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Abstract. Let H be an infinite dimensional complex Hilbert space and let φ
be a surjective linear map on B(H) with φ(I)−I ∈ K(H), where K(H) denotes
the closed ideal of all compact operators on H. If φ preserves the set of upper
semi-Weyl operators and the set of all normal eigenvalues in both directions,
then φ is an automorphism of the algebra B(H). Also the relation between
the linear maps preserving the set of upper semi-Weyl operators and the linear
maps preserving the set of left invertible operators is considered.

1. Introduction and preliminaries

Let H be an infinite dimensional complex Hilbert space and B(H) the algebra of
all bounded linear operators on H and K(H) ⊆ B(H) be the closed ideal of all
compact operators. We write T ∗ for the conjugate operator of T ∈ B(H). An
operator T ∈ B(H) is called upper semi-Fredholm if it has closed range R(T )
with finite dimensional null space N(T ) and if R(T ) has finite co-dimension,
T ∈ B(H) is called a lower semi-Fredholm operator. We call T ∈ B(H) Fredholm
if it has closed range with finite dimensional null space and its range of finite
co-dimension. For a semi-Fredholm operator T ∈ B(H) (upper semi-Fredholm
operator or lower semi-Fredholm operator), let n(T ) = dimN(T ) and d(T ) =
dimH/R(T ) = codimR(T ). The index of a semi-Fredholm operator T ∈ B(H) is
given by ind(T ) = n(T )−d(T ). The operator T is Weyl if it is Fredholm of index
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zero; T is called Browder if T is Fredholm with finite ascent and finite descent;
T ∈ B(H) is called upper semi-Weyl if T is upper semi-Fredholm with ind(T ) ≤ 0.
Let SF−

+ (H) denote the set of all upper semi-Weyl operators and let σea(T ) =
{λ ∈ C : T − λI /∈ SF−

+ (H)} be the essential approximate point spectrum of
T . σ(T ), σe(T ), σSF+(T ), σSF−(T ), σw(T ) and σb(T ) denote the spectrum, the
essential spectrum, the upper semi-Fredholm spectrum, the lower semi-Fredholm
spectrum, the Weyl spectrum and the Browder spectrum respectively ([8, 9]).
Let σ0(T ) = σ(T )\σb(T ) denote the set of all normal eigenvalues.

Let Φ(H) ⊆ B(H) be the set of all Fredholm operators. We denote the Calkin
algebra B(H)/K(H) by C(H). Let π : B(H) → C(H) be the quotient map.
A bijective linear map φ : B(H) → B(H) is called a Jordan isomorphism if
φ(A2) = (φ(A))2 for every A ∈ B(H), or equivalently φ(AB+BA) = φ(A)φ(B)+
φ(B)φ(A) for all A and B in B(H). It is obvious that every isomorphism and
every anti-isomorphism is a Jordan isomorphism. For further properties of Jordan
homomorphisms, we refer the reader to [10] and [11].

In the last two decades there has been considerable interest in the so-called
linear preserver problems (see [1, 5, 16]). The goal of studying linear preservers
is to give structural characterizations of linear maps on algebras having some
special properties such as leaving invariant a certain subset of the algebra, or
leaving invariant a certain function on the algebra. One of the most famous
problem in this direction is Kaplansky’s problem([13]): Let φ be a surjective
linear map between two semi-simple Banach algebras A and B. Suppose that
σ(φ(x)) = σ(x) for all x ∈ A. Is it true that φ is Jordan isomorphism? This
problem was first solved in the finite dimensional case. J.Dieudonně ([7]) and
Marcus and Purves ([15]) proved that every unital invertibility preserving linear
map on a complex matrix algebra is either an inner automorphism or a linear anti-
automorphism. This result was later extended to the algebra of all bounded linear
operators on a Banach space by A.R.Sourour([22]) and to von Neumann algebra
by B.Aupetit([1]). Many other linear preserver problems have been extended to
the infinite dimensional case. For the most significant partial obtained in this
direction, we refer the reader to ([1, 18, 22, 23]). New contributions to the study
of linear preserver problem in B(H) have been recently made by Mbekhta in [17],
Mbekhta, Rodman and Šemrl in [18], Mbekhta and Šemrl in [16] and Bendaoud,
Bourhim and Sarih in [4].

In this article, we give the characterization of automorphism on B(H). We get
that: Let φ be a surjective linear maps on B(H) with φ(I)−I ∈ K(H) preserving
the set of upper semi-Weyl operators and the set of all normal eigenvalues in both
directions, then φ is an automorphism of the algebra B(H). Also the relation
between the linear maps preserving the set of upper semi-Weyl operators and the
linear maps preserving the set of left invertible operators is considered.

2. Main results

An operator is left invertible if it has a left inverse. It turns out that an operator
T ∈ B(H) is left invertible if and only if it is bounded below, or equivalently,
it is upper semi-Fredholm with n(T ) = 0. Let σa(T ) = {λ ∈ C : T − λI is
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not left invertible}. We say that a linear map φ : B(H) → B(H) preserves the
set of upper semi-Weyl operators (left invertible operators) in both directions if
T ∈ SF−

+ (H) (T is left invertible)⇔φ(T ) ∈ SF−
+ (H) (φ(T ) is left invertible).

A linear map φ : B(H) → B(H) is said to be surjective up to compact operators
if for every T ∈ B(H) there exists T ′ ∈ B(H) such that T − φ(T ′) ∈ K(H). It is
clear that if φ is surjective, then it is surjective up to compact operators.

Remark 2.1. (1) If a linear map φ : B(H) → B(H) preserves the set of upper
semi-Weyl operators in both directions, we can not induce that φ preserves the
set of left invertible operators in both directions. For example, let A, B ∈ B(`2)
be defined by:

A(x1, x2, x3, · · · ) = (x2, x3, · · · ),
B(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),

and let φ(T ) = ATB, T ∈ B(`2). We can see that both A and B are Fredholm
operators, and ind(A) + ind(B) = 0. By the properties of the index it follows
that T ∈ SF−

+ (B(`2)) if and only if φ(T ) ∈ SF−
+ (B(`2)). For any T ∈ B(`2),

let T1 = BTA, then φ(T1) = T . Thus φ : B(`2) → B(`2) is surjective and φ
preserves the set of upper semi-Weyl operators in both directions. But φ does
not preserve the set of left invertible operators in both directions. In fact, for an
operator T ∈ B(`2) defined by:

T (x1, x2, x3, · · · ) = (x2 − x1, x2 − x1, x3, x4 · · · ),
we can find that φ(T ) = I is left invertible but T is not left invertible.

(2) If a linear map φ : B(H) → B(H) preserves the set of left invertible
operators in both directions, we can not induce that φ preserves the set of upper
semi-Weyl operators in both directions. For example, let A ∈ B(`2) be defined
by:

A(x1, x2, x3, · · · ) = (0, 0, x1, x2, · · · ),
B ∈ B(`2) is invertible and let φ(T ) = ATB, T ∈ B(`2). We can see that A is
left invertible, there exists A1 ∈ B(`2) such that A1A = I. Since A ∈ B(`2) is
Fredholm, there are A2 ∈ B(`2) and a compact operator K0 satisfying AA2 =
I + K0. For any T ∈ B(`2), let T0 = A2TB−1 and K = −K0T . Then K is
compact and T = φ(T0) + K, which means that φ is surjective up to compact
operators. For any left invertible operator T ∈ B(`2), suppose that T1T = I.
Then B−1T1A1φ(T ) = I, this shows that φ(T ) is left invertible. For the converse,
if φ(T ) is left invertible and suppose Dφ(T ) = I. Then BDAT = BDATBB−1 =
BDφ(T )B−1 = BB−1 = I, thus T ∈ B(`2) is left invertible. It follows that φ
preserves the set of left invertible operators in both directions. But φ does not
preserve the set of upper semi-Weyl operators in both directions. In fact, let
T ∈ B(`2) be defined as T (x1, x2, x3, · · · ) = (x2, x3, · · · ), then φ(T ) is upper
semi-Weyl with ind(φ(T )) = ind(A) + ind(T ) + ind(B) = −2 + 1 + 0 = −2 but
T is not upper semi-Weyl.

It is well known that the set of left invertible operators is a subset of SF−
+ (H),

we need to study the relation between the linear maps preserving the set of upper
semi-Weyl operators and the linear maps preserving the set of left invertible
operators. Let’s begin with a Theorem.
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Theorem 2.2. Let φ : B(H) → B(H) be a surjective linear map preserving
upper semi-Weyl operators in both directions and φ(I) − I ∈ K(H). If σ0(K) =
σ0(φ(K)) for any Riesz operator K, then there is an invertible linear operator
A ∈ B(H) such that φ(T ) = ATA−1 for any T ∈ B(H).

Proof. We will prove the Theorem by seven steps:
(i) For any T ∈ B(H), σea(T ) = σea(φ(T )).
Let φ(I) = I + K, where K ∈ K(H). Since T − λI ∈ SF−

+ (H)⇔ φ(T − λI) =
φ(T ) − λφ(I) = φ(T ) − λI − λK ∈ SF−

+ (H) ⇔φ(T ) − λI ∈ SF−
+ (H), it follows

that σea(T ) = σea(φ(T )) for any T ∈ B(H).
(ii) φ preserves compact operators in both directions.
First we claim that

K(H) = {K ∈ B(H) : K + SF−
+ (H) ∈ SF−

+ (H)}

= {K ∈ B(H) : σea(T + K) = σea(T ) for all T ∈ B(H)}.
From the stability properties of index function, it is clear that K(H) ⊆ {K ∈
B(H) : K+SF−

+ (H) ∈ SF−
+ (H)}= {K ∈ B(H) : σea(T +K) = σea(T ) for all T ∈

B(H)}.
Let ∂E and ηE denote the boundary and the polynomial convex hull of a

compact subset E of C respectively. For any T ∈ B(H), since

∂σw(T ) ⊆ ∂σe(T ) ⊆ σe(T ) ⊆ σw(T ) and ∂σw(T ) ⊆ ∂σea(T ) ⊆ σea(T ) ⊆ σw(T ),

it follows that ησea(T ) = ησw(T ) = ησe(T ).
Now, let K ∈ B(H) such that σea(T +K) = σea(T ) for all T ∈ B(H). Then by

Theorem 5.3.1 in [2], ησe(T +K) = ησe(T ) for all T ∈ B(H). Taking into account
the semisimplicity of C(H) and the spectral characterization of the radical, it is
not difficult to prove that the K(H) = {K ∈ B(H) : K + SF−

+ (H) ∈ SF−
+ (H)}=

{K ∈ B(H) : σea(T + K) = σea(T ) for all T ∈ B(H)}.
Let K ∈ K(H), for any T ∈ SF−

+ (H), since φ preserves upper semi-Weyl
operators in both directions, there exists T ′ ∈ SF−

+ (H) for which T = φ(T ′).
Hence T + φ(K) = φ(T ′) + φ(K) = φ(T ′ + K) ∈ SF−

+ (H). Then φ(K) ∈ K(H).
For the converse, let φ(K) ∈ K(H), for any T ∈ SF−

+ (H), φ(T + K) = φ(T ) +
φ(K) ∈ SF−

+ (H), then T + K ∈ SF−
+ (H). It follows that K ∈ K(H). Now we

prove that φ preserves compact operators in both directions.
Since φ preserves compact operators in both directions, it follows that σ(K) =

{0} ∪ σ0(K) = {0} ∪ σ0(φ(K)) = σ(φ(K)) for any compact operator K.
(iii) N(φ) ⊆ K(H).
If K ∈ N(φ) and T ∈ SF−

+ (H), then φ(T + K) = φ(T ) ∈ SF−
+ (H). Thus for

all T ∈ SF−
+ (H), T + K ∈ SF−

+ (H). Thus K ∈ K(H).
(iv) Let ϕ : C(H) → C(H) be an induced linear map such that φ ◦ π = π ◦ φ,

then ϕ is isomorphism.
φ induces a linear map ϕ : C(H) → C(H) such that ϕ ◦ π = π ◦ φ. Clearly,

ϕ is surjective since φ is surjective. By hypothesis and (ii), ϕ is ησ-preserving.
From Corollary 2.3 in [5], ϕ is injective, and by Theorem 3.1 in [5], ϕ is either a
homomorphism or an anti-homomorphism.
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First we will prove that φ preserves upper semi-Fredholm operators in both
directions. By Theorem 2.1 in [17], we know that φ preserves Fredholm operators
in both directions. Let T ∈ B(H) be an upper semi-Fredholm, there are two
cases to consider: d(T ) = ∞ and d(T ) < ∞. If d(T ) = ∞, using the fact that
φ is a linear map preserving upper semi-Weyl operators in both directions, we
know that φ(T ) is upper semi-Fredholm. If d(T ) < ∞, then T is Fredholm,
thus φ(T ) is Fredholm since φ preserves Fredholm operators in both directions.
Using the same way, we can prove that T is upper semi-Fredholm if φ(T ) is upper
semi-Fredholm. By Corollary 3.6 in [3], ϕ is an isomorphism.

As φ preserves the essential spectrum, from Theorem 3.3 in [17] we deduce that
ind(φ(T )) = ind(T ) or ind(φ(T )) = −ind(T ) for every Fredholm operator T ∈
B(H). Since φ preserves upper semi-Weyl operators in both directions, it follows
that ind(φ(T )) · ind(T ) ≥ 0 for any T ∈ Φ(H). Thus ind(φ(T )) = ind(T ) for
any T ∈ Φ(H). Also we can prove that ind(φ(T )) = ind(T ) for any upper semi-
Fredholm operator T ∈ B(H). For lower semi-Fredholm operator T ∈ B(H), we
also have ind(φ(T )) = ind(T ). In fact, since ϕ is an isomorphism, by Corollary
3.6 in [3], φ preserves lower semi-Fredholm operators in both directions. Let
T ∈ B(H) be a lower semi-Fredholm operator, then φ(T ) is a lower semi-Fredholm
operator. There are also two cases to consider: n(T ) = ∞ and n(T ) < ∞. If
n(T ) = ∞, using the fact that φ is a linear map preserving Fredholm operators in
both directions, we know that n(φ(T )) = ∞, then ind(φ(T )) = ind(T ) = ∞. If
n(T ) < ∞, then T is Fredholm, thus φ(T ) is Fredholm since φ preserves Fredholm
operators in both directions. Then ind(φ(T )) = ind(T ) again.

(v) φ is injective.
If φ(T ) = 0, then T is compact and hence σ(T ) = {0} ∪ σ0(T ) = {0} ∪

σ0(φ(T )) = {0} since σ0(φ(T )) = ∅. This means that T is quasinipotent. Assume
that T 6= 0, we can find x ∈ H such that Tx = y 6= 0. Clearly, x and y are linear
independent. Define a nilpotent operator N ∈ B(H) by:

Nx = x− y, Ny = x− y, Nz = 0, for z ∈ {x, y}⊥.

Then both N and N+T are compact, thus φ(N+T ) = φ(N) is compact. From the
condition we can find σ(T +N) = σ(φ(T +N)), then σ(T +N) = σ(φ(T +N)) =
σ(φ(N)) = σ(N) = {0}, which means that T + N is quasinilpotent. This is in
contraction to the fact that 1 ∈ σ(T + N).

(vi) φ(T ) is an idempotent of rank one if and only if T is an idempotent of
rank one.

Let P ∈ B(H) be an idempotent of rank one and let φ(P ) = Q. Since both
P and Q are compact operators, σ(Q) = σ(P ) = {0, 1}. For any K ∈ F2(H),
where F2(H) denotes the set of all operators in B(H) with rank not greater than
2, there is S ∈ B(H) such that K = φ(S) as φ is surjective. Thus by Theorem 1
in [12] we must have that σ(S +P )∩σ(S +2P ) ⊆ σ(S). Since S +P , S +2P and
S are all compact operators, it follows that σ(S +P ) = σ(φ(S +P )) = σ(K +Q),
σ(S + 2P ) = σ(φ(S + 2P )) = σ(K + 2Q) and σ(S) = σ(φ(S)) = σ(K). Then
σ(K + Q)∩ σ(K + 2Q) ⊆ σ(K). By Lemma 2.2 in [6], we know that rankQ = 1.
This implies that Q satisfies a quadratic polynomial equation p(Q) = 0 ([14]).
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Using the fact that σ(Q) = {0, 1}, we know that p is of the form p(λ) = λ(λ−1).
Then Q2 = Q.

We get that φ preserves idempotent of rank one. The same must be true for
φ−1, and consequently, φ preserves idempotents of rank one in both directions.
According to Proposition 2.6 in [19] there exists either an invertible A ∈ B(H)
such that φ(T ) = ATA−1 for all finite rank operators T ∈ B(H), or a bounded
invertible conjugate-linear operator C on H such that φ(T ) = CT ∗C−1 for every
T ∈ B(H) of finite rank.

(vii) There is an invertible linear operator A ∈ B(H) such that φ(T ) =
ATA−1 for any T ∈ B(H).

Let T ∈ B(H) such that T 2 = 0. Then σ(T ) = {0} and σ0(T ) = ∅. Since
T − λI is Weyl for any λ 6= 0 and φ is a linear map preserving upper semi-Weyl
operators in both directions, it follows that φ(T ) − λI is Weyl for any λ 6= 0.
This implies that φ(T ) is a Riesz operator. For every operator U of rank one, we
know that both T + U and φ(T ) + φ(U) are Riesz operators. Then σ(T + U) =
σ(φ(T ) + φ(U)). By assuming that φ(U) = AUA−1, this can be rewritten as
σ(T + U) = σ(A−1φ(T )A + U) for each rank one operator U . This gives directly
that T = A−1φ(T )A, and hence φ(T ) = ATA−1. Then φ(T ) = ATA−1 for every
T ∈ B(H) by Theorem 2 in [20].

In the second case we show that similarly that φ(T ) = CT ∗C−1 for all T ∈
B(H). It follows from that ind(T ) = ind(φ(T )) if T is Fredholm, we know that
the second case cannot occur. The proof of the Theorem is complete. �

In the proof of Theorem 2.2, we use P.Šemrl’s method in Theorem 4 in [21],
but there are many differences in two proofs.

Similar to the proof of Lemma 1 in [12], we can get that: Let A ∈ B(H). If
σa(T + A) ⊆ σa(T ) for every rank one operator T , then A = 0.

For surjective linear map φ : B(H) → B(H), if σa(T ) ⊆ σa(φ(T )) for any
T ∈ B(H) and σa(T ) = σa(φ(T )) for any Riesz operator T , then φ(I) = I. In
fact, suppose that φ(S) = I. For any rank one operator F , since σa(F +S− I) =
σa(F + S)− 1 ⊆ σa(φ(F ) + φ(S))− 1 = σa(φ(F ) + I)− 1 = σa(φ(F )) = σa(F ),
we know that S − I = 0, then S = I, which means that φ(I) = I. In the
proof of Theorem 2.2, we can see that if φ preserves Riesz operators in both
directions and if σ0(T ) = σ0(φ(T )) for any Riesz operator T , then there exists
either an invertible A ∈ B(H) such that φ(T ) = ATA−1 for every T ∈ B(H), or a
bounded invertible conjugate-linear operator C on H such that φ(T ) = CT ∗C−1

for every T ∈ B(H).

Corollary 2.3. Let φ : B(H) → B(H) be a surjective linear map preserving
upper semi-Weyl operators in both directions. If σa(T ) ⊆ σa(φ(T )) for any T ∈
B(H) and σa(T ) = σa(φ(T )) for any Riesz operator T , then there is an invertible
linear operator A ∈ B(H) such that φ(T ) = ATA−1 for any T ∈ B(H).

Proof. Since φ(I) = I and φ : B(H) → B(H) preserves upper semi-Weyl oper-
ators in both directions, we can prove that φ preserves Riesz operators in both
directions. Then σ(T ) = σa(T ) = σa(φ(T )) = σ(φ(T )) for any Riesz operator T .
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Thus σ0(T ) = σ0(φ(T )) for any Riesz operator T . By Theorem 2.2, the result is
true. �

Corollary 2.4. Let φ : B(H) → B(H) be a surjective linear map. If φ(I)− I ∈
K(H) and σ0(T ) = σ0(φ(T )) for any Riesz operator T ∈ B(H), then the following
statements are equivalent:

(1) σa(T ) = σa(φ(T )) for any T ∈ B(H);
(2) σea(T ) = σea(φ(T )) for any T ∈ B(H);
(3) σe(T ) = σe(φ(T )) and ind(T ) = ind(φ(T )) if T is a Fredholm operator;
(4) σSF+(T ) = σSF+(φ(T )) and ind(T ) = ind(φ(T )) if T is an upper semi-

Fredholm operator;
(5) σSF−(T ) = σSF−(φ(T )) and ind(T ) = ind(φ(T )) if T is a lower semi-

Fredholm operator;
(6) There exists an invertible operator A ∈ B(H) such that φ(T ) = ATA−1

for every T ∈ B(H).

Proof. It follows from Theorem 2.2, Theorem 2.1 in [17], Theorem 4.8 in [3] and
Corollary 3.6 in [3], that (2), (3), (4), (5) and (6) are equivalent. The implication
(6) ⇒ (1) is clear, and the converse can be argued as in Theorem 4 in [21]. �

From the proof of Theorem 4 in [21], we know that if φ : B(H) → B(H) be a
surjective linear map and σa(T ) = σa(φ(T )) for any T ∈ B(H), then (2), (3), (4)
and (5) in Corollary 2.4 are true.

Remark 2.5. In Corollary 2.4, the condition “σ0(T ) = σ0(φ(T )) for any Riesz
operator T ∈ B(H)” is essential. For example, let A, B ∈ B(`2) and φ be
defined as in (1) in Remark 2.1. Then φ : B(H) → B(H) is a surjective linear
map preserving upper semi-Weyl operators in both directions and φ(I) = I,
which means that σea(T ) = σea(φ(T )) for any T ∈ B(H) (from the proof of
Theorem 2.2). Let T0 = BA, then T0(x1, x2, x3, · · · ) = (0, x2, x3, x4, · · · ) and
φ(T0) = I. Since T0 = T 2

0 and φ(T0) is invertible, we can see that 0 ∈ σ0(T0) but
0 /∈ σ0(φ(T0)). Then we can not induce that φ preserves the set of left invertible
operators in both directions from (1) in Remark 2.1.
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