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Abstract. Let ϕ,ψ be the analytic self-maps of the unit ball B, we charac-
terize the Hilbert-Schmidt differences of two composition operator Cϕ and Cψ
on weighted Bergman space A2

α, and give some conclusions about the topolog-
ical structure of C(A2

α), the space of all bounded composition operators on A2
α

endowed with operator norm.

1. Introduction

Let B be the unit ball in the N -dimensional complex space CN , with D for the unit
disk of complex plane C, S(B) the collection of all holomorphic self-maps of B and
let H(B) be the space of all holomorphic functions on B. Some function spaces,
for instance, bounded mean oscillation class (BMO), vanishing mean oscillation
class (VMO), Bergman space, Bloch space or other recent spaces, are treated by
many authors (see e.g.[1, 16, 25, 26]). The inner product of CN defined as

〈z, w〉 =
N∑
k=1

zkwk,

where z = (z1, · · · , zN) ∈ CN and w = (w1, · · · , wN) ∈ CN .
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For α > −1, the weighted Bergman space A2
α = A2

α(B) consists of holomorphic
functions f on B satisfying

‖f‖2α =

∫
B
|f(z)|2dνα(z),

where

dνα(z) =
Γ(N + α + 1)

Γ(N + 1)Γ(α + 1)
(1− |z|2)αdν(z),

dν denotes the normalized Lebesgue volume measure on B and Γ the usual Euler
function, extension of the factorial function.

The Hardy space H2 = H2(B) is the set of functions analytic on B such that

‖f‖2H2 = sup
0<r<1

∫
S
|f(rζ)|2dσ(ζ) <∞,

where S is the unit sphere and dσ is the normalized measure on S.
Let ϕ ∈ S(B), the composition operator Cϕ defined by Cϕf = f ◦ ϕ. When

N = 1, the Littlewood Subordination Theorem shows that Cϕ is bounded on
A2
α(D) for any analytic self-map ϕ of D, and many other properties of Cϕ have

been characterized, see, e.g. [3, 11, 13, 18, 25]. However, for N > 1, it is no longer
the case that every composition operator is bounded on the weighted Bergman
space of the ball (see Section 3.5 in [3]). We know that if Cϕ maps A2

α into A2
α,

then Cϕ is a bounded operator by the closed graph theorem. So in this paper,
for ϕ, ψ ∈ S(B), we always suppose Cϕ and Cψ map A2

α into A2
α. The mapping

properties of the differences of two composition operators, i.e. an operator of the
form

T = Cϕ − Cψ
have also been studied. For related papers on the disk see [10, 12, 14, 15, 19,
23, 24], and on the unit ball [6, 7, 21, 22]. For the research of Hilbert-Schmidt
operator we can see [2, 3, 4, 5, 17, 20]. The authors [2] studied the Hilbert-Schmidt
differences on the weighted Bergman space A2

α(D), the present paper continues
this line of research, and characterizes the Hilbert-Schmidt differences on the unit
ball. The paper is organized as follows: Section 3 is devoted to characterizing the
conditions about Hilbert-Schmidt differences. Some conclusions about topological
structure are given in section 4.

Throughout the remainder of this paper, C will denote a positive constant, the
exact value of which will vary from one appearance to the next. The notation
a � b means that there is a positive constant C such that a ≤ Cb. We say a � b,
if both a � b and b � a hold.

2. Prerequisites

In this section, we will give some notations and well-known lemmas.

2.1. Weighted Bergman space and Hilbert-Schmidt operator. Given α >
−1, the space A2

α is a Hilbert space with inner product

〈f, g〉α =

∫
B
fḡdνα
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for f, g ∈ A2
α. The reproducing kernel for the bounded linear functional of eval-

uation at w ∈ B in A2
α is

Kw(z) =
1

(1− 〈z, w〉)N+1+α

such that
〈f,Kw〉α = f(w),

and it has norm (1− |w|2)−(N+1+α). We also have

Kw(z) =
∑
n

en(z)en(w), z, w ∈ B

for any choice of an orthonormal basis {en} for A2
α.

Let T be the linear operator from Banach space X to Banch space Y , the
operator norm define as follows:

‖T‖ = sup
‖f‖X=1

‖Tf‖Y ,

the notions ‖ · ‖X and ‖ · ‖Y denote the norm of X and Y , respectively.
A linear operator T on a separable Hilbert space H is Hilbert-Schmidt if

‖T‖2HS =
∞∑
k=1

‖Tek‖2H =
∞∑

k,m=1

|〈Tek, em〉H |2 <∞ (2.1)

for any (or some) orthonormal basis {ek} of H, ‖·‖H (〈·, ·〉H) is the norm (respec-
tively, inner product) of H. For an arbitrary linear operator T on H the (possibly
infinite) sum on the right of (2.1) does not depend on the particular choice of
{en}, and ‖T‖ ≤ ‖T‖HS. We know that if T is Hilbert-Schmidt operator, then T
is compact operator.

Let m = (m1, · · · ,mN) be a multi-index, since the function sequence { zm

‖zm‖α}
is an orthonormal basis of A2

α, we have

‖Cϕ‖2HS =

∫
B

1

(1− |ϕ|2)N+1+α
dνα.

2.2. Pseudohyperbolic distance. We will describe some automorphisms of B
that are analogous to the disk automorphisms (a − z)/(1 − āz), for a in D. Let
a ∈ B, and set

Pa(z) =
〈z, a〉
|a|2

a,

so Pa is projection onto the subspace [a] spanned by a, and Qa = I−Pa, projection

onto the orthogonal complement of [a]. To simplify notation write sa =
√

1− |a|2.
Define ϕa(z) by

ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉
.

Clearly ϕa is analytic in B, ϕa(0) = a and ϕa(a) = 0.
For a, b ∈ B, the Bergman metric defined as

β(a, b) =
1

2
log

1 + |ϕa(b)|
1− |ϕa(b)|

.
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we denote by ρ(a, b) the pseudohyperbolic distance between a and b, i.e.,

ρ(a, b) = |ϕa(b)|,

and we have the following equation

1− ρ2(a, b) =
(1− |a|2)(1− |b|2)
|1− 〈a, b〉|2

. (2.2)

For ϕ ∈ S(B) and z, w ∈ B, by the Schwarz–Pick Theorem, we have

ρ(ϕ(z), ϕ(w)) ≤ ρ(z, w),

thus for z ∈ B, we obtain

|z|2 = ρ2(0, z) ≥ ρ2(ϕ(0), ϕ(z))

≥ 1− (1− |ϕ(0)|2)(1− |ϕ(z)|2)
(1− |ϕ(z)ϕ(0)|)2

=
|ϕ(z)− ϕ(0)|2

(1− |ϕ(0)ϕ(z)|)2
,

then

|ϕ(z)| ≤ |z|+ |ϕ(0)|
1 + |z||ϕ(0)|

.

Using the inequity above, we easily get

1− |ϕ(z)|
1− |z|

≥ 1− |ϕ(0)|
1 + |ϕ(0)|

> 0. (2.3)

Now, let us recall some lemmas.

Lemma 2.1. ([26, Lemma 2.20]) For each R > 0 there exists a positive constant
CR such that

C−1R ≤
1− |a|2

1− |z|2
≤ CR

and

C−1R ≤
1− |a|2

|1− 〈a, z〉|
≤ CR

for all a and z in B with β(z, a) ≤ R.

Lemma 2.2. ([26, Lemma 2.27]) For any R > 0 and any real b there exists a
constant CR > 0 such that∣∣∣∣(1− 〈z, u〉)b(1− 〈z, v〉)b

− 1

∣∣∣∣ ≤ CRβ(u, v)

for all z, u and v in B with β(u, v) ≤ R.

Remark 2.3. Since β(a, b) = 1
2

log 1+ρ(a,b)
1−ρ(a,b) , then β(a, b) ≤ R ⇔ ρ(a, b) ≤ r, where

r = eR−1
eR+1

, and we can obtain that there exists a positive constant CR such that
β(a, b) ≤ CRρ(a, b) for a, b ∈ B with ρ(a, b) ≤ r. So Lemma 2.1 and Lemma
2.2 also hold if β(a, b) is replace by ρ(a, b). In this paper, we always use ρ(a, b)
instead of β(a, b).
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If ρ(a, b) < r < 1, we can get the inequality

1− ρ(a, b)

1 + ρ(a, b)
≤ 1− |a|2

1− |b|2
≤ 1 + ρ(a, b)

1− ρ(a, b)
. (2.4)

To see this, for example, let b = ϕa(w), using the (2.2), we have

1− |b|2 =
(1− |a|2)(1− |w|2)
|1− 〈a, w〉|

,

since
1− |w|
1 + |w|

≤ 1− |w|2

|1− 〈a, w〉|
≤ 1 + |w|

1− |w|
,

and w = ϕa(b), we get (2.4).
According to Lemma 2.2, we have

<
(

1− |a|2

1− 〈a, b〉

)b
≥ 1− Cρ(a, b) ≥ 0 (2.5)

for all a, b ∈ B with ρ(a, b) sufficiently small, where <z denote the real part of
z ∈ C.

Lemma 2.4. Given s > 0, there is a constant C = C(s) > 0 such that

1

|1− 〈a, b〉|s
−<

(
1

1− 〈a, b〉

)s
≤ C

ρ2(a, b)

(1− |a|2)s/2(1− |b|2)s/2

for all a, b ∈ B.

Proof. Let s > 0 and fix a, b ∈ B. Choose ε = εs ∈ (0, 1) such that (2.5) is
satisfied. Put z = (1− 〈a, b〉)−s = x+ iy where x = <z and y = =z. Since

|z| = 1

|1− 〈a, b〉|s
≤ 1

(1− |a|)s/2(1− |b|)s/2
,

we have

|z| − x ≤ 2|z| ≤ 2

ε2
ρ2(a, b)

(1− |a|)s/2(1− |b|)s/2
for ρ(a, b) ≥ ε.

When ρ(a, b) < ε, we have x ≥ 0, so

|z| − x ≤ |z|
2 − x2

|z|
=
y2

|z|
.

By Lemma 2.2, we get

|y| =
|z − z̄|

2
=

1

2

∣∣∣∣ 1

(1− 〈a, b〉)s
− 1

(1− 〈b, a〉)s

∣∣∣∣
≤ 1

2

(∣∣∣∣ 1

(1− 〈a, b〉)s
− 1

(1− 〈a, a〉)s

∣∣∣∣+

∣∣∣∣ 1

(1− 〈a, a〉)s
− 1

(1− 〈b, a〉)s

∣∣∣∣)
≤ 1

2|1− 〈a, b〉|s

∣∣∣∣ (1− 〈a, b〉)s(1− 〈a, a〉)s
− 1

∣∣∣∣+
1

2|1− 〈b, a〉|s

∣∣∣∣ (1− 〈b, a〉)s(1− 〈a, a〉)s
− 1

∣∣∣∣
≤ C

|1− 〈a, b〉|s
ρ(a, b).
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Thus,
y2

|z|
≤ C

ρ2(a, b)|1− 〈a, b〉|s

|1− 〈a, b〉|2s
≤ C

ρ2(a, b)

(1− |a|)s/2(1− |b|)s/2
.

Since 1− |z|2 � 1− |z|, the proof is complete.
�

3. Hilbert-Schmidt differences

In this section we will use pseudohyperbolic distance to characterize Hilbert-
Schmidt differences of composition operators on A2

α.

Theorem 3.1. Let α > −1 and J ∈ N, for a1, · · · , aJ ∈ C and ϕ1, · · · , ϕJ ∈
S(B), the identity ∥∥∥∥∥

J∑
j=1

ajCϕj

∥∥∥∥∥
2

HS

=

∫
B

∥∥∥∥∥
J∑
j=1

ajKϕj(z)

∥∥∥∥∥
2

α

dνα(z)

holds.

Proof. The proof is similar to Proposition 3.1 in [2], we omit the detail. �

By the theorem above, we need to consider the quantity ‖Kz −Kw‖α in order
to study Hilbert-Schmidt differences of composition operators.

Theorem 3.2. Let α > −1, for z, w ∈ B, we have

‖Kz −Kw‖2α � (‖Kz‖α − ‖Kw‖α)2 + ρ2(z, w)‖Kz‖α‖Kw‖α.

Proof. The reproducing property gives

‖Kz −Kw‖2α
= (‖Kz‖α − ‖Kw‖α)2 + 2‖Kz‖α‖Kw‖α − 2<〈Kz, Kw〉α
= (‖Kz‖α − ‖Kw‖α)2 + 2(‖Kz‖α‖Kw‖α − |〈Kz, Kw〉α|)

+2(|〈Kz, Kw〉α| − <〈Kz, Kw〉α)

=: (‖Kz‖α − ‖Kw‖α)2 + 2Fα + 2Gα.

We estimate Fα, by (2.2) and 1− tN+1+α
2 � 1− t when 0 ≤ t ≤ 1, we have

Fα =
1

(1− |z|2)N+1+α
2

1

(1− |w|2)N+1+α
2

− 1

|1− 〈z, w〉|N+1+α

≤ 1

(1− |z|2)N+1+α
2

1

(1− |w|2)N+1+α
2

(
1− (1− ρ2(z, w))

N+1+α
2

)
� ρ2(z, w)‖Kz‖α‖Kw‖α.

By Lemma 2.4, we know 0 ≤ Gα ≤ Cρ2(z, w)‖Kz‖α‖Kw‖α. Consequently, we
have Fα +Gα � ρ2(z, w)‖Kz‖α‖Kw‖α. The proof is complete. �

Theorem 3.3. Given α > −1, the estimate

‖Kz −Kw‖α � ρ(z, w)(‖Kz‖α + ‖Kw‖α)

holds for all z, w ∈ B.
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Proof. For z, w ∈ B, put

Φ :=
(
‖Kz‖2α + ‖Kw‖2α

)
ρ2(z, w),

Ψ1 := (‖Kz‖α − ‖Kw‖α)2

and

Ψ2 := ‖Kz‖α‖Kw‖αρ2(z, w).

We only need to establish the estimate

C−1Φ ≤ Ψ1 + Ψ2 ≤ CΦ

on B2 by Theorem 3.2. We decompose B2 into three parts

E := {(a, b) ∈ B2) : ρ(a, b) < 1/2},

Q1 :=

{
(a, b) ∈ B2\E : 1/2 ≤

(
1− |a|2

1− |b|2

)N+1+α
2

≤ 2

}
,

Q2 := B2\(E ∪Q1).

To obtain the left inequality, that is

Φ ≤ C(Ψ1 + Ψ2),

we proceed similarly to Proposition 3.5 in [2]. Then, we only prove

Ψ1 + Ψ2 ≤ CΦ.

It is easy to see that 2Ψ2 ≤ Φ on B2, and Ψ1 ≤ 4Φ on B2\E. Now, when
(z, w) ∈ E, by Lemma 2.2, we have

Ψ1

=

(
1

(1− |z|2)s
− 1

(1− |w|2)s

)2

≤
[

1

(1− |z|2)s

∣∣∣∣1− ( 1− |z|2

1− 〈z, w〉

)s∣∣∣∣+
1

(1− |w|2)s

∣∣∣∣1− ( 1− |w|2

1− 〈z, w〉

)s∣∣∣∣]2
≤

[
Cρ(z, w)

(1− |z|2)s
+

Cρ(z, w)

(1− |w|2)s

]2
≤ Cρ2(z, w)

[
1

(1− |z|2)2s
+

1

(1− |w|2)2s

]
,

here s = N+1+α
2

.
Thus, we obtain Ψ1 ≤ CΦ on E. This completes the proof. �

Now, we are now ready to estimate the quantity ‖Cϕ − Cψ‖HS.

Theorem 3.4. Assume that ϕ, ψ ∈ S(B), then the following estimate

‖Cϕ − Cψ‖2HS �
∫
B

(
1

1− |ϕ(z)|2
+

1

1− |ψ(z)|2

)N+1+α

ρ2(ϕ(z), ψ(z))dνα(z)

holds.
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Proof. By Theorem 3.1 and Theorem 3.3, we have

‖Cϕ − Cψ‖2HS =

∫
B
‖Kϕ(z) −Kψ(z)‖2αdνα(z)

�
∫
B
(‖Kϕ(z)‖α + ‖Kψ(z)‖α)2ρ2(ϕ(z), ψ(z))dνα(z)

�
∫
B

(
1

1− |ϕ(z)|2
+

1

1− |ψ(z)|2

)N+1+α

ρ2(ϕ(z), ψ(z))dνα(z).

Thus, we finish the proof. �

As a corollary of Theorem 3.4, we get an equivalent condition for the differences
Cϕ − Cψ to be Hilbert-Schmidt. This result will provide some heuristcs for the
proof of our theorem in section 4.

Corollary 3.5. Assume that ϕ, ψ ∈ S(B), then Cϕ − Cψ is Hilbert-Schmidt on
Apα if and only if ∫

B

ρ2(ϕ(z), ψ(z))dνα(z)

(1− |ϕ(z)|2)N+1+α
<∞

and ∫
B

ρ2(ϕ(z), ψ(z))dνα(z)

(1− |ψ(z)|2)N+1+α
<∞.

Using (2.3), we can get another corollary of Theorem 3.4.

Corollary 3.6. Let α > 1 and ϕ, ψ ∈ S(B), If Cϕ − Cψ is Hilbert-Schmidt on
A2
α, then Cϕ − Cψ is Hilbert-Schmidt on A2

β for β > α.

On the disk, when composition operators Cϕ and Cψ are not Hilbert-Schmidt,
we know that the linear combinations aCϕ + bCψ is Hilbert-Schmidt if and only
if a + b = 0 and Cϕ − Cψ is Hilbert-Schmidt, where a, b ∈ C\{0}. Here, we can
get the same result, for the purpose, we need the following estimate, it is easy to
get from Lemma 3.9 in [2] and Theorem 3.2, we omit the proof.

Theorem 3.7. For z, w ∈ B and λ ∈ C, we have the following estimate

(‖Kz‖α − |λ|‖Kw‖α)2 + |λ|ρ2(z, w)‖Kz‖α‖Kw‖α ≺ ‖Kz − λKw‖2α.

when |λ| = 1, ‖Kz −Kw‖2α ≺ ‖Kz − λKw‖2α.

Theorem 3.8. Let α > −1 and a, b ∈ C\{0}. Suppose that Cϕ and Cψ are not
Hilbert-Schmidt on A2

α. Then aCϕ + bCψ is Hilbert-Schmidt on A2
α if and only if

a+ b = 0 and Cϕ − Cψ is Hilbert-Schmidt on A2
α.

Proof. The proof is similar to Theorem 3.10 in [2], we also omit the proof.
�
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4. topology structure

We will give some conclusions about the topology structure in this section. Let
C(A2

α) be the space of all bounded composition operators on A2
α endowed with

norm topology.
Write Cϕ ∼ Cψ if Cϕ and Cψ are in the same path component of C(A2

α). For
t ∈ [0, 1], put ϕt = (1− t)ϕ+ tψ, it is easy to see ϕt ∈ S(B).

Theorem 4.1. Let α > 1 and assume that Cϕ, Cψ ∈ C(A2
α), Cϕ − Cψ is Hilbert-

Schmidt on A2
α. Then Cϕs − Cϕt is Hilbert-Schmidt for any s, t ∈ [0, 1].

Proof. Since ‖Cϕs − Cϕt‖HS ≤ ‖Cϕ − Cϕs‖HS + ‖Cϕ − Cϕt‖HS, it is sufficient to
prove Cϕ − Cϕs is Hilbert-Schmidt for s ∈ [0, 1].

From the definition of ρ, we have

ρ(ϕs(z), ϕ(z)) =

∣∣∣∣ϕ(z)− Pϕ(z)(ϕs(z))− sϕ(z)Qϕ(z)(ϕs(z))

1− 〈ϕs(z), ϕ(z)〉

∣∣∣∣
= s

∣∣∣∣ϕ(z)− Pϕ(z)(ψ(z))− sϕ(z)Qϕ(z)(ψ(z))

1− 〈ϕs(z), ϕ(z)〉

∣∣∣∣
=

sρ(ϕ(z), ψ(z))|1− 〈ψ(z), ϕ(z)〉|
|1− 〈ϕs(z), ϕ(z)〉|

.

So, if ρ(ϕ(z), ψ(z)) ≥ 1/2, ρ(ϕs(z), ϕ(z)) ≤ 1 ≤ 2ρ(ϕ(z), ψ(z)).
If ρ(ϕ(z), ψ(z)) < 1/2, by Lemma 2.1, we have

ρ(ϕs(z), ϕ(z)) ≤ sρ(ϕ(z), ψ(z))|1− 〈ψ(z), ϕ(z)〉|
1− |ϕ(z)|

≤ 2sρ(ϕ(z), ψ(z))|1− 〈ψ(z), ϕ(z)〉|
1− |ϕ(z)|2

≤ 2Csρ(ϕ(z), ψ(z)),

thus, we get ρ(ϕs(z), ϕ(z)) ≤ Cρ(ϕ(z), ψ(z)) for all z ∈ B. And

|ϕs(z)| = |(1− s)ϕ(z) + sψ(z)| ≤ max{|ϕ(z)|, |ψ(z)|},

then
1

1− |ϕs(z)|2
≤ 1

1− |ϕ(z)|2
+

1

1− |ψ(z)|2
,

hence we get∫
B

ρ2(ϕs(z), ϕ(z))dνα(z)

(1− |ϕs(z)|2)N+1+α

≤ C

∫
B

(
1

1− |ϕ(z)|2
+

1

1− |ψ(z)|2

)N+1+α

ρ2(ϕ(z), ψ(z))dνα(z)

� ‖Cϕ − Cψ‖2HS <∞.

Similarly, ∫
B

ρ2(ϕs(z), ϕ(z))dνα(z)

(1− |ϕ(z)|2)N+1+α
<∞,
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according to Corollary 3.5, we have Cϕ−Cϕs is Hilbert-Schmidt. This completes
the proof. �

Since ‖Cϕs‖ ≤ ‖Cϕs − Cϕ‖ + ‖Cϕ‖ ≤ ‖Cϕs − Cϕ‖HS + ‖Cϕ‖, the composition
operator Cϕs belongs to C(A2

α) for s ∈ [0, 1] by the theorem above.
Now, we give the sufficient condition of path connected. For the process of

proof, please refer to [2, Theorem 4.2].

Theorem 4.2. Let α > 1 and ϕ, ψ ∈ S(B). Assume that Cϕ, Cψ ∈ C(A2
α), and

Cϕ − Cψ is Hilbert-Schmidt operator, then Cϕ ∼ Cψ.

Proof. According to Theorem 4.1, we obtain Cϕs ∈ C(A2
α), we need to show that

s ∈ [0, 1] → Cϕs is a continuous path in C(A2
α). Here, it is sufficient to consider

the case lim
s→0
‖Cϕ − Cϕs‖ = 0.

Given s ∈ (0, 1], put

Φs =

(
1

1− |ϕ|2
+

1

1− |ϕs|2

)N+1+α

ρ(ϕ, ϕs)

for short, since ρ(ϕ, ϕs) ≤ 2ρ(ϕ, ψ) and 1
1−|ϕs|2 ≤

1
1−|ϕ|2 + 1

1−|ψ|2 , we have

Φt ≤ C

(
1

1− |ϕ|2
+

1

1− |ψ|2

)N+1+α

ρ(ϕ, ψ)

for all s. Because Cϕ − Cψ is Hilbert-Schmidt operator,
∫
B Φtdνα is integrable.

Since ρ(ϕs, ϕ)→ 0 as s→ 0, so we get

lim
s→0
‖Cϕ − Cϕs‖HS = 0,

and
lim
s→0
‖Cϕ − Cϕs‖ = 0.

This proof is complete.
�

By the theorem above, we can obtain the following consequences.
(1) Given Cϕ ∈ C(A2

α), the set

N(ϕ) = {Cψ : ‖Cϕ − Cψ‖HS <∞}
is the path-connected set in C(A2

α) containing Cϕ.
(2) Let HS(A2

α) ⊂ C(A2
α) be the set of all Hilbert-Schmidt composition opera-

tors on A2
α, then HS(A2

α) belongs to a path component of C(A2
α).

(3) N(ϕ) is ”convex” in the sense that if Cψ ∈ N(ϕ), then {C(1−t)ϕ+tψ}t∈[0,1] ∈
N(ϕ).

Next, we will study the isolation using the extreme point, for related papers
see [2, 8, 9, 14]. It is easy to see that the set S(B) is a convex set. For the set
S(B), we define the extreme point as following: If ϕ ∈ S(B) is not proper convex
combination of two distinct elements of S(B), we call ϕ is an extreme point. It
is easy to see that ϕ is an extreme point if and only if ϕ = f+g

2
for f, g ∈ S(B),

implies f = g = ϕ.
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Example 4.3. For N = 2, let ϕ(z1, z2) = (Aϕ1, Bϕ2), where A,B ≤ 0, A2+B2 =
1 and ϕi are inner functions on unit ball B2, then ϕ is an extreme point.

To prove that this example of extreme point is correct, let us observe at first
that, because of A2 +B2 = 1, it follows |ϕ(ζ)| = 1 for ζ ∈ S2 almost everywhere.
If ϕ is not an extreme point, then there exist two distinct maps f and g such
that ϕ = f+g

2
. when |ϕ(ζ)| = 1, we have f(ζ) = g(ζ) ∈ S2, thus the components

ϕi = f i = gi on S2 almost everywhere for i = 1, 2. Since ϕ, f, g ∈ S(B2),
ϕi, f i, gi ∈ H2, and ‖ϕi‖H2 = ‖f i‖H2 = ‖gi‖H2 , so ϕi = f i = gi on B2, then
ϕ = f = g on B, this contradicts with the choose of f, g. Thus, ϕ is an extreme
point.

Using the similar method, we can prove that every automorphisms ϕa is an
extreme point on B. When ϕ is a linear-fractional self-map of B, Cϕ is bounded
on A2

α, moreover, ϕa is linear-fractional, so Cϕa belongs to C(A2
α), thus there is

composition operator induce by extreme point of S(B) in C(A2
α).

Now, we give a equivalent condition for extreme point, and research the non-
isolation using the extreme point.

Theorem 4.4. Let ϕ ∈ S(B), then ϕ is not an extreme point if and only if there
exists some ω ∈ S(B) such that ω 6= 0 and |ϕ|+ |ω| ≤ 1 on B.

Proof. If ϕ is not an extreme point, then there are two distinct functions f, g ∈
S(B) such that ϕ = f+g

2
. Put ψ = f−g

2
, ψ = (ψ1, · · · , ψN), it is obvious that

|ϕ|2 + |ψ|2 ≤ 1, so ψ ∈ S(B), let ω =
(ψ2

1 ,··· ,ψ2
N )

2
, then ω ∈ S(B), and

|ω|+ |ϕ| ≤

√
N∑
i=1

|ψi|4

2
+ |ϕ| ≤ |ψ|

2

2
+ |ϕ| ≤ 1.

If there is a non-zero function ω, such that |ϕ| + |ω| ≤ 1, then |ϕ ± ω| ≤
|ω| + |ϕ| ≤ 1, so ϕ ± ω ∈ S(B), and ϕ = ϕ+ω

2
+ ϕ−ω

2
, thus ϕ is not an extreme

point of S(B). �

Theorem 4.5. Let ϕ ∈ S(B) and Cϕ ∈ C(A2
α). If ϕ is not the extreme point of

S(B), then Cϕ is not isolated in C(A2
α).

Proof. Suppose that ϕ is not extreme point, we know that there is some non-zero

element ω ∈ S(B), such that |ϕ|+ |ω| ≤ 1. Let s = N+3+α
2

and ψ = ϕ+
(ωs1,··· ,ωsN )

2
,

since

1− |ψ| > 1− |ϕ| − |(ω
s
1, · · · , ωsN)|

2
≥ 1− |ϕ| − |ω|

s

2
≥ 1− |ϕ|

2
≥ 0,
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we have ψ ∈ S(B). Moreover, it is easy to observe that

ρ2(ϕ(z), ψ(z))

= 1− (1− |ϕ(z)|2)(1− |ψ(z)|2)
|1− 〈ϕ(z), ψ(z)〉|2

=
|〈ϕ(z), ψ(z)〉|2 − 2<〈ϕ(z), ψ(z)〉+ |ϕ(z)|2 + |ψ(z)|2 − |ϕ(z)|2|ψ(z)|2

|1− 〈ϕ(z), ψ(z)〉|2

≤ |ψ(z)− ϕ(z)|2

(1− |ϕ(z)|)2
≤ |ω(z)|2s

4(1− |ϕ(z)|)2
≤ (1− |ϕ(z)|)2s−2,

so we have(
1

1− |ϕ(z)|2
+

1

1− |ψ(z)|2

)N+1+α

ρ2(ϕ(z), ψ(z)) ≤ 3N+1+α,

then Cϕ − Cψ is Hilbert–Schmidt by Theorem 3.4, and Cψ ∈ C(A2
α), thus Cϕ is

not isolated. The proof is complete. �
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