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Abstract. Recently, the class of (Cp, α)-hyponromal operators is introduced
and the Aluthge transforms of such operators is discussed by some researchers.
This paper is to give a further development of the Aluthge transforms of (Cp, α)-
hyponromal operators by using Loewner-Heinz inequality, Furuta inequality
and Lauric’s lemma. Especially, it is shown that, if p ≥ 1, α ≥ 1/2 and T
is (Cp, α)-hyponromal, then the Aluthge transform T (1/2, 1/2) is (C4pα/β , β)−
hyponromal where 0 < β ≤ 1 and T (1/2, 1/2) = |T |1/2U |T |1/2.

1. Introduction

Throughout this paper, an operator T means a bounded linear operator on a
separate, infinite dimensional, complex Hilbert space H. For α > 0, (T ∗T )α −
(TT ∗)α is called the α-self-commutator of T and denote it by Dα

T . Let K be the
ideal of all compact operators and Cp(H), 1 ≤ p < ∞, the ideal of operators in
the Schatten p-class. For 0 < p < 1, the usual definition of ‖ · ‖p does not satisfy
the triangle inequality, nevertheless (Cp, ‖ · ‖p) is closed and ‖TK‖p ≤ ‖T‖‖K‖p
where T is an operator and K ∈ Cp(H).

An operator T is called (Cp, α)-normal if Dα
T ∈ Cp(H), and denote the class of

(Cp, α)-normal operators by N α
p (H). Similarly, T is called (Cp, α)-hyponormal if

Dα
T = P +K, where P is a positive semidefinite operator (denote by P ≥ 0) and

K ∈ Cp(H). The class of (Cp, α)-hyponormal operators is denoted by Hα
p (H). Es-

pecially, T ∈ H1
1(H) is also called almost hyponormal. A α-hyponormal operator

T can be regarded as a (C0, α)-hyponormal operator, that is, T ∈ Hα
0 (H).
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It is known that, by Loewner-Heinz inequality (L-H), Hβ
0 (H) ⊆ Hα

0 (H) where
0 < α ≤ β (see [3, page 127]). However, the inclusion relations among N α

p (H) or
Hα
p (H) are less obvious. See [5] and [6].
Lauric [5, Theorem 13] gave a result on the case s = t = 1/2 of Aluthge

transform T (s, t) of (Cp, α)-hyponormal operators where s > 0, t > 0 and T (s, t) =
|T |sU |T |t. Wang and Gao [6] showed a generalization of Lauric’s result.

Theorem 1.1 ([6]). Let p ≥ 1 and α ≥ max{s, t}. If T is (Cp, α)-hyponormal
and α ≤ β ≤ 1, then T (s, t) is (C 2pα

sβ
, β)-hyponormal.

Recall that Hα
0 (H) is regarded as the class of α-hyponormal operators. The

case p = 0 of Theorem 1.1 follows by the result below easily.

Theorem 1.2 ([1, 4, 8]). If T is a α-hyponormal operator and γ = min{α +
s, α + t, s+ t}, then T (s, t) is γ

s+t
-hyponormal.

Moreover, the outer exponent γ in the Theorem above is optimal [7]. In [9],
it is proved that the complete form [10, Theorem 1.3] and original form of Fu-
ruta inequality [3, page 129] are equivalent to the order relations among Aluthge
transforms of α-hyponormal operators.

Obviously, by (L-H) for α ≤ β ≤ 1, Theorem 1.2 implies the case p = 0 of
Theorem 1.1.

Inspired by Theorem 1.1-1.2, this paper is to provide a sharpening of Theorem
1.1 via (L-H), the original form of Furuta inequality and Lauric’s lemma below.

Theorem 1.3 (Furuta inequality (F), [3]). Let r ≥ 0, p > 0, then A ≥ B ≥ 0
ensure (

Br/2ApBr/2
)min{1,p}+r

p+r ≥
(
Br/2BpBr/2

)min{1,p}+r
p+r ,(

Ar/2ApAr/2
)min{1,p}+r

p+r ≥
(
Ar/2BpAr/2

)min{1,p}+r
p+r .

Tanahashi proved that the outer exponent min{1, p}+ r above is optimal, see
[2, 3] for related topics.

Lemma 1.4 ([5]). Let α > 0, p ≥ 1, A ≥ 0 and B ≥ 0 such that A−B ∈ Cp(H).
Then Aα −Bα ∈ Cpmax{1,1/α}(H).

It should be pointed out that, if 0 < α < 1, the condition p ≥ 1 in Lemma 1.4
can be released to p ≥ α [5, Lemma 10].

2. Results and Proofs

Denote p(s, t) := max{2α,s}p(s+t)
min{α+s,α+t,s+t}sβ and α(s, t) := min{α+s,α+t,s+t}β

s+t
.

Theorem 2.1 (Main result). Let s > 0, t > 0, p ≥ 1 and α > 0. If T is
(Cp, α)-hyponormal and 0 < β ≤ 1, then T (s, t) is (Cp(s,t), α(s, t))-hyponormal.

It is clear that Theorem 1.2 can be regarded as the case p = 0 and β = 1 of
Theorem 2.1 which relates to Lauric’s question closely [5, Question].
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Proof. By assumption, let Dα
T = P + K where P ≥ 0 and K ∈ Cp(H). Since

K = K∗, K can be represented as K = K+−K− where K+, K− are positive part
and negative part of K respectively, and K+, K− are in Cp(H). So assume that
Dα
T = P −K where P ≥ 0, K ≥ 0 and K ∈ Cp(H) without loss of generality.
Hence |T |2α + K = |T ∗|2α + P ≥ |T ∗|2α where T = U |T | is the polar decom-

position of T , denote A := |T |2α + K and B := |T ∗|2α. By (F) and (L-H) for
0 < β ≤ 1, (

B
t
2αA

s
αB

t
2α

)min{α,s}+t
s+t

β ≥ B
min{α,s}+t

α
β. (2.1)

By Lemma 1.4, A
s
α = |T |2s + K1 where K1 ∈ Cp1(H) and p1 = pmax{1, α/s}.

Furthermore, (
B

t
2αA

s
αB

t
2α

)min{α,s}+t
s+t

β

=
(
|T ∗|t|T |2s|T ∗|t +K2

)min{α,s}+t
s+t

β

=
(
|T ∗|t|T |2s|T ∗|t

)min{α,s}+t
s+t

β
+K3

where Ki ∈ Cpi(H) for i ∈ {2, 3}, p2 = p1 and

p3 = p2
s+ t

min{α + t, s+ t}β
= p

(s+ t) max{α, s}
min{α + t, s+ t}sβ

.

Let K4 = U∗K3U ∈ Cp3(H), by (2.1),

|T (s, t)|2
min{α+t,s+t}β

s+t +K4

=
(
U∗|T ∗|t|T |2s|T ∗|tU

)min{α+t,s+t}β
s+t +K4

=U∗
(
B

t
2αA

s
αB

t
2α

)min{α,s}+t
s+t

β
U

≥U∗B
min{α,s}+t

α
βU = |T |2(min{α,s}+t)β,

(2.2)

So that the following follows by Lemma 1.4,(
|T (s, t)|2

min{α+t,s+t}β
s+t +K4

)min{α+s,α+t,s+t}
min{α+t,s+t}

=|T (s, t)|2
min{α+s,α+t,s+t}β

s+t +K5

(2.3)

where K5 ∈ Cp5(H) and p5 = p (s+t)max{α,s}
min{α+s,α+t,s+t}sβ . (2.2) and (2.3) deduce that

|T (s, t)|2
min{α+s,α+t,s+t}β

s+t +K5 ≥ |T |2min{α+s,α+t,s+t}β. (2.4)

On the other hand,

A
min{α,t}+s

α
β ≥

(
A

s
2αB

t
αA

s
2α

)min{α,t}+s
s+t

β
. (2.5)
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By Lemma 1.4, A
s
2α = |T |s + K6 where K6 ∈ Cp6(H) and p6 = pmax{1, 2α/s}.

Thus, (
A

s
2αB

t
αA

s
2α

)min{α,t}+s
s+t

β

=
(
|T |s|T ∗|2t|T |s +K7

)min{α,t}+s
s+t

β

=
(
|T |s|T ∗|2t|T |s

)min{α,t}+s
s+t

β
+K8

=
∣∣(T (s, t)

)∗∣∣2min{α,t}+s
s+t

β
+K8

(2.6)

where Ki ∈ Cpi(H) for i ∈ {7, 8}, p7 = p6 and

p8 = p7
s+ t

min{α + s, s+ t}β
= p

(s+ t) max{s, 2α}
min{α + s, s+ t}sβ

.

Again by Lemma 1.4,(∣∣(T (s, t)
)∗∣∣2min{α,t}+s

s+t
β

+K8

)min{α+s,α+t,s+t}
min{α+s,s+t}

=
∣∣(T (s, t)

)∗∣∣2min{α+s,α+t,s+t}β
s+t +K9

(2.7)

where K9 ∈ Cp9(H) and p9 = p (s+t)max{2α,s}
min{α+s,α+t,s+t}sβ , and

A
min{α+s,α+t,s+t}

α
β = |T |2min{α+s,α+t,s+t}β +K10 (2.8)

where K10 ∈ Cp10(H) and p10 = pmax{α,min{α+s,α+t,s+t}β}
min{α+s,α+t,s+t}β . (2.5)-(2.8) imply that

|T |2min{α+s,α+t,s+t}β +K10 ≥
∣∣(T (s, t)

)∗∣∣2min{α+s,α+t,s+t}β
s+t +K9. (2.9)

Lastly, (2.4) together with (2.9) imply that

|T (s, t)|2
min{α+s,α+t,s+t}β

s+t −
∣∣(T (s, t)

)∗∣∣2min{α+s,α+t,s+t}β
s+t ≥ K11

where K11 = K9 −K10 −K5 ∈ Cp11(H) and p11 = max{p5, p9, p10} = p9 = p(s, t)
by

max{2α, s} ≥ max{ s

s+ t
α, s} ≥ s

s+ t
max{α,min{α + s, α + t, s+ t}β}.

Therefore T (s, t) is (Cp(s,t), α(s, t))-hyponormal. �

Corollary 2.2. Let p ≥ 1 and α ≥ max{s, t}. If T is (Cp, α)-hyponormal and
0 < β ≤ 1, then T (s, t) is (C 2pα

sβ
, β)-hyponormal.

Theorem 1.1 is the special case α ≤ β ≤ 1 of Corollary 2.2.

Corollary 2.3. Let p ≥ 1 and 0 < α ≤ min{s, t}. If T is (Cp, α)-hyponormal

and 0 < β′ ≤ min{α+s,α+t}
s+t

, then T (s, t) is (C pmax{2α,s}
sβ′

, β′)-hyponormal.

The special case α ≤ β′ ≤ 2α
s+t

of Corollary 2.3 is just [6, Theorem 3.3].
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Proof. Denote β := (s+t)β′

min{α+s,α+t,s+t} . Since 0 < α ≤ min{s, t}, we have 0 < β ≤ 1,

p(s, t) =
max{2α, s}p(s+ t)

min{α + s, α + t}sβ
=
pmax{2α, s}

sβ′
,

α(s, t) =
min{α + s, α + t}β

s+ t
= β′.

By Theorem 2.1, T (s, t) is (C pmax{2α,s}
sβ′

, β′)-hyponormal. �
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