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ABSTRACT. In this paper, we show reverses of the Golden-Thompson type
inequalities due to Ando, Hiai and Petz: Let H and K be Hermitian matrices
such that mI < H, K < M1 for some scalars m < M, and let a € [0,1]. Then
for every unitarily invarint norm

—« e —m)\ 2 %
lle R <SP 5 || (P g PR 7|

holds for all p > 0 and the right-hand side converges to the left-hand side as
p | 0, where S(a) is the Specht ratio and the a-geometric mean X f, Y is
defined as

X4, Y =X3 (X*%YX*%) X% forall 0<a<1

for positive definite X and Y.

1. INTRODUCTION.

Let M,, denote the space of n-by-n complex matrices and I stands for the
identity matrix. For a pair X, Y of Hermitian matrices, the order relation X > Y
means as usual that X — Y is positive semidefinite. In particular, X > 0 means

Date: Received: 28 March 2008; Revised: 15 June 2008; Accepted: 26 June 2008.

2000 Mathematics Subject Classification. Primary 15A42; Secondary 15A45, 15A48 and
15A60.

Key words and phrases. Positive semidefinite matrix, Golden—-Thompson inequality, Specht
ratio, reverse inequality, geometric mean, unitarily invariant norm, generalized Kantorovich
constant, Mond—Pecari¢ method.

140



REVERSES OF THE GOLDEN-THOMPSON TYPE INEQUALITIES 141

that X is positive definite. A norm ||| - || on M, is said to be unitarily invariant if
IUXVI = IX X e M,

for all unitary U, V. Throughout the paper, the symbol ||- || denotes the unitarily
invariant norm.

Motivated by quantum statistical mechanics, Golden [5], Symanzik [12] and
Thompson [13] independently proved that

Tr K < Tr ek

holds for Hermitian matrices H and K. This so-called Golden—Thompson trace
inequality has been generalized in several ways [8, 2]. Hiai and Petz [0] gave a

lower bound on Tr e#*¥ in terms of the geometric mean of Hermitian matrices

H and K, and it complements the Golden—-Thompson upper bound: For each
a € [0,1]
Tr (epH Jja epK); < Tr e(l—a)H+aK

holds for all p > 0. Here X 4, Y denotes the a-geometric mean of positive definite
X and Y in the sense of Kubo-Ando [7] (in particular, X §Y = X { 1 Y is the

geometric mean), i.e.,
X4, Y = X3 (X—%YX—%) Xz forall 0<a<1.
Afterwards, Ando and Hiai [1] showed that for every unitarily invariant norm || - ||

. —Q (0%
I (P g )7 | < et (1.1)

holds for all p > 0 and the left-hand side of (1.1)) increases to the right-hand side
as p | 0. In particular,
[l g e < Jle™ 1.

The purpose of this paper is to find a upper bound on [|e!=¥H+oK|| in terms

1
of scalar multiples of || (e?* §, e?™)? || for every unitarily invariant norm, and it
shows reverses of the Golden-Thompson type inequalities (|1.1): Let H and K be
Hermitian matrices such that mI < H, K < M1 for some scalars m < M, and
let o € [0,1]. Then
1
fleC= K < SN ] (e o )7 | (1:2)

holds for all p > 0 and the right-hand side of ((1.2)) converges to the left-hand side
as p | 0, where S(h) is the Specht ratio.

2. PRELIMINARIES.

In order to prove our results, we need some preliminaries. As a converse of the
arithmetic-geometric mean inequality, Specht [11] estimated the upper bound of

the arithmetic mean by the geometric one for positive numbers: For z¢,--- ,z, €
[m, M] with 0 <m < M,

T1 4+ Ty

2 < S(h) Y@ T, (2.1)

n
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where h = & (> 1) is a generalized condition number in the sense of Turing [I5]
and the Specht ratio is defined for h > 0 as

1
(h —1)h"—1
S(h) = ——F—"—F7
() elogh
Pecarié¢ [10] showed the noncommutative operator version of ([2.1]): For positive
definite A and B such that 0 < mI < A, B < M1 for some scalars 0 <m < M

(1—a)A+aB<S(h)At, B  forall a€l0,1], (2.3)

(h#1) and S(1)=1. (2.2)

also see [14].
We collect basic properties of the Specht ratio (4, Lemma2.47], [16]):

Lemma 2.1. Let h > 0 be given. Then the Specht ratio has the following prop-
erties:

(1) S(h~1) = S(h).

(2) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing
for h > 1.

(3) lim,_ S(h?)> = 1.
For positive definite A such that mI < A < M1 for some scalars 0 < m < M,
the following inequality is called the Kantorovich inequality:
(M + m)?
4Mm
(M+m

We call the constant " the Kantorovich constant. Furuta [3] showed the
following extension of (2.4]) as a reverse of Holder-McCarthy inequality:

(Az,z) (A, x) < for every unit vector z. (2.4)

4

Theorem A. Let A be a positive definite matrix such that mI < A < MI for
some scalars 0 < m < M and z a unit vector. Put h = % Then

(Az, )P < (APz,z) < K(h,p)(Az, x)P for all p & [0, 1]. (i)
K(h,p)(Az,x)? < (APz,z) < (Az,z)?  for all p € [0, 1], (ii)

where a generalized Kantorovich constant K (h,p) is defined for h > 0 as

h? — h —1h7 =17
K(h,p) = TR (p T h) for any real number p € R. (2.5)
. - o (M+m)2
In fact, if we put p = —1, then K(%, —1) = -

Remark 2.2. By using the Mond—Pecari¢ method, Mond and Pecari¢ [9] showed
more general form of Theorem A in 1993: Let A be a Hermitian matrix such that
ml < A< MI. If fis a strictly convex twice differentiable function on [m, M]
such that f(t) > 0 for all ¢t € [m, M], then for all unit vectors z, the inequality

(f(A)z, ) <X f((Az,2))
holds for some A > 1. In fact, if we put f(¢) = ¢?, then we have Theorem A.
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We state some properties of K (h,p) (see [4, Theorem 2.54, 2.56], [16]):

Lemma 2.3. Let h > 0 be given. Then a generalized Kantorovich constant
K(h,p) has the following properties:

K(h,p) =K', p) for allp e R. (i)
K(h,p) = K(h,1—1p) for allp € R. (ii)
K(h,0)=K(h,1)=1 and K(l,p)=1 forallpeR. (iii)
K2y = K(, g)—i for pr #0. (iv)
lilr(l) K(h?, p) S(h") for allr € R. (v)

3. SPECHT RATIO VERSION.
Let A and B be positive definite matrices. Ando and Hiai [I] showed the
following inequality by using the log-majorization: For each « € [0, 1]
(A7 2 B2)7 | < (A7 o BOY]l forallo<g<p  (31)
for every unitarily invariant norm. In particular,

A 4 BTl < Il (A%a BY || forallr>1.

First of all, we investigate order relations between (A? £, Bq)% and (AP 4, Bp)%
in terms of the Specht ratio. In fact a stronger result holds. We show that a
reverse of can be extended to all eigenvalues. Given two positive definite
matrices X and Y, recall that the eigenvalues of Y dominate the corresponding
eigenvalues of X iff there exists a unitary matrix U such that X < UYU*. For a
Hermitian matrix H, let A\{(H) > Ao(H) > --- > A\, (H) be the eigenvalues of H
arranged in decreasing order.

Lemma 3.1. Let A and B be positive definite matrices such that 0 < mlI <
A, B < MI for some scalars 0 < m < M, and let a € [0,1]. Put h = % Then
for each 0 < q < p, there exist unitary matrices U and V such that

S() 78 V(AP o BY)P V' < (A" o BT < S(W)» U (A 40 B U”, (32)
where S(h) is defined as (2.2).
Proof. By the arithmetic-geometric mean inequality and its reverse , we have

At, B < (1—a)A+aB < S(h) A, B
Since 0 < % < 1, it follows from the operator concavity of t» that
Ab #, By < (1 —a)Ar + aBr < ((1 —a)A+ aB)? < S(h)»(At,B)?.
Replacing A and B by AP and BP respectively, we have
A9, B < S(hP)p (AP 4, BP)s . (3.3)
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In the case of ¢ > 1, the Lowner-Heinz inequality asserts
(A% 2o BY)1 < S(W)» (A7 4, BY)r.
In the case of 0 < ¢ < 1, by the minimax principle, there exists a subspace F

of codimension k£ — 1 such that

Mo((A?%, BY)3) = max (z,(A?4, BY)iz) = max (z,(A? 4, BY)z)s.

zEF,||z||=1 zEF,||z||=1

Therefore, by (3.3 we have
Ae((A? 2o BY)4)

Q=

<  max <S(hp)%(33a (ApﬁaBp)%QZ))

z€F,||z||=1

< max S(hp)% (x, (ApﬁaBp)%x) by 0 < ¢ < 1 and Theorem A(ii)

zeF||zf|=1
< S(W)r M((AP 1 BY)?)

and hence we obtain the right-hand side of ({3.2]).

To prove the left-hand side inequality, we replace A and B by their inverses
and we use

Aty B t=(At, B)L
Then we have
(A—q Ho B—q)a < S(h_p)% % (A—p i B—p)E 78

for some unitary V. By raising both sides to the inverse and (1) of Lemma
we obtain the desired one. O

As a corollary of Lemma [3.1, we have a reverse of (3.1):

Corollary 3.2. Let A and B be positive definite matrices such that 0 < ml <
A,B < MI for some scalars 0 < m < M, and let a € [0,1]. Put h = 2. Then

Il (A9 to BY)s || < S(P)7 | (A7 b0 B?)7 || for allO<g<p.  (3.4)
In particular,
47 8, BPIl < S(hPII(A ta BNl forall0<p<1 (3.5)
and
(A ta BYIl < SP)|A” o BPIl  for allp > 1. (3.6)

Proof. By Lemma we have (3.4). If we put ¢ =1 in (3.4)), then we have
I[A e Bl < S(h?)» [ (A” 2o B”)* ||
for all p > 1. Moreover, replacing A and B by Av and B7 we have
1 1 1 1
[[A» §a BP|| < S(B")7 || (A 4o B)7 ||
and hence we have (3.5)). Similarly we have (3.6)). OJ
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We show reverses of the Golden—Thompson type inequalities due to Ando,Hiai
and Petz, which is our main result.

Theorem 3.3. Let H and K be Hermitian matrices such that mi < H K < M1
for some scalars m < M, and let o € [0,1]. Then for each p > 0 there ezists
unitary matrices U and V' such that

1
S(ep(M*m))—% 174 (epH i epK)5 %
< cl-eHtoK S<€p(Mfm))% U (epH i ePK)% U (3.7

Proof. Replacing A and B by e and e* in Lemma respectively, it follows
that for each 0 < ¢ < p there exist unitary matrix U, , such that

(" o )7 < SN U (@t PF)PT;,
By [6l Lemma 3.3], we have

e(l—oz)H—‘roeK — hr%(eqH ﬂa qu)%
q*)

and hence it follows that for each p > 0 there exist unitary matrix U such that

e(lfoz)HJraK < S(ep(Mfm))% U (epH Jja epK)% U*.

We also have the left-hand side inequality of (3.7]) by a similar method as the
proof of Lemma [3.1] O

In particular, we have the following results by (3) of Lemma .

Theorem 3.4. Let H and K be Hermitian matrices such that mlI < H, K < M1
for some scalars m < M, and let « € [0,1]. Then

—Q « —m 1 1
ek < S(ePMmm)e | (e fo )7 | (3.8)

holds for all p > 0 and the right-hand side of (3.8)) converges to the left-hand side
as p | 0. In particular,

lle 5 < S fle* ¢ ). (3.9)

4. KANTOROVICH CONSTANT VERSION.

In this section, we want to show another estimate of the Golden—Thompson
type inequalities due to Ando, Hiai and Petz. As a matter of fact, the upper

bound S (ep(M_m))% in (3.8)) of Theorem is constant for all @ € [0,1]. We

show another order relations between (A? f, Bq)% and (A? f, Bp)% in terms of
the generalized Kantorovich constant.
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Lemma 4.1. Let A and B be positive definite matrices such that 0 < ml <
A,B < MI for some scalars 0 < m < M, and let o € [0,1]. Put h = 2. Let
0 <q<1. Then for each 0 < q < p < 1, there exist unitary matrices U; and U,
such that

K (h,p)? K (W7, )2 Uy (A7 1o B)7 U}
< (Ao B < K(hp) P K(h?,0) WA 0 BY)PUS (41)
and for each p > 1, there exist unitary matrices Vi and Vs such that
K (W, ) (A £ BY)P VY
< (ATt BY)1 < K(W7,0) 94 0 BYIVS, (42)
where the generalized Kantorovich constant K (h,p) is defined as (2.5)).

Proof. For 0 < ¢ < p <1 and every unit vector x,

1 Aix g o, Az 1 g 2
(2,(AT o BY)a)1 = (—a—0, (A2 BIAT2 ) ) u [ A2 ]|«
[ Az ]| | A2 ]|
At ’ ; Afx o oq 02
< (%, T2BIAT: ;x )a ||A5x||3 by 0 < a < 1 and Theorem A (ii)
[ A2 z]] [A2z]]

Bo) || Al
x)* ||A%x||%727a by 0 < ¢ < 1 and Theorem A (ii)
$)7||A%9€||T7 (%)

!, B”x))% ||A%x|]%_27a by 0 < p <1 and Theorem A (ii)

= (z

<(z,B

(m B

K(h p) %(fﬁ Bra)r||Asz|a
K

K

K

IN

A3 » b A3
(hyp) % (—p (A5 BPAE) 7
JA%z] A%z
(h,p) s K(h*,0)

(hp) S K (W, )"

)7 AR ¥ [ ALl

(AP 4, BPz,z)v||Abz||> 7||Adz]|s byO<a<l
(AP 4, Bpm,x)%.

IN

“@\»—‘ ’U\»—‘

IN

The last inequality holds since it follows from 0 < ¢ < p that

| AR |l = (A72,2)"F (A%, 2)' 7
(&, 2)7 (A)rw,2) T

e

< (APx,z) v (APz,x) 7 =1

Q
-

By the minimax principle, there exists a subspace F' of codimension k£ — 1 such
that

Ak ((Aq fa Bq)%> = max (z,(A?f, Bq)%x) = max (z,(A%f, Bq)x)é.

yeFR,[|lzl|=1 yeR,[|lz]|=1



REVERSES OF THE GOLDEN-THOMPSON TYPE INEQUALITIES 147

Therefore, we have

Ak ((Aq it Bq)%) = max (z,(A474, Bq)x)%

yEF||lz||=1

< max K(hp) ?K(h®, a) v (AP, Bz, x)7

~ yER|z|=1
< K(h,p)_%K(hQP,oz)_%/\k <(Ap i Bp)%> by 117 > 1 and Theorem A(i).
Hence there exist a unitary matrix Us such that
(A? o B < K(h,p) 5K (h*,) »Up(A? 4, BY)#Us.
Replacing A and B by their inverses, we have the left-hand side inequality of

).
Suppose that p > 1. In the part (x), we have (x, Bz)? < (x, BPz) by Theorem
A(i). Therefore it follows that the inequality (4.2 holds by a similar method. [

By Lemma .1, we have another reverse of the Golden—Thompson type inequal-
ities due to Ando, Hiai and Petz.

Theorem 4.2. Let H and K be Hermitian matrices such that mi < H K < M1
for some scalars m < M, and let o € [0,1]. Then
_a —m _1 1
[letm i) < K (M p)Te K(e® ™M™ a) e [|(e? o )|
forall0<p<1
and
fled-m+ak || < K (M=) )75 (P g, F)e|| for allp > 1,

where the generalized Kantorovich constant K (h,p) is defined as . In par-

ticular,

e2M | 2m
2eMem

Proof. Replacing A and B by e and e¥ in Lemma , we have this theorem. [

lle lle*™ & . (4.3)

Remark 4.3. (1) In Theorem , the constant K (eM—™ p)~» K (e22(M=m), 04)_% =
1 in the cases of (a,p) = (0,1) and (1,1).

(2) Comparison of the constants in Theorem [3.4{and (4.3)) in Theorem (4.2
If a = %, then for each p > 0 it follows from Specht theorem ({2.1f) that

K(h?ﬁ,%)é _ <—h2 *‘Qh")p < (SVhERE)" = (k)5

Hence for each p > 1

1

m _1 1
fle™ 50 < K (e, )7 | (7 g )7 |

< (MY || (2 4 2K |
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In particular, if we put p = 1, then
oM | _2m
HiK) o € Te¢
e ) < Soor

Finally, in the case of 0 < p < 1, if we put h = 2, a = %, then we graph two
functions S(2°)7 and K(2,p) % K (22, %)7% on p as follows:

lle*™ g 2| < S [le* g 2.

L4 f’/( 2)

12} o

-10 3 | 5 10

FIGURE 1. Graphs of y = S(2?)7 -+ (1) and y = K(2,p)" % K(2%, %)_% - (2)
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