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ABSTRACT. We prove and discuss some power weighted Hardy-type inequali-
ties on finite and infinite sets. In particular, it is proved that these inequalities
are equivalent because they can all be reduced to an elementary inequality,
which can be proved by Jensen inequality. Moreover, the corresponding limit
(Pélya—Knopp type) inequalities and equivalence theorem are proved. All con-
stants in these inequalities are sharp.

1. INTRODUCTION

The study of what is today known as the classical Hardy inequality began in
1915 in an attempt by Hardy to find a new and more elementary proof of Hilbert
inequality. In this process Hardy [3] in a note published in 1920 announced
(without proof) that if p > 1 and f is a nonnegative p—integrable function on
(0,00), then f is integrable over the interval (0, z) for each positive z and that

/Ooo G /Oxf(t)dt)pd:c < (ﬁ)p/j’ (x)de 4

Inequality (1.1), which is usually called the classical Hardy inequality, was
proved in 1925 by Hardy in [1]. Nowadays a well-known simple fact is that (1.1)

can equivalently via the substitution f(z) = h(xl_%)x_%, be rewritten in the
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/OOO G /Oxh(t)dt)pd?x g/o hP (2 )Cii” (1.2)

and in this form it even holds with equality when p = 1. Observe that inequality
(1.2) can easily be proved by using Jensen inequality and the Fubini theorem. In
this form Hardy inequality is a simple consequence of Jensen inequality but it was
rather surprising that Hardy did not discovered this fact in the dramatic period
of 10 years of research until he finally proved inequality (1.1) in his famous paper
[1] from 1925 (see [0, 15, 10]). In fact, Jensen inequality was available since 1905
(see [8, 9]) and he made use of it in many other situations.

In 1965, Godunova [!] remarked this simple direct way of obtaining Hardy
inequality via that convexity argument. However, Godunova result in [I] (see
also [2]) seems to be fairly little referred to and almost unknown in the western
literature. For this reason, the use of this simple convexity argument to obtain
Hardy-type inequalities was rediscovered independently by Kaijser et al. [11] in
2002 (cf. also [7]). This was the starting point of many new developments of the
subject. After that a great number of results based on this convexity argument
have been presented (see e.g. [10, 14, 17, 18, 19, 20, 21, 22, 23, 24] and the PhD
thesis [13]) and the references cited therein.

Let us just mention the following special case of a recent result in [24]:

form

Theorem 1.1. (a): Let0 <l <oo,peR\A{0} and let f be a nonnegative
and measurable function on (0,1]. Then

/ | (i | f<y)dy>px€dx
< (ﬁ)pfol 7(2)a" {1 - (%)} dz (13)

holds if

(1) p>lie<p—1
or

(ii) p<0, e>p—1.

(b): Let0 <1< oo p € Ry\ {0} and let f be a nonnegative and measurable
function on [, 00]. Then

FCLmf
g(eoﬂ_ >/ e [1_(9 ’ ]d:p (1.4)

holds if

(it) p>1l,eg>p—1
or
(i) p<0,6g<p-—1.
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(c): All the inequalities above (for all parameters €, g and p) are equivalent
to the basic inequality:

[ G o) <t [ow(-9) 5 0

(d): All the inequalities above (i.e. (1.3) - (1.5)) hold in the reversed direc-
tion and are sharp.

Remark 1.2. (1) All the inequalities above hold in the reversed direction and are
sharp for the case 0 < p < 1.

(2) The proof of (1.5) is in fact just a simple application of Jensen inequality
and Fubini theorem.

(3) In particular, by using Theorem 1.1 with [ = co we see that Hardy’s first
”generalization” from 1928 (see []) is not a generalization, in fact it is equivalent
to his original inequality (1.1).

In Section 2 of this paper we prove a multidimensional equivalence theorem
concerning Hardy-type inequalities, which for n = 1 contains Theorem 1.1 (see
Theorem 2.3). Moreover, in Section 3 we prove a limit result (when p — 00) of this
result, which may be regarded as a equivalence between some multidimensional
inequalities of Pélya—Knopp type (see Theorem 3.1).

2. THE MAIN EQUIVALENCE THEOREM CONCERNING MULTIDIMENSIONAL
HARDY-TYPE INEQUALITIES

Here and in the sequel we use the boldhead notation 1 for (Iy,--- ,1,). Corre-
spondingly, (0,1) means the set (0,1;) x (0,l3) x --- x (0,1,), dx = dzydzxy - - - dz,
and u? = (uy - - - u,)P. Before we state the main theorem in this section we need
the following Lemma of independent interest:

Lemma 2.1. Let n € Z, and g be a non-negative and measurable function on
(0,1),0<; <o0,i=1,2,--+ n.

(a): If p>1orp<0, then

151 In 1 1 Tn p dX
[ [ [ ) 2
0 O 1’1-.-1",1 O 0 xl"'ajn

< 1./0h~--/ol"gp<y>f[ (1—%) — (2.1)

=1

(in case p < 0 we assume that g(x) > 0 for 0 < x; < b;).

(b): If 0 < p < 1, then inequality (2.1) holds in the reversed direction.

(c): The constant C' = 1 in (2.1) is sharp in both cases (a) and (b), respec-
tively.

Remark 2.2. For the case n = 1 Lemma 2.1 reduces to Theorem 2.1 in [24].
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Proof. (a) By applying Jensen inequality with the convex function ¢(u) = uP,
p > 1 or p <0 and Fubini theorem we have that

h In dx
[ Gom ) [ o) 255
h In dx
S/ / —/ / 9 (y)dy ———
0 0o L1 "Tn Jo 0 X1 Ty
I In I In dX
/O /0 ( ) Y1 Yn l’%l‘%

:/Oll.../olngp(y)ﬁ(1_%> yld—yyn (2.2)

(b) The proof of the case 0 < p < 1 is similar to the proof of (a) except that
the only inequality (2.2) in the proof holds in the reversed direction.

(¢) The proof that the constant C = 1in (a) is sharp follows by first considering
the case in which the [; < oo, i = - ,n. We assume on the contrary that

L] G / A s
<o [ g<x>H(1—§—)d—X 23)

for all nonnegative measurable functions ¢ on (0,1) with some constants C,
0<C<1l

Now suppose that p > 1 and € > 0 and let g.(x) = x°. By substituting this
function g.(x) into inequality (2.3) yields

C>(ep+1)"(e+1)""

Now, by letting ¢ — 0, we obtain that C' > 1, contradicting our assumption
that 0 < C' < 1. This contradiction shows that the best constant in (2.1) is C' = 1.
For the case p < 0 we just use the test function g.(x) = x° with € < 0 and do
similar calculations as above to see that the constant C' = 1 is sharp also in this
case.

The proof that C' = 1 is sharp also for the case 0 < p < 1 is similar and just
omitted.

Finally, for the case when one or more of the numbers I; = 0o, the sharpness
follows by making a limit procedure with the results above in mind and the proof
is complete. O

We are now ready to state our main result in this section:

Theorem 2.3. Let 0 < I; < o00,i = 1,2,--- ,n,n € Zy, p € R\ {0}, e € R,
€0 =2p—€—2, and let f be a nonnegative function.
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(a): If f is a measurable function on (0, 1], then

[ G [ )pﬁxfdf
() [ [t ()]

X H ridx (2.4)
i=1

holds for the following cases:
(i) p>1,e<p-—1,
(i) p<0, e>p—1.
(b): For the case 0 < p < 1, € < p—1, inequality (2.4) holds in the reversed

direction.
(c): If f is a measurable function on [1, 00), then

/11 /ln (:cl / /f dy)pﬁx?dx
R [t

X H rdx (2.5)
i=1

holds for the following cases:

(i) p>1, ¢>p—1,
() p<0, eg<p-—1.
(d): For the case 0 < p < 1, ¢¢ > p — 1, inequality (2.5) holds in the
reversed direction.
(e): All the inequalities above are sharp.
(f): All the inequalities above are equivalent to the basic inequality (2.1)
for p > 1 and p < 0 and equivalent to the reverse inequality for 0 < p < 1
(and thus equivalent to each other) via suitable substitutions.

Remark 2.4. By setting n = 1 in Theorem 2.3 we obtain a slightly more precise
version of Theorem 2.4 in [21].

Proof. First we consider inequality (2.4) for the case (i) and show that it is

equivalent to the inequality (2.1). The crucial step here is to rewrite the inequality

(2.4) with 1o = (ay, a9, - ,a,) € (0,00] and the function g : (0,1) — R, instead
p

of l and f, respectively, where a; = 177", i=1,2,--- ,n, and
p—1l—c¢ p—l—c¢ n _etl
f(X)ZQ(Il ! ’ 7xnp ) xz 3
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By using this and suitable substitutions, the left hand side of inequality (2.4)
in this setting becomes

[l (e i)
G [f;xf*]‘/f ATt
x(ﬁxz)ldx

Gt (] L) (1)

Similarly, the right hand side yields

() [ e - (1)
(i1)
L M A 0 [

e
-(;2=)" //g<y>H - ()] (Hy> v

Since we have only equalities in the calculations above we conclude that (2.1)
and (2.4) are equivalent and, hence, by Lemma 2.1 (a), the proof of case (i)
follows.

For the case (i7) all calculations above hold true and, hence, according to
Lemma 2.1, inequality (2.1) also holds in this case and, thus, (a) is proved also
for the case (7).

For the case 0 < p <1, e < p — 1, all the calculations above are still valid and
so (2.1) holds in the reversed direction according to Lemma 2.1. Hence, (b) is
proved.

For the proof of (¢) we consider inequality (2.4) with f(x) replaced by
f(m— EEE ,i), with e replaced by €y to be chosen later on and 1 replaced by

L = (ll’ ll, e i) to obtain that

h
8
N
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A ey A )

X H xdx

()
x ﬁ[ ()7 6“] Hxﬁodx (2.6)

By making use of suitable substitution and putting % = g(s) we find that
the left hand side (LHS) of (2.6) yields

= [
L L
e Fe
S

Moreover, the right hand side (RHS) of (2.6) in this setting can with similar
substitutions be rewritten as follows:

1
I

P n
) H xdx
=1

A T S N e P 7
fs = (P—l—ﬁo) /11 In f(Y)gll (?Jz) ]

x f[y;” ﬁyﬁd
=1 1=1

D np o] 0o n l ;;—;%0—1
= I @y 1 — (_’>
(p—l—eo) /11 /ln (>g[ Yi
X Hy?p_go_Qdy.

(2.8)

By replacing 2p — ¢y — 2 by € and g by f we obtain that ¢ = 2p — e — 2, so
that p—1—¢=€¢+1—p
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Then, from (2.6), (2.7) and (2.8) we obtain that

[o G [ [ ) T
S(e+1—) /z nfp [”1_()

Furthermore,

] [ =5ax.

e<p—1 <= 2p—e—-2<p—1 <= e>p—1.

Thus (¢) with the conditions (iii) and (iv) is equivalent to (a) with the condi-
tions (7) and (1), respectively and, hence, also (¢) is proved.

For the proof of (d) we just note that the above calculations in this case hold
too and that the only inequality from Lemma 2.1 holds in the reversed direction.

Finally, we note that the above proof consists of suitable substitutions and
equalities to reduce all inequalities to the sharp inequality (2.1) and we obtain a
proof also of the statements (e) and (f) according to Lemma 2.1. The proof is
complete. O

3. A LIMIT RESULT AND CONCLUDING REMARKS AND EXAMPLES

Our main result in this Section is the following (limit) equivalence theorem
between some multidimensional Polya—Knopp type inequalities.

Theorem 3.1. Let0 < [; <oco,n=1,2,--- ,n,n€Zy,ec R \{0},eg=—2—¢
and let f be a nonnegative function.

(a): If f is a measurable function on (0, l] then

/ " / " e (:m / “Inf(y dy)Hxde

< elt+om /Oh e /0 ’ f(x)ilj (1 — —) H:z:fdx (3.1)

(b): If f is a measurable function on [l,00), then

/lloo.../l:oexp Ty / / In f(y < ) dy
X f[xj-odx
—(1+eo)n /l1 /n f(x ﬁ (1 _ —) Hx“’dx (3.2)

(c): The inequalities in (a) and (b) are equivalent.
(d): The constants in both (3.1) and (3.2) are sharp.
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Proof. First we replace f(x) by (f (x))% in (2.4) for the case p > 1 and we obtain

that
51 p_n
[l (o [ o) i
(i) [ [l ()

] ﬁ xidx. (3.3)
% =1

By letting p — oo it yields that

TLp _ _
(L> — et and p-l-c¢ — 1 (3.4)
p—1—c¢ P
and
( L[ [Tk ) e A Ayl
- .. P — exp —— n
ml"'xn 0 0 y y pxl...xn 0 0 y y
(3.5)

(the scale of power means P, a = Zlo, converges to the geometric mean Py when

a — 0). The proof of (3.1) follows by just combining (3.3) - (3.5).
For the proof of (b) we ﬁrst use the substitutions y; = +,i=1,--- ,n, in (3.1)

so that dy = — ([[\—, 22)"" dz and find that the left hand side (LHS) in (3.1) is
equal to

I In 1 0 ) 1 1 n -1
LHS:/ .../ exp —/ .../ lnf(_77_) HZZ2 dZ
0 0 xl..-.rn é ﬁ Zl Zn Y

x [ [ =5dx. (3.6)
=1

We replace the function f (i, e i) by g(z1,- -+ ,2,) and make the substi-
tutions y; = %, 1=1,2,--- ,n, to find that

n -1 n
LHS:i/ ~-/ exp yr~y¢/ ~:/ my@)(flﬁ) dz | [J v <dy.
ﬁ i Y1 Yn i=1 i=1

By making the similar substitutions and manipulations to the right hand side

(RHS) of (3.1) we find that

(RHS) e~ — / / yl,...,yn>H(1_

=1

LN o
y}l.)l_[yi2 dy. (3.7)
Y =1

By replacing [; by + ot g(x) by f(x) and combining (3.6) and (3.7) we obtain
(3.2) so also (3.2) is proved.

The sharpness of the constant e n (3.1) is just a consequence of the
sharpness of the inequalities (2.4) for all p > 1 and a continuity argument. Since
all calculations above only consist of equalities, it is clear that also the constant

(14+e)n i



10 J.A. OGUNTUASE, L.-E. PERSSON, N. SAMKO, A. SONUBI

e~(He0)n in (3.2) is sharp and that in fact the inequalities (3.1) and (3.2) are
equivalent. The proof is complete. O

Example 3.2. Let € = 0 and all I\s = co. Then the inequality (3.1) reads:

[ ool [ st
<o /0 /0 F(x)dx (3.8)

and with ¢y = 0 and [/;s = 0, then inequality (3.2) reads

/Ooo--~/oooexp TRE / /mf (H;,) dy | dx
<o /OOO /Oooﬂx)dx. (3.9)

Both of the constants " and e™ are sharp.

Remark 3.3. For the case n = 1, (3.8) coincides with the classical Pélya—Knopp
inequality (see [12])

/Oooexp< /lnf()dy)dx<e/ @

and (3.9) corresponds to the inequality

/0 (expx/x lnf(y)édy) dx §e_1/0 f(z)dx

Example 3.4. Another important special case of Theorem 3.1 is obtained by
choosing € = —1 and l/s = oo in (3.1) and ¢y = —1 and all Ils = 0 in (3.2). Then
we obtain the following equivalent and sharp Pélya—Knopp-type inequalities:

/ / exp <x1 / / In f(y dy) (H:c> dx
g/ooo.../:of(x) (gx) dx (3.10)
J

/000 Oooexp xl...xn/:o.../lenf(y) (ﬁyz?)ldy (ﬁ%)ldx
<[ [T e (H:B)dx .

Remark 3.5. We believe that the information in Example 3.4 is new also for the
case n = 1. Moreover, (3.10) may be regarded as a limit case of (2.1) when all
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lls = oo and (3.11) may be regarded as the limit case of the corresponding dual
version of (2.1).

Remark 3.6. The inequality (3.2) can also be proved directly by using (2.5) and

discussing as in the proof of (3.1). In fact, by replacing f(x) by (f(x))» [[_, =
in (2.5) we find that (note that ¢y = 2p — e — 2)

[ [ /:.../:<f ;(H%) N Hd
S(EOH— ) /z b ﬁ(l‘@

Now we let p — oo and note that then

np np
P ) (P ) L Oten (3.13)
e+1—p p—1—e

eo+1—p:p—e—1_>1 (3.14)
p p ’

/m/m (fiy)? (Hy>dy
— exp |z - / /expf (Hy) . (3.15)

(The scale of Power means P, a = ]13, of the function f(y) over the set (x7, 00) X

) X “dx. (3.12)

and

(z2,00) X -++ X (z,,00) with measure z; -z, ([[], y2) "' dy converges to the
geometric mean Py when o — 0+). By now replacing —e —2 by ¢, and combining
(3.12)—(3.15) we obtain (3.2).
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