™ resp. sluacs resp. sluacs®™ resp. wuacs then [@ig X,»L)

is also acs resp. luacs resp. luacs™ resp. sluacs resp. sluacst resp. wuacs for

every 1 < p < oo.

Now we turn to sums of uacs spaces. We first consider sums of finitely many
spaces. In fact, this has been done before in [I1] (for two summands) and in
[23] (for finitely many summands) in the context of U-spaces and the so called
-direct sums. However, we include a sketch of our own slightly different proof
here, for the sake of completeness.

Proposition 3.14. If I is a finite set, (X;)icr a family of uwacs Banach spaces
and || . || 5 is an absolute normalized norm on R! such that E := (RY,||.||) is acs
then [@iel Xi]E s also a uacs space.

Proof. First note that since E is finite-dimensional it is actually uacs. Now if
we take two sequences (x,)nen and (y,)nen in the unit sphere of [@iel XZ-} 5
and a sequence (z)nen in the dual unit sphere such that ||z, + y,|z — 2 and
xf(z,) — 1 then we can show just as we have done before that

T S gl l] = 1 (3.55)

i€l
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and
lim (2} ;(@n) — |25 ;| |znal]) =0 Vie I (3.56)
n—00 ’ ’
as well as
s [l + lomller s = 2 (357)
and
T ([([[ans +ynall + [[2nll + l[ynil )it p = 4. (3.58)
Since E is uacs it follows from (3.55) and (3.57) that
Tim Yl llynall = 1. (3.59)
iel
Again, since F is uacs it follows from (3.55), (3.59) and (3.58) that
i | (Rl + [all = 2i +9mil) =0 Vi€ I (3.60)

Now using (3.60), Lemma 2.30, (3.55), (3.59), (3.56), the fact that each X; is
uacs and an argument similar the one used in the proof of Proposition 3.9 we can
infer that

T (27,5mi) — il lmil]) =0 Vi€ 1

Since I is finite it follows that @} (yn) — > i/ l17 il [|Yn,ill — 0 which together with
(3.59) gives us x}(y,) — 1 and the proof is over. O

Before we can come to the study of absolute sums of infinitely many uacs spaces
we have to introduce one more definition.

Definition 3.15. The space E is said to have the property (u™) if for every e > 0
there is some § > 0 such that for all (a;)er, (b;)icr € Sg and each (¢;)ier € Spr =
Sg+ we have

> aiei=1and |[(a; + b)iesllp > 201 —08) = > leilla; — b <e.

icl iel
Clearly, if E is UR then it has property (u") and the property (u™) in turn
implies that E is uacs. Unfortunately, the author does not know whether these
impliactions are strict.

Now we can formulate and prove the following theorem, which is an analogue
of Day’s results on sums of UR spaces from [5, Theorem 3] (for the ¢P-case) and
[0, Theorem 3] (for the general case). Also, its proof is just a slight modification
of Day’s technique.

Theorem 3.16. If (X;)cr is a family of Banach spaces such that for every 0 <
e < 2 we have §(g) := inf;c; 0 () > 0 and if the space E has the property (u™)

uacs

then [@,c; Xi] , is also uacs.

Proof. As in [5] and [0] the proof is divided into two steps. In the first step we
show that for every 0 < ¢ < 2 there is some 1 > 0 such that for any two elements
© = (2:)ier and y = (yi)ies of the unit sphere of [P, X;], with ||lz;]| = ||y
for every ¢ € I and each functional z* = (2});e; with ||2*||p = 2*(xz) = 1 and
z*(y) <1 —¢ we have ||z +y|z <2(1 —n).
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So let 0 < ¢ < 2 be arbitrary. Since E is uacs there exists some 1 > 0 such
that

g 19
a,b€ Byl € Bg-.l(a) = L and I(B) < 1= =5 (5)

= |la+0b|z <2(1—n). (3.61)
We claim that this n fulfils our requirement. To show this, fix x,y and z* as
above and put §; = ||z;|| = ||lwill, vi = ||=f|| and v; = v;8; — 2} (y;) for each i € I.
Then we have
From 2*() = 1 = [l2”]| . = |12l we get
iel
Next we define
80 (35) it >0
a; =420 \ws) BT (3.64)
From the definition of the §.%i.. and the second part of (3.63) it easily follows that

By (3.62) and the first part of (3.63) we have ). ;v <2 and further it is

e<l—a'(y)=a"(w—y) =Y ai(ri—y) <D

iel i€l
thus
e<y wm<2 (3.66)
el
Now put A={i € [:2vy; > cy;5;} and B =1\ A. Then we get
€ € (3.63) €
Z%‘ < 5 Z%ﬁz < B Z%ﬁz = 5 (3.67)
i€eB i€eB iel

From (3.66) and (3.67) it follows that

=Y -y (3.68)

icA i€l i€B
Using (3.62) and (3.68) we now get

N Z. (3.69)

icA
Write t = (8;x5(1))icr and ' = (Bixa(?))icr, where xp and x4 denote the char-
acteristic function of B and A respectively. Then ¢, € Bp (by Lemma 3.1)
and t +t' = (B;)ies. We also put t” = (1 — §(¢/2))t’. Again by Lemma 3.1 we
have ||t +t"||; < ||t + 1|z = 1. Further, I = (v;);es defines an element of Sg-
such that I(t +t') = >, ., viffi = 1 (by (3.63)) and I(t +t") = 1 —6(/2)I(t') =
1 —6(/2) > ,c 4 vif3i and hence (by (3.69))

(t+1) <1- 25 @) .
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Thus we can apply (3.61) to deduce

1 1
—|2t+t'+t"p=|t+[1—=9 (5) | <1-n. (3.70)
2 2 \2 5
Since ¢ is obviously an increasing function we also have
1 _ /e
i=56(2) viea 71
@ 2 503 Vi € (3.71)

Now we can conclude (with the aid of Lemma 3.1)

(3.65)
[z +yllp = (2 + vil)ierll - < 2[1((1 = 2)B)ierll 5

(3.71) 1
< 2 ‘ ((1 - 50 (%)) Bixali) + 5iXB(i))iEI ;
1 (3.70)
:2“(1—55(3))5“ = 2(1—n),

finishing the first step of the proof. Note that so far we have only used the fact
that E is uacs and not the property (u™).

Now for the second step we fix 0 < £ < 2 and choose an 1 > 0 to the value £/2
according to step one. Then we take 0 < v < 21/3. Since E is uacs we can find
7 > 0 such that

a,b € Bg,l € Bg+,l(a) >1—7 and |la+b|; > 2(1 —7)
= I(b)>1-w. (3.72)

Next we fix 0 < o < min{e/2,27,v}. Now we can find a number 7 > 0 to the
value « according to the definition of the property (u™) (Definition 3.15). Finally,
we take 0 < ¢ < min {7,7}.

Now suppose © = (2;)i;er and y = (y;)ies are elements of the unit sphere of
[@D,c; Xi], and z* = (2})ies is an element of the dual unit sphere such that
|z +yllp > 2(1 —¢§) and z*(z) = 1. We will show that z*(y) > 1 —e.

To do so, we define

lzill , 5 o0
2= Y ity 70 (3.73)
Then we have
zill = llill and flzi — wall = [Nl = [lwll| Vi € 1. (3.74)
As before we can see that ), |lz7||||lz;]] = 1 and further we have 2(1 — 7) <

2(1 = &) < [l +yllp < Izl + llwillies |l -
Thus we get from the choice of 7 that

x (3.74) x
D olzillz =gl =l el = llwll] < o (3.75)
i€l iel
Further, we have

[Cllsll + Nlyill + |z + vil)ierll g = 2l + yllp = 4(1 =€) = 4(1 —7)
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and

Dol lall + llyal) = 1+ >l il

i€l il

> 1+ llz7lllwall = D llF Il = il

iel i€l

(3.75)
=2 Jlzil Izl = lwll > 2—a>2(1-7).

iel

Hence we can conclude from (3.72) that

D Nl +yll > 2(1 = v). (3.76)

el

Using (3.75) and (3.76) we get

lz+2llp = Y il + 2l = Yl s+ wall = Y laillllys — =)
il il iel
>2(1—v)—a>2(1-n)

and thus the choice of n implies 2*(z) > 1 — /2. But from (3.75) it also follows
that |2*(y) — 2*(2)| < @ and hence z*(y) > 1 —¢/2 —a>1—«¢. O]

Because of the uniform rotundity of /(1) for 1 < p < oo we have the following
corollary.

Corollary 3.17. If (X;)ier is a family of Banach spaces such that for every
0 < & < 2 we have infie; 6s(€) > 0 then [, Xi]p is also uacs for every
1 <p<oo.

We can also get a more general corollary for a US space E.

Corollary 3.18. If (X;)icr is a family of Banach spaces such that for every
0 <& <2 we have §(¢) := infie; Opges(€) > 0 and if E is US then [@,.; Xi] , is

uacs
also a uacs space.

Proof. Since F is US it is reflexive and hence it cannot contain an isomorpic copy
of ¢*. Thus by Lemma 3.2 span {e; : i € I} is dense in E'.

Further, since E is US the dual space E* = E’ is UR, as already mentioned
in the introduction. Because the spaces X; are uacs they are also reflexive
and hence Proposition 2.12 and the monotonicity of the functions dXi_ gives

uacs

us inf;es (51)12{35(5) > §(0(g)) > 0 for every 0 < ¢ < 2. So by Theorem 3.16 the
space (@, X/, = [Bics XJ*E is uacs and hence [@,.; X;], is also uacs by
Proposition 2.12. O

Finally, we summarise all the results on absolute sums we have obtained in this
section in the following table.
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11.

12.

13.
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TABLE 1. Summary of the results

E X [@z‘el Xi} E
acs acs acs
luacs + (P) luacs luacs
luacs™ luacs luacs
luacs™ + (P) luacs™ luacs™
luacs™ + (' ¢ E luacs™ luacs™
sluacs + (P) sluacs sluacs
sluacs™ sluacs sluacs
sluacs™ luacs™ luacs™
sluacs™ sluacs™ sluacs™
wuacs + (' € E wuacs wuacs
acs + [ finite uacs uacs
(ut) infier 6% >0 uacs
US infic; 65 >0 uacs
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