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ON DIFFERENT TYPE OF FIXED POINT THEOREM FOR
MULTIVALUED MAPPINGS VIA MEASURE OF

NONCOMPACTNESS
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Communicated by T. Schlumprecht

Abstract. In this paper by using the measure of noncompactness concept,
we present new fixed point theorems for multivalued maps. In further we intro-
duce a new class of mappings which are general than Meir–Keeler mappings.
Finally, we use these results to investigate the existence of weak solutions to
an Evolution differential inclusion with lack of compactness.

1. Introduction

Recently many papers have appeared about generalizations of Darbo’s fixed
point and its applications. For example, in 2015 Aghajani and Mursaleen [12]
introduced the definition of a Meir Keeler condensing operator and proved a
theorem that guarantees the existence of fixed points for single valued mappings
and proved a fixed point theorem which extended the well-known Darbo’s and
Meir Keeler fixed point theorems. Another generalization is due to Samadia
and Ghaemia [14], where they proved the existence of fixed points under a more
general condition than the contraction condition. It is interesting to see what
happened in the multivalued case and whether these results still hold.

Our aim in this paper is to recall some essential concepts and results that are
needed throughout this work. Then, we give a version of a Meir Keeler theorem
for condensing multivalued mappings, we also present some related results and
applications. In the third section, we present a version of theorems presented
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in [14] for multivalued mappings and some related results. We also study the
existence of fixed point for multivalued power set contraction mappings.

Finally, in order to indicate their applicability, we choose one among the previ-
ous theorems and we use it to study the existence of mild solutions for a nonlocal
differential evolution inclusion.

2. Preliminaries

In this section, we survey some definitions and preliminary facts for measure
of noncompactness and multivalued analysis which will be used in this paper.

Let (X, d) and (Y, d′) be two metric spaces. We use the following notations,

Pcl(X) = {A ∈ P(X) : A closed}, Pb(X) = {A ∈ P(X) : A bounded},
Pcv(A) = {A ∈ P(X) : A convex}, Pcp(X) = {A ∈ P(X) : Y compact}.

Consider Hd : P(X)× P(X) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B) , sup
b∈B

d(A, b)
}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a metric

space and (Pcl(X), Hd) is a generalized (complete) metric space (see [11]).
We denote by

SF (y) = {f ∈ L1(J,X) : f(t) ∈ F (t, yρ(t,yt)) , a.e. t ∈ J},
the set of selectors of F .
C(E;X) is the Banach space of all continuous mappings from E into X with

the norm
‖y‖ = sup { |y(t)| : t ∈ H }.

B(X) is the space of all bounded linear mappings F from X into X, with the
norm

‖F‖B(X) = sup { |F (y)| : |y| = 1 }.
A multivalued map F : X → P(X) has a fixed point if there exists x ∈ X such
that x ∈ F (x).

A multivalued map F : X → P(X) is said to be convex (closed) valued if F (x)
is convex (closed) in Y for each set A of X and F is bounded valued if F (x) is
bounded in Y for each x ∈ X, i,e

sup
x∈A

{sup{ ‖y‖ : y ∈ F (x)}} <∞.

In further, F is compact if F (A) is relatively compact for every B ∈ Pb(X).
Finally, F is upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set F (x0)
is a nonempty, closed subset of X, and if for each open subset U of X containing
F (x0), there exists an open neighborhood V of x0 such that F (V ) ⊆ U .

Lemma 2.1. Assume that D ⊂ X and Fx is closed for all x ∈ D, then the
following conclusions hold,

i) if F is u.s.c. and D is closed, then F has a closed graph (i.e., xn → x
and yn → y such that yn ∈ F (xn) ⇒ y ∈ F (x)).
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ii) if F (D) is compact and D is closed, then F is u.s.c. if and only if F has
a closed graph.

For more details on multivalued maps we refer to the books of Deimling [5] and
Górniewicz [9].

Definition 2.2. [3] Let X be a Banach space and BX the family of bounded
subset of X. A map

µ : BX → [0,∞)

is called measure of noncompactness (MNC) defined on X if it satisfies the fol-
lowing

(1) µ (A) = 0 ⇔ A is a precompact set.
(2) A ⊂ B ⇒ µ (A) 6 µ (B) .
(3) µ (A) = µ

(
A

)
, ∀A ∈ BX .

(4) µ (ConvA) = µ (A) .
(5) µ (λA+ (1− λ)B) 6 λµ (A) + (1− λ)µ (B) , for λ ∈ [0, 1] .
(6) Let (An) be a sequence of closed sets from BX such that An+1 ⊆ An,

(n > 1) and lim
n→∞

µ (An) = 0. Then the intersection set A∞ =
∞⋂

n=1

An is

nonempty and A∞ is precompact.

Let µ0 be the sequential MNC generated by µ, that is, for any bounded subset
A ⊂ X, then

µ0 (A) = sup {µ (xn)∞n=1 is a sequence in A} .

The relation between µ0 and µ is given by the following inequalities

µ0 (A) 6 µ (A) 6 2µ0 (A) .

However, if X is a separable space then µ0 (A) = µ (A) .

Lemma 2.3 ([10]).

(1) Let A ⊆ C (H;X) is bounded, then µ (A (t)) 6 µ (A) for all t ∈ H, where
A (t) = {y (t) , y ∈ A} ⊂ X. Furthermore if A is equicontinuous on H,
then µ (A (t)) is continuous on H and µ (A) = sup {µ (A (t)) , t ∈ H} .

(2) If A ⊂ C (E;X) is bounded and equicontinuous, then

µ

(∫ t

0

A (s) ds

)
6

∫ t

0

µ (A (s)) ds,

for all t ∈ E, where
∫ t

0
A (s) ds =

{∫ t

0
x (s) ds : x ∈ A

}
.

Lemma 2.4 ([15]). Let X be a Banach space and F a Caratheodory multivalued
mapping. Let Φ : L1 (E;X) → C (E;X) be linear continuous mapping. Then,

Φ ◦ SF : C (E;X) → Pcl;c (C (E;X))

u → (Φ ◦ SF )u := Φ (SF (u)) ,

is a closed graph operator in C (E;X)× C (E;X).
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Definition 2.5 ([2]). A multivalued map F : X → P(X) is called k-set contrac-
tion multivalued mapping if there exists a constant k, 0 6 k < 1 such that

µ(FA) 6 kµ (A) for any bounded A ⊂ X.

If µ(FA) < kµ (A) , then F is a condensing multivalued mapping.

Theorem 2.6. Let A be a closed convex and bounded subset of a Banach space
X and let F : A→ Pcl,cv (A) be an upper semi-continuous and condensing multi-
valued mapping. Then, F has a fixed point point.

The following results is due to Dhage [6].

Theorem 2.7. Let A be a closed convex and bounded subset of a Banach space
X and let F : A → Pcl,cv (A) be an upper semi-continuous multivalued mapping
such that

µ(FW ) 6 ϕ (µ (W )) for any bounded W ⊂ A,

where ϕ : R+ → R+ is a continuous nondecreasing function that satisfies ϕ (t) < t.
Then, F has a fixed point point and the set of fixed points is compact .

Lemma 2.8. Let ψ : R+ → R+ be a nondecreasing and upper semi-continuous
function. Then,

lim
n→∞

ψn (t) = 0 for each t > 0 ⇔ ψ (t) < t for any t > 0.

In what follows, we confine ourselves only to the fixed point theory related to
upper semicontinuous multi-valued mappings in Banach spaces. The first fixed
point theorem in this direction is due to Kakutani–Fan [8] which is as follows.

Theorem 2.9. Let A be a nonempty compact convex subset of a Hausdorff lo-
cally convex topological vector space E, and let F : A → Pcl,cv (A) be an upper
semicontinuous map. Then, F has a fixed point.

3. Fixed point theorems for multivalued Meir–Keeler set
contraction mappings

Definition 3.1. A Meir–Keeler condensing multivalued mapping if for each δ > 0
there exists ε > 0 such that

ε 6 µ (A) < ε+ δ ⇒ µ(FA) < ε.

Remark 3.2. The condensing multivalued mappings of Meir–Keeler type are more
general than condensing mappings. Indeed, let F be a condensing mapping, that
is,

µ(FA) 6 kµ (A) for any bounded A ⊂ X.

Suppose for δ =
(

1
k
− 1

)
ε that we have ε 6 µ (A) < ε+ δ, then

µ(FA) 6 kµ (A) < ε+ k

(
1

k
− 1

)
ε = ε.

Thus, F is a Meir Keeler condensing multivalued mapping.
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Theorem 3.3. Let X be a Banach space and A be a nonempty closed, bounded
and convex subset of X. Let F : A→ Pcl,cv (A) be multivalued upper semicontin-
uous mapping such that for any bounded W ⊂ A, we have

ε 6 µ (W ) < ε+ δ ⇒ µ(FW ) < ε.

Then, F has at least one fixed point in A.

Proof. Obviously, if we have

ε 6 µ (W ) < ε+ δ ⇒ µ(FW ) < ε,

then
µ(FA) < µ(A).

Thus by Theorem 2.6, F has at least one fixed point.

Corollary 3.4. Let X be a Banach space and F : X → P (X) be multivalued
mapping with convex values, closed graph and bounded range such that, for any
bounded A ⊂ X, we have

µ(FA) 6 kµ (A) , for 0 6 k < 1.

Then, F has at least one fixed point in A.

4. Fixed point theorems for multivalued set contraction mappings
of Caristi type

Theorem 4.1. Let X be a Banach space and A be a nonempty closed, bounded
and convex subset of X. Let F : A → Pcl,cv (A) be multivalued upper semi-
continuous mapping such that for any bounded W ⊂ A, we have

ψ (µ (FW )) 6 ψ (µ (W ))− ϕ (µ (W )) , (4.1)

where µ is an arbitrary measure of noncompactness and ψ, ϕ : R+ → R+ are
given functions such that ϕ is lower semi-continuous and ψ is continuous on R+.
Moreover, ϕ (0) = 0 and ϕ (t) > 0 for t > 0. Then, F has at least one fixed point
in A.

Proof. Define the sequence W0 = W and Wn+1 = co (FWn), clearly (Wn)n∈N is a
nonempty closed, bounded, convex sequence and

W0 ⊂ W1 ⊂ · · · ⊂ Wn.

Since the sequence (µ (Wn))n∈N is decreasing and bounded below ( since µ (Wn) >
0, ∀n ∈ N), then (µ (Wn))n∈N is a convergent sequence. Put lim

n→∞
µ (Wn) = l.

In further, using properties of the measure of noncompactness we have,

µ (Wn+1) = µ (co (FWn)) = µ (FWn) .

Then, in view of condition (4.1) we have

ψ (µ (Wn+1)) = ψ (µ (FWn))

6 ψ (µ (Wn))− ϕ (µ (Wn)) .

By taking the limit sup we get

lim
n→∞

supψ (µ (Wn+1)) 6 lim
n→∞

supψ (µ (Wn))− lim
n→∞

inf ϕ (µ (Wn)) .
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Since ψ is continuous and ϕ is lower semi-continuous, we get

ψ (l) 6 ψ (l)− ϕ (l) .

Fellows that ϕ (l) must be null, which means that l = 0. Thus

0 = lim
n→∞

supµ (Wn) = lim
n→∞

inf µ (Wn) = lim
n→∞

µ (Wn) .

Hence, using property 6. of measure of noncompactness we get W∞ =
⋂
n

Wn is

compact. Then, F has at least one fixed point. �

5. Existence of fixed points for multivalued power set
contraction mappings

Theorem 5.1. Let A be a nonempty closed, bounded and convex subset of a
Banach space X and N : A → Pcl,cv (A) be a k-set contraction mapping on A.
Then, Nn (for an integer n > 0) is a kn−set contraction on A.

Proof. Let A be a nonempty closed, bounded and convex subset of X, then for
any bounded bounded W ⊂ A,

µ (NnW ) = µ
(
N

(
Nn−1W

))
6 kµ

(
Nn−1W

)
6 k2µ

(
Nn−2W

)
...

6 knµ (W ) .

Since 0 6 k < 1, hence 0 6 kn < 1 and so Nn is also a k−set contraction
mapping. �

Remark 5.2. The inverse is not true that is if Nn is a k-set contraction mapping
then N could be not a k-set contraction mapping.

Theorem 5.3. Let A be a nonempty closed, bounded and convex subspace of a
Banach space X and N : A→ Pcl,cv (A) be an upper semi-continuous multivalued
mapping such that for any n > 1 we have Nn (conv (W )) ⊆ conv (NnW ) and

µ (NnW ) 6 knµ (W ) , for any bounded W ⊂ A. (5.1)

where kn → 0, n→ +∞. Then, there exists at least one x such that x ∈ Nx.

Proof. Let the iteration W0 = W and Wn = conv (NAn−1) . Obviously (An) is a
sequence of nonempty closed, bounded and convex subsets of A.

It is clear that (An)n is decreasing.
Then, by using the properties of the measure of noncompactness, we get

µ (Wn) = µ (conv (NWn−1))

6 µ (conv (NWn−1)) = µ (NWn−1)

6 µ (N (conv (NWn−2)))

6 µ (N (conv (NWn−2)))

6 µ
(
N2 (Wn−2)

)
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Repeating this process many times we get

µ (Wn) 6 µ (Nn (W0)) .

Using Inequality 5.1. we get µ (Wn) 6 µ (Nn (W0)) 6 knµ (W0) .
By taking the limit, we get lim

n→∞
µ (Wn) = 0, which implies that W∞ is compact.

Hence N has at least one fixed point in W∞ ⊂ A. �

6. Application to Evolution differential inclusions with
nonlocal condition

The multi-valued fixed point theorems of this paper can have some nice appli-
cations to differential and integral inclusions as an example we choose to provide
an application for Theorem 3.3. One can notice that other applications can be
given by changing the contractive condition which the mappings is supposed to
satisfy.

Let following evolution differential inclusions with nonlocal conditions

y′(t) ∈ A(t)y(t) + F (t, y (t)), t ∈ J := [0,+∞) (6.1)

y(0) = ϕ(y), (6.2)

where F is an upper Caratheodory multimap, ϕ : C (J,X) → X is a given X-
valued function. {A (t) : t ∈ J} is a family of linear closed unbounded operators
on X with domain D(A(t)) independent of t that generate an evolution system
of operators {U (t, s) : t, s ∈ ∆} with ∆ = {(t, s) ∈ J × J : 0 6 s 6 t <∞}.

The main work for this section is to study the existence of mild solutions for
this non-local inclusion.

Before we start studying this problem we recall some concepts and results that
will be needed through the section.

Define the set

SF (y) =
{
f ∈ L1 (J,X) : f (t) ∈ F (t, y (t))

}
.

Definition 6.1. A mapping F : J×C(J,X) −→ Pcp,cv(X) is said to be an upper
Carathéodory multivalued map if it satisfies,

(i) x 7→ F (t, x) is upper semi-continuous (with respect to the metric Hd) for
almost all t ∈ J .

(ii) t 7→ F (t, x) is measurable for each x ∈ C(J,X).

Definition 6.2. A family {U(t, s)}(t,s)∈∆ of bounded linear operators U(t, s) :
X → X where (t, s) ∈ ∆ := {(t, s) ∈ J × J : 0 6 s 6 t < +∞} is called en
evolution system if the following properties are satisfied,

(1) U(t, t) = I where I is the identity operator in X and U(t, s) U(s, τ) =
U(t, τ) for 0 6 τ 6 s 6 t < +∞,

(2) The mapping (t, s) → U(t, s) y is strongly continuous, that is, there exists
a constant M > 0 such that

‖U(t, s)‖ 6 M for any (t, s) ∈ ∆.



DIFFERENT TYPE OF FIXED POINT THEOREM FOR MULTIVALUED MAPPINGS 333

An evolution system U(t, s) is said to be compact if U(t, s) is compact for any
t − s > 0. U(t, s) is said to be equicontinuous if {U(t, s)x : x ∈M} is equicon-
tinuous at 0 6 s < t 6 b for any bounded subset M ⊂ X. Clearly, if U(t, s)
is a compact evolution system, it must be equicontinuous. The inverse is not
necessarily true.

More details on evolution systems and their properties could be found on the
books of Ahmed [1], Engel and Nagel [7] and Pazy [13].

Definition 6.3. We say that the function y(t) ∈ C (J,X) is a mild solution of
the evolution system (6.1)− (6.2) if it satisfies the following integral equation

y(t) = U(t, 0) ϕ(y) +

∫ t

0

U(t, s) f(s) ds, (6.3)

for all t ∈ R+ and f ∈ SF (y) .

Assume the following hypothesis which are needed thereafter :

(H1) {A (t) : t ∈ J} is a family of linear operators. A (t) : D (A) ⊂ X → X
generates an equicontinuous evolution system {U (t, s) : (t, s) ∈ ∆} and

|U (t, s)| 6 M.

(H2) The multifunction F : J×C(J ;X) −→ Pcl,cv(X) is an upper Carathéodory
and ϕ : C(J ;X) → X is continuous, if we have for any ε > 0 there exists
δ > 0 such that

ε 6 µ (W ) < ε+ δ for any bounded W ⊂ A

implies

µ (ϕ (W )) <
ε

2M
and µ (F (t,W )) <

ε

2Mt
for any t ∈ J.

(H3) There exists a constant r > 0 such that

M [‖ϕ (y)‖+ {‖f (t)‖1 : f ∈ SF (y) , y ∈ A0}] 6 r

where, A0 = {y ∈ C(J ;X) : ‖y (t)‖ 6 r for all t ∈ J}.

Theorem 6.4. Under the assumptions (H1)−(H3) the non local problem (6.3)−
(6.2) has at least one mild solution in the space C (J,X).

Proof. To solve problem (6.3) − (6.2) we transform it to the following fixed-
point problem.

Consider the multivalued operator N : C(J ;X) → P(C(J ;X)) defined by

N(y) =
{

h ∈ C(J ;X) : h(t) = U(t, 0)ϕ(y) +
∫ t

0
U(t, s) f(s) ds, with f ∈ SF (y)

}
.

We can notice that fixed points of the operator N are mild solutions of problem
(6.3)− (6.2).

Clearly for each y ∈ C([−r,+∞);X), the set SF (y) is nonempty since, by
(H2), F has a measurable selection (see [4]).

To prove that N has a fixed point , we need to satisfy all the conditions of one
of above theorems, for example let choose Theorem 5.3.
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Let A0 = {y ∈ C(J ;X) : ‖y (t)‖ 6 r for all t ∈ J}. Obviously, A0 is closed,
bounded and convex.

To show that NA0 ⊆ A0, we need first to prove that the family{∫ t

0

U(t, s) f(s) ds : f ∈ SF (y) and y ∈ A0

}
is equicontinuous for t ∈ J that is all the functions are continuous and they have
equal variation over a given neighborhood.

In view of (H1) we have that functions in the set {U (t, s) : (t, s) ∈ ∆} are
equicontinuous, (i,e) for every ε > 0 there exists δ > 0 such that |t− τ | < δ
implies ‖U (t, s)− U (τ, s)‖ < ε for all U (t, s) ∈ {U (t, s) : (t, s) ∈ ∆}

Then, given some ε > 0 let δ = ε′

ε‖f‖∞
such that |t− τ | < δ, we have∣∣∣∣∫ t

0

U(t, s) f(s) ds−
∫ τ

0

U(τ, s) f(s) ds

∣∣∣∣ 6
∫ t

τ

|U (t, s)− U (τ, s)| |f (s)| ds.

Regarding the fact that {U (t, s) : (t, s) ∈ ∆} is equicontinuous then∣∣∣∣∫ t

0

U(t, s) f(s) ds−
∫ τ

0

U(τ, s) f(s) ds

∣∣∣∣ 6 ε ‖f‖∞ |t− τ |

< ε ‖f‖∞
ε′

ε ‖f‖∞
= ε′.

Hence, we conclude that
{∫ t

0
U(t, s) f(s) ds : f ∈ SF (y) and y ∈ A0

}
is equicon-

tinuous for t ∈ J .
Now, let show that NA0 ⊆ A0. Let for t ∈ J ,

|h (t)| =

∣∣∣∣U (t, 0)ϕ(y) +

∫ t

0

U(t, s) f(s) ds

∣∣∣∣
6 |U (t, 0)ϕ(y)|+

∫ t

0

|U(t, s) f(s)| ds

6 M ‖ϕ (y)‖+M ‖f‖1

= M [‖ϕ (y)‖+ ‖f‖1] 6 r,

thus NA0 ⊆ A0.
In further it is easy to see that N has convex valued.
Now let show that N has a closed graph, let yn → y and hn → h such that

hn (t) ∈ N (yn) and let show that h (t) ∈ N (y) .
Then, there exists a sequence fn ∈ SF (yn) such that

hn (t) = U (t, 0)ϕ(yn) +

∫ t

0

U(t, s)fn(s)ds.

Consider the linear operator Φ : L1 (J ;X) → C (J ;X) defined by

Φf (t) =

∫ t

0

U(t, s)fn(s)ds.
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Clearly, Φ is linear and continuous. Then from Lemma 2.4. we get that Φ◦SF (y)
is a closed graph operator. In further, we have

hn (·)− U (t, 0)ϕ(yn) ∈ Φ ◦ SF,y.

Since yn → y and hn → h, then

h (·)− U (t, 0)ϕ(yn) ∈ Φ ◦ SF,y.

That is, there exists a function f ∈ SF (y) such that

h (t) = U (t, 0)ϕ(y) +

∫ t

0

U(t, s)f(s)ds.

Therefore N has a closed graph, hence N has closed values on C (J ;X).
Let W be a bounded subset of A such that

ε 6 µ (W ) < ε+ δ.

We know that the family
{∫ t

0
U(t, s)f(s)ds, f ∈ SF (W (t))

}
is equicontinuous,

hence by Lemma 2.3, we have

µ

(∫ t

0

U(t, s)f(s)ds, f ∈ SF (W (t))

)
6

∫ t

0

µ (U(t, s)f(s), f ∈ SF (W (t))) ds

6 M

∫ t

0

µ (f(s), f ∈ SF (W (t))) ds

6 Mtµ (F (t,W (t))) .

Therefore

µ (NW ) = µN

(
U (t, 0)ϕ(W (t)) +

∫ t

0

U(t, s)f(s)ds, f ∈ SF (W (t))

)
6 µ (U (t, 0)ϕ(W (t))) + µ

(∫ t

0

U(t, s)f(s)ds, f ∈ SF (W (t))

)
6 Mµ (ϕ(W (t))) +Mtµ (F (t,W (t))) .

In view of (H2), we get

µ (NW (t)) 6 M
ε

2M
+Mt

ε

2Mt
= ε.

Therefore, for ε 6 µ < ε+δ we obtained µ (NW (t)) 6 ε. Thus regarding Theorem
3.3, N has at least one fixed point, hence the problem (6.1) − (6.2) has at least
one mild solution in the space C (J,X).
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