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Abstract. In this paper we obtain a characterization of finite-dimensional
Hilbert C∗-modules. It is known that those are the modules for which both
underlying C∗-algebras are finite-dimensional. We show that such modules can
be described by a certain property of bounded sequences of their elements. It
turns out that similar property leads to another characterization of Hilbert
C∗-modules over C∗-algebras of compact operators.

1. Introduction and preliminaries

Hilbert C∗-modules are straightforward generalization of Hilbert spaces where
the field of complex numbers is replaced by a C∗-algebra. The concept was
introduced by Kaplansky [10]. The origin of Hilbert C∗-modules is in operator
theory, where they serve as a useful tool in areas like KK-theory, quantum groups
and several other areas.

Although Hilbert C∗-modules behave like Hilbert spaces in some way, some
fundamental and familiar Hilbert space properties do not hold. For example,
given a closed submodule W of a Hilbert C∗-module V, we can define W⊥ in a
natural way. Then W⊥ is a closed submodule, but usually V 6= W ⊕ W⊥ and
W 6= (W⊥)⊥. However, this is always true in the class of Hilbert C∗-modules
over a C∗-algebra of (not necessarily all) compact operators on some Hilbert
space. Also, many other properties of Hilbert spaces that fail in general Hilbert
C∗-modules are proved to be satisfied in Hilbert C∗-modules over C∗-algebras of
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compact operators. For results and, in particular, characterizations of this class of
Hilbert C∗-modules we refer the reader to [2, 4, 8, 12, 18] and references therein.
Also, some interesting properties of Hilbert C∗-modules over finite-dimensional
C∗-algebras are obtained in [6, 9].

An interesting subclass consists of finite-dimensional Hilbert C∗-modules. A
full Hilbert C∗-module is finite-dimensional if and only if both underlying C∗-
algebras are finite-dimensional. We show in Theorem 2.5 that finite-dimensional
Hilbert C∗-modules are also characterized by a certain property of bounded se-
quences of their elements. An analysis of that property combined with results
of K. Ylinen ([20], [21]) enables us to obtain a new characterization of Hilbert
C∗-modules over C∗-algebras of compact operators.

Before stating the results, we recall the definition of a Hilbert C∗-module and
introduce our notation.

A pre-Hilbert C∗-module V over a C∗-algebra A, or a pre-Hilbert A-module is
a right A-module together with an A-valued inner product 〈·, ·〉 : V × V → A
satisfying the conditions:

• 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ V, α, β ∈ C,
• 〈x, ya〉 = 〈x, y〉a for x, y ∈ V, a ∈ A,
• 〈x, y〉∗ = 〈y, x〉 for x, y ∈ V,
• 〈x, x〉 ≥ 0 for x ∈ V,
• 〈x, x〉 = 0 if and only if x = 0.

We can define a norm on V by ‖x‖ = ‖〈x, x〉‖ 1
2 . A pre-Hilbert A-module V

is called a right Hilbert C∗-module over A (or a right Hilbert A-module) if it is
complete with respect to its norm. The notion of the left Hilbert A-module is
defined in a similar way.

Basic examples of Hilbert C∗-modules are as follows.
(I) Every Hilbert space is a left Hilbert C-module.
(II) Every C∗-algebraA is a right HilbertA-module via 〈a, b〉 = a∗b for a, b ∈ A.
(III) For every pair of Hilbert spaces H1 and H2, the space B(H1, H2) of all

bounded linear operators from H1 to H2 is a right Hilbert B(H1)-module with
the inner product 〈T, S〉 = T ∗S.

By 〈V, V 〉 we denote the closure of the span of {〈x, y〉 : x, y ∈ V }. We say that
V is full if 〈V, V 〉 = A.

A mapping T : V → W between Hilbert A-modules V and W is called ad-
jointable if there exists a mapping T ∗ : W → V such that 〈Tx, y〉 = 〈x, T ∗y〉
for all x ∈ V, y ∈ W . It is easy to see that every adjointable operator T is a
bounded linear A-module mapping (that is, T is bounded, linear and satisfies
T (xa) = T (x)a for all x ∈ V, a ∈ A). B(V, W ) will stand for the space of all
adjointable mappings from V into W.

By K(V, W ) we denote the closed linear subspace of B(V, W ) spanned by {θx,y :
x ∈ W, y ∈ V }, where θx,y is a mapping in B(V, W ) defined by θx,y(z) = x〈y, z〉.
Elements of K(V, W ) are called ’compact’ operators. When we say that a bounded
linear operator T between Banach spaces is compact, we mean that it is compact
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in topological sense. Elements of K(V, W ) considered as operators between the
Banach spaces V and W need not be compact in topological sense.

We shall write B(V ) for B(V, V ), and K(V ) for K(V, V ). It is well known that
B(V ) is a C∗-algebra containing K(V ) as a two-sided ideal.

By a finite-dimensional C∗-algebra (resp. Hilbert C∗-module) we understand a
C∗-algebra (resp. Hilbert C∗-module) that is finite-dimensional as a vector space.

For a Banach space X, by X∗ we denote the set of all bounded linear functionals
on X. A sequence (xn) in the Banach space X is said to be weakly convergent
if there is x0 ∈ X such that limn→∞ f(xn) = f(x0) for all f ∈ X∗. A bounded
(anti)linear mapping T : X → Y between Banach spaces X and Y is weakly
compact if for every bounded sequence (xn) in X, the sequence (Txn) has a
weakly convergent subsequence in Y.

The basic theory of Hilbert C∗-modules can be found in [11, 13, 16, 19]. (For
the general theory of C∗-algebras the reader is referred to [7, 14, 15, 17].)

2. Hilbert C∗-modules over finite-dimensional C∗-algebras

Let (H, (·, ·)) be a Hilbert space, B(H) the algebra of all bounded linear op-
erators, and K(H) the algebra of all compact linear operators acting on it. It is
well known that for every bounded sequence (ξn) in H there exist a subsequence
(ξnk

) of (ξn) and ξ ∈ H such that

lim
k→∞

‖Tξnk
− Tξ‖ = 0, ∀T ∈ K(H).

This follows from the fact that every bounded sequence in a Hilbert space has a
weakly convergent subsequence, and that compact operators map weakly conver-
gent sequences to the strongly convergent ones.

Suppose now that V is a Hilbert A-module. One can ask whether for every
bounded sequence (vn) in V, there are a subsequence (vnk

) of (vn) and v ∈ V for
which

lim
k→∞

‖Tvnk
− Tv‖ = 0, ∀T ∈ K(V ).

In general, the answer is negative. For example, let A = B(H) for some infinite-
dimensional Hilbert space H, and regard A as a Hilbert C∗-module over itself.
Then the identity operator on H will also be ’compact’; however, since H is
infinite-dimensional, the above cannot hold.

The following lemma will help us to characterize the class of Hilbert C∗-modules
which possess the above property.

Lemma 2.1. Let V be a right Hilbert A-module. For a bounded sequence (vn) in
V and v ∈ V the following statements are mutually equivalent.

(i) lim
n→∞

‖〈y, vn〉 − 〈y, v〉‖ = 0 for every y ∈ V.

(ii) lim
n→∞

‖Tvn − Tv‖ = 0 for every T ∈ K(V ).

Proof. (i)⇒(ii) From (i) it follows that

lim
n→∞

‖x〈y, vn〉 − x〈y, v〉‖ = 0
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for all x, y ∈ V, that is,

lim
n→∞

‖θx,y(vn)− θx,y(v)‖ = 0

for all x, y ∈ V. Since (vn) is bounded and every T ∈ K(V ) is a limit of finite
linear combinations of mappings θx,y, (ii) follows.

(ii)⇒(i) If (ii) holds, then for all x ∈ V we have

lim
n→∞

‖θx,x(vn)− θx,x(v)‖ = 0,

that is,

lim
n→∞

‖x〈x, vn〉 − x〈x, v〉‖ = 0.

This implies, for all x ∈ V ,

lim
n→∞

‖〈x, x〉〈x, vn〉 − 〈x, x〉〈x, v〉‖ = 0,

which can be written in an equivalent form

lim
n→∞

∥∥〈
x〈x, x〉, vn

〉
−

〈
x〈x, x〉, v

〉∥∥ = 0.

To get (i) it remains to note that every y ∈ V can be written as y = x〈x, x〉 for
some x ∈ V (see e.g. [16, Proposition 2.31]). �

Remark 2.2. Observe that in the implication (ii)⇒(i) the sequence (vn) does not
have to be bounded.

In a recent paper [6] on perturbation of the Wigner equation in inner product
C∗-modules, the main result is obtained for Hilbert A-modules with the following
property:

[H] for every bounded sequence (vn) in V there are a subsequence (vnk
) of (vn)

and v ∈ V such that for every y ∈ V

lim
k→∞

‖〈y, vnk
〉 − 〈y, v〉‖ = 0.

It was proved in [6, Proposition 2.1] that condition [H] is satisfied in every Hilbert
C∗-module over a finite-dimensional C∗-algebra. Later, in [3, Theorem 2.5], it
was proved that if a full Hilbert A-module satisfies condition [H], then A must be
finite-dimensional. Therefore, condition [H] characterizes the class of Hilbert C∗-
modules over finite-dimensional C∗-algebras, which, together with Lemma 2.1,
gives us another characterization of this class of Hilbert C∗-modules.

Theorem 2.3. Let V be a full right Hilbert A-module. For every bounded se-
quence (vn) in V there are a subsequence (vnk

) of (vn) and v ∈ V such that

lim
k→∞

‖Tvnk
− Tv‖ = 0, ∀T ∈ K(V )

if and only if A is a finite-dimensional C∗-algebra.

Since Theorem 2.3 also holds in the case of left Hilbert C∗-modules, one can
reformulate its statement to get a characterization of full right Hilbert A-modules
V such that the C∗-algebra K(V ) is finite-dimensional.
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Theorem 2.4. Let V be a full right Hilbert A-module. For every bounded se-
quence (vn) in V there are a subsequence (vnk

) of (vn) and w ∈ V such that

lim
k→∞

‖vnk
a− wa‖ = 0, ∀a ∈ A

if and only if K(V ) is a finite-dimensional C∗-algebra.

Proof. Every right Hilbert C∗-module V over a C∗-algebra A can be regarded
as a left Hilbert C∗-module over the C∗-algebra K(V ), where the action of an
operator T ∈ K(V ) on a vector x ∈ V is given by T · x = T (x), while the inner
product is defined as [x, y] = θx,y. By definition of K(V ), V is full as a left Hilbert
K(V )-module. The ideal of all ’compact’ operators acting on a left Hilbert K(V )-
module V is spanned by mappings ϕx,y, x, y ∈ V, where ϕx,y(v) = [v, y]x, v ∈ V.
Since

ϕx,y(v) = [v, y]x = θv,y(x) = v〈y, x〉
for all x, y, v ∈ V, we deduce that every ’compact’ operator on a left Hilbert
K(V )-module V is of the form v 7→ va for some a ∈ A. It remains to apply
Theorem 2.3. �

Finite-dimensional Hilbert C∗-modules can be now completely described in
terms of the convergence of certain sequences.

Theorem 2.5. Let V be a full right Hilbert A-module. The following statements
are mutually equivalent.

(1) V is finite-dimensional.
(2) A and K(V ) are finite-dimensional.
(3) For every bounded sequence (vn) in V there are a subsequence (vnk

) of
(vn) and v ∈ V such that

lim
k→∞

‖vnk
a− va‖ = 0, ∀a ∈ A,

lim
k→∞

‖〈y, vnk
〉 − 〈y, v〉‖ = 0, ∀y ∈ V.

(4) K(V ) is a unital C∗-algebra, and for every bounded sequence (vn) in V
there are a subsequence (vnk

) of (vn) and v ∈ V such that

lim
k→∞

‖〈y, vnk
〉 − 〈y, v〉‖ = 0, ∀y ∈ V.

(5) A is a unital C∗-algebra, and for every bounded sequence (vn) in V there
are a subsequence (vnk

) of (vn) and v ∈ V such that

lim
k→∞

‖vnk
a− va‖ = 0, ∀a ∈ A.

Proof. Obviously, (1)⇒(2). To prove (2)⇒(1), first notice: when K(V ) is finite-
dimensional, it is necessarily unital and hence V is algebraically finitely generated.
This, together with the assumption that A is finite-dimensional, immediately
implies (1).

By [3, Theorem 2.5] and Theorem 2.4, (3)⇒(2). If (5) holds, then putting
a = e in the second condition of (5) we get that every bounded sequence in V
has a convergent subsequence, so (1) holds. Similarly, (4)⇒(1). (2)⇒(4) and
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(2)⇒(5) follow from [6, Proposition 2.1], resp. Theorem 2.4, and the fact that
finite-dimensional C∗-algebras are unital.

Suppose that (2) holds. Then for every bounded sequence (vn) there are a
subsequence (vnk

) of (vn) and v, w ∈ V such that

lim
k→∞

‖〈y, vnk
〉 − 〈y, v〉‖ = 0, ∀y ∈ V,

lim
k→∞

‖vnk
a− wa‖ = 0, ∀a ∈ A.

Then for every a ∈ A and y ∈ V we have

lim
k→∞

‖〈y, vnk
a〉 − 〈y, va〉‖ = 0,

lim
k→∞

‖〈y, vnk
a〉 − 〈y, wa〉‖ = 0.

Therefore 〈y, va〉 = 〈y, wa〉 for all a ∈ A and y ∈ V , so v = w. This gives (3). �

If a C∗-algebra A is considered as a Hilbert C∗-module over itself, then condi-
tions from the statement (3) of Theorem 2.5 coincide, and we have the following
corollary.

Corollary 2.6. A C∗-algebra A is finite-dimensional if and only if for every
bounded sequence (an) in A there are a subsequence (ank

) of (an) and a ∈ A such
that

lim
k→∞

ank
b = ab, ∀b ∈ A.

Remark 2.7. Observe that if a full right HilbertA-module V satisfies the following
two conditions:

(i) mappings v 7→ va from V into V are compact for all a ∈ A;
(ii) for every bounded sequence (vn) in V there are a subsequence (vnk

) of
(vn) and v ∈ V such that

lim
k→∞

‖〈y, vnk
〉 − 〈y, v〉‖ = 0, ∀y ∈ V,

then V must be finite-dimensional. (Namely, (ii) means that the C∗-algebra A
is finite-dimensional, so A is unital. From (i) it follows now then the identity
operator on V is compact, that is, V is finite-dimensional.)

In a similar way we deduce that a full right Hilbert A-module V satisfying the
following two conditions:

(i) for every bounded sequence (vn) in V there are a subsequence (vnk
) of

(vn) and v ∈ V such that

lim
k→∞

‖vnk
a− va‖ = 0, ∀a ∈ A;

(ii) mappings v 7→ 〈y, v〉 are compact from V into A for all y ∈ V,

must also be finite-dimensional.
However, if a full right Hilbert A-module V satisfies conditions

(i) mappings v 7→ va from V into V are compact for all a ∈ A, and
(ii) mappings v 7→ 〈y, v〉 are compact from V into A for all y ∈ V,
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then V does not have to be finite-dimensional. To see this, let H be a separable
infinite-dimensional Hilbert space, and A ⊂ K(H) the C∗-algebra of all diagonal
(with respect to a fixed orthonormal basis) operators with diagonal entries con-
verging to zero. Let us regard A as a Hilbert C∗-module over itself. Clearly, A is
infinite-dimensional as a vector space. On the other hand, the mappings v 7→ va,
that is, v 7→ 〈y, v〉 = y∗v = vy∗, from A into A are compact for all a, y ∈ A. (For
details see Remark 2.6 of [3].)

3. Hilbert C∗-modules over C∗-algebras of compact operators

In this section we study Hilbert C∗-modules with the property that mappings
v 7→ 〈y, v〉 from V into A are weakly compact for all y ∈ V. We first consider
some other mappings (related to every Hilbert C∗-module) whose weak (or norm)
compactness is equivalent to the weak compactness of the mapping v 7→ 〈y, v〉.
We use results from [20] and [21] obtained in the setting of C∗-algebras. Com-
bining this with results from [2], we get some new characterizations of Hilbert
C∗-modules over compact operators.

Since we shall use linking algebras, we first recall relevant definitions.
Given a Hilbert C∗-module V over a C∗-algebra A, the linking algebra L(V ) is

defined as the matrix algebra of the form

L(V ) =

[
K(A) K(V,A)

K(A, V ) K(V )

]
.

Observe that L(V ) is in fact the C∗-algebra of all ’compact’ operators acting
on the Hilbert C∗-module A ⊕ V over A. Each v ∈ V induces the mappings
rv ∈ B(A, V ) and lv ∈ B(V,A) given by rv(a) = va and lv(w) = 〈v, w〉 such that
l∗v = rv. The mapping v 7→ lv is an isometric conjugate linear isomorphism from
V to K(V,A), and v 7→ rv is an isometric linear isomorphism from V to K(A, V ).
Furthermore, every a ∈ A induces the mapping Ta ∈ K(A) given by Ta(b) = ab,
and the mapping a 7→ Ta defines an isomorphism of C∗-algebras A and K(A).
Therefore, we may write

L(V ) = {
[

Ta ly
rx T

]
: a ∈ A, x, y ∈ V, T ∈ K(V )}

and identify:

K(A) = K(A⊕ 0) ⊆ K(A⊕ V ) = L(V ),

K(V ) = K(0⊕ V ) ⊆ K(A⊕ V ) = L(V ).

For details about linking algebras we refer to [16, 1, 5].

Theorem 3.1. Let V be a full right Hilbert A-module. For every y ∈ V the
following statements are mutually equivalent.

(1) v 7→ y〈v, y〉 is a compact mapping on V.
(2) v 7→ y〈v, y〉 is a weakly compact mapping on V.
(3) v 7→ 〈v, y〉 is a weakly compact mapping from V into A.
(4) T 7→ Ty is a weakly compact mapping from K(V ) into V.
(5) a 7→ ya is a weakly compact mapping from A into V.
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(6) v 7→ θy,v is a weakly compact mapping from V into K(V ).

Proof. Let us take an arbitrary y ∈ V and define Y =

[
0 0
ry 0

]
∈ L(V ). Then

v 7→ y〈v, y〉 is a compact mapping on V if and only if the mapping X 7→ Y XY
is compact on L(V ) (see the proof of Proposition 2 in [2]). Furthermore, by
[21, Theorem 3.1], the mapping X 7→ Y XY is compact on L(V ) if and only if
X 7→ XY is weakly compact on L(V ) if and only if X 7→ Y X is weakly compact

on L(V ). Writing X ∈ L(V ) as

[
Ta lv
ru S

]
we have

XY =

[
T〈v,y〉 0
rSy 0

]
.

We will now prove that the weak compactness of X 7→ XY on L(V ) implies (3)
and (4).

So, suppose that X 7→ XY is weakly compact on L(V ). Let (vn) and (Sn)

be bounded sequences in V and K(V ), respectively. Then Xn =

[
0 lvn

0 Sn

]
is a

bounded sequence in L(V ), so, by assumption, there are a subsequence (Xnk
) of

(Xn) and X0 =

[
Ta0 lv0

ru0 S0

]
∈ L(V ) such that

lim
k→∞

F (Xnk
Y ) = lim

k→∞
F (

[
T〈vnk

,y〉 0
rSnk

y 0

]
) = F (X0), ∀F ∈ L(V )∗.

In particular, for F ∈ L(V )∗ defined by F (

[
Ta lv
ru S

]
) = f(a), where f ∈ A∗,

we get that f(〈vnk
, y〉) converges to f(a0) for every f ∈ A∗, i.e., v 7→ 〈v, y〉 is a

weakly compact mapping from V into A. This proves that (1)⇒(3). Similarly, if

we take F ∈ L(V )∗ defined by F (

[
Ta lv
ru T

]
) = g(u), where g ∈ V ∗, we get that

g(Snk
y) converges to g(u0) for every g ∈ V ∗, i.e., T 7→ Ty is a weakly compact

mapping from K(V ) into V , which gives (1)⇒(4).
Since

Y X =

[
0 0

rya θy,v

]
,

one can prove in the same way that the weak compactness of X 7→ Y X implies
(5) and (6), i.e., (1)⇒(5) and (1)⇒(6).

Observe that the mapping v 7→ y〈v, y〉 from V into V can be written as a
composition of the bounded mappings v 7→ 〈v, y〉 from V into A and a 7→ ya from
A into V. Since the composition of a bounded operator and a weakly compact
operator is weakly compact, we conclude that (3)⇒(2) and (5)⇒(2). Another
way to get the mapping v 7→ y〈v, y〉 is to compose bounded mappings from (4)
and (6), so we analogously conclude that (4)⇒(2) and (6)⇒(2).

Since obviously (1)⇒(2), it only remains to show (2)⇒(1), that is, (2) implies
compactness of the mapping X 7→ Y XY on L(V ). For this, it is enough to prove
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that (2) implies weak compactness of X 7→ Y XY on L(V ) since, by Theorem 3.1
of [20], such a mapping will be compact as well.

Observe that

Y XY =

[
0 0

ry〈v,y〉 0

]
.

Let (Xn) be a bounded sequence in L(V ) and let Xn =

[
Tan lvn

run Sn

]
for n ∈ N.

Then (vn) is a bounded sequences in V . If v 7→ y〈v, y〉 is weakly compact, then
there are a subsequence (vnk

) of (vn) and u0 ∈ A such that

lim
k→∞

g(y〈vnk
, y〉) = g(u0), ∀g ∈ V ∗.

Then for X0 =

[
0 0

ru0 0

]
we have

lim
k→∞

F (Y Xnk
Y ) = F (X0), ∀F ∈ L(V )∗.

Indeed, every F ∈ L(V )∗ can be written as

F (

[
Ta lv
ru S

]
) = f1(a) + f2(v) + f3(u) + f4(S),

where f1 ∈ A∗, f2, f3 ∈ V ∗, f4 ∈ K(V )∗ are defined by

f1(a) = F (

[
Ta 0
0 0

]
), f2(v) = F (

[
0 lv
0 0

]
),

f3(u) = F (

[
0 0
ru 0

]
), f4(S) = F (

[
0 0
0 S

]
),

where − in the definition of f2 stands for complex conjugation. We now have

lim
k→∞

F (Y Xnk
Y ) = lim

k→∞
F (

[
0 0

ry〈vnk
,y〉 0

]
)

= lim
k→∞

f3(y〈vnk
, y〉)

= f3(u0) = F (X0)

which shows that X 7→ Y XY is weakly compact on L(V ). �

Observe that if we regard a C∗-algebra as a Hilbert C∗-module over itself, we
get generalizations of [21, Theorem 3.1] and [20, Theorem 3.1].

As an immediate consequence of the preceding theorem and [2, Proposition 2],
we obtain another characterization of Hilbert C∗-modules over compact operators.

Corollary 3.2. Let V be a full right Hilbert A-module. The following statements
are mutually equivalent.

(1) There is a faithful representation π : A → B(H) such that π(A) ⊆ K(H).
(2) For every y ∈ V the mapping v 7→ y〈v, y〉 is compact on V.
(3) For every y ∈ V the mapping v 7→ y〈v, y〉 is weakly compact on V.
(4) For every y ∈ V the mapping v 7→ 〈v, y〉 is weakly compact from V into

A.
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(5) For every y ∈ V the mapping T 7→ Ty is weakly compact from K(V ) into
V.

(6) For every y ∈ V the mapping a 7→ ya is weakly compact from A into V.
(7) For every y ∈ V the mapping v 7→ θy,v is weakly compact from V into

K(V ).

Acknowledgement. The authors are thankful to the referee for several useful
comments.
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