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Abstract

The paper proposes the notions of topological platform and quantalic topological theory for
the presentation and investigation of categories of interest beyond the realm of algebra. These
notions are nevertheless grounded in algebra, through the notions of monad and distributive
law. The paper shows how they entail previously proposed concepts with similar goals.
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1 Introduction

Just before a decade of research on Abelian categories had come to a first great conclusion with the
publication of Freyd’s book [13], Lawvere’s presentation of the notion of algebraic theory in his 1963
thesis [25] initiated an intense period in the development of categorical algebra. Through Linton’s
extension of that notion to infinitary theories as presented in [27] at the 1965 La Jolla conference,
and with the publication of the seminal papers by Kleisli [20] and by Eilenberg and Moore [12]
that same year, it quickly became clear that the generalized Lawvere-Linton algebraic theories are
equivalently described by (what was later called) monads over Set.

It came as a surprise when Manes in his 1967 thesis [30] gave the first “topological” example
of a monadic category over Set. Barr’s [3] relational extension of the Manes result from compact
Hausdorff spaces to all topological spaces showed that monads have a role to play beyond algebra
or algebraic topology, specifically in general topology. Shortly afterwards, Lawvere’s 1973 milestone
paper [26] paved the way for the enriched category theory of Eilenberg and Kelly [11] to aid the the
investigation of metric and analytic structures.

When in 2000 Bill Lawvere mentioned to me that Lowen’s approach spaces [28] should be con-
sidered as some kind of V-multicategories, just as he had considered metric spaces as V-categories,
he in fact triggered the combination of his and Barr’s work that we then pursued in the paper
[9] with Clementino. Taking advantage of the results that had just been obtained by her with
Hofmann in [8], the paper initiated the development of (T, V)-categories, only a first account of
which has been given in [17], but predecessors of which reach as far back as to Burroni’s [6] elegant
work on T-categories and include aspects of many later papers, such as Hermida’s work [14] on
multicategories.

The syntax of a (T,V)-category in the form first described by Seal [35] and adopted in [17]
involves a Set-monad T and a quantale V which interact via a lax extension of T from maps to
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V-valued relations of sets. In terms of the V-powerset (or discrete V-presheaf) monad Py, this
interaction is equivalently (and more elegantly) described by a Beck [4] distributive law of T over
Py. We stressed this point in [17, 24], where we also extended the general setting, by allowing
V to be replaced by a quantaloid Q. In this way, (T, Q)-categories include, among other things,
categories enriched in an easy type of bicategory, as first considered by Walters [42].

In this paper we propose a further extension of the setting that should facilitate the investigation
of categories of interest in topology, and beyond. The notion of topological platform as given in
Section 3 involves two monads T and P on a category K tied by a distributive law. “Topologicity”
enters through the requirement that the Kleisli category of P be a quantaloid—a natural require-
ment, since the category of sets with V-valued relations is the Kleisli category of the role model Py, .
By contrast, T should be considered the “algebraic” part of the notion. Having briefly considered
strict (T, P)-algebras in Section 2, which include categories of partial T-algebras, we proceed to
state the fundamental fact that, for every topological platform, the category of laz (T, P)-algebras
is topological [15, 1] over K. Despite its immediate proof, this fact leaves open a host of questions,
some of them already for considerable time even when considered in narrower contexts, which we
mention at the end of the paper.

Section 4 explains how previous work in monoidal topology fits under the (T,P)-umbrella, and
in Section 5 we invoke a result proved in [40] to make the point that the (T, V)-setting considered
previously should be seen as representing the monad P by a quantale V or, more generally by a
quantaloid Q, under only minor loss of generality.

There remains then the question of how to provide a useful representation on the side of T,
more precisely, a representation for the lax extension of T, or for the corresponding distributive
law. Such a representation was first provided by Hofmann [16], in the form of a lax T-algebraic
structure on the quantale V. In [10] we clarified to which extent the lax extensions induced by
Hofmann’s topological theories are special amongst all others, giving a complete characterization of
them, and in [41] we showed that every lax extension actually induces a weaker form of Hofmann’s
topological theory, even when the quantale V is traded for a quantaloid. In Section 6 we propose
a further generalization of the notion introduced in [41], which we call quantalic topological theory,
and show how it entails the previous versions.

The new concepts introduced in this paper were presented at the conference on Category Theory
(CT 2017) held at the University of British Columbia in July 2017. Their more thorough discussion
and application than given here must still be undertaken.

2 Distributive laws and their algebras

Recall that, for monads T = (T, m, e), P = (P, s,y) on a category K, a distributive law of T over P
is a natural transformation A : TP — PT which is compatible with the monad operations; that is,
the conditions

(1) N Ty=yT, XN-Ts=sT- -P\-)\P,
(2) A-eP=Pe, \N-mP=Pm-\T-TX\

most hold. It is well known (see, for example, [32, 17]) that distributive laws A of T over P are in
bijective correspondence with each of the following;:
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e Extensions T = (T',1h,é) of the monad T along the left-adjoint functor Fp : K — KI(P) to
the Kleisli category of P; these are monads T on KI(IP) satisfying
TFy = BpT, mEFp = Fpm, ¢éFp= Fpe;

equivalently, since Fp is identical on objects, they are given by endofunctors T of KI(P)
WithAer :AF]pT, such that ng = Fpmx and éx = Fpex define natural transformations
m:TT—T and é: 1py — T, respectively.

o Liftings P = (P,3,9) of the monad P through the right-adjoint functor G" : EM(T) — K of
the Eilenberg-Moore category of T; these are monads P on EM(T) satisfying
G'P =PG", G"5=sG", G"j=yG",

equivalently, since GT is faithful, they are given by endofunctors P of EM(T) with G'P =
PGT such that, for all T-algebras (X,{ : TX — X), the K-morphisms sx and yx give
T-homomorphisms PP(X,{) — P(X, &) and (X, &) — P(X, &), respectively.

The bijective correspondences . R
A—=T and A—P

come about in a similar fashion, except that, to define T, it suffices to say what T does to morphisms,
while for P only the definition on objects matters:

T:(0: X —+=Y)= WMy -Te:TX ——TY) and P:(X,)— (PX,P¢-\x).

Our notational convention here is to write a IC-morphism ¢ : X — PY as an arrow X — Y when
considered as a morphism in KI(P); its Kleisli composite with ¢ : Y — Z is denoted by

Yop=sz-Pp-p: X —+Z.
In what follows, we will also use the abbreviation
fo=Fef=yy [ X Y
for all f: X —Y in K; in particular, (1x). = yx is the identity morphism on X in KI(P).

Remark 2.1. There is a third equivalent description of distributive laws A of T over P, namely
via compatible natural transformations w : PT'PT — PT which give us composite monads PT =
(PT,w,yT - e); the bijective correspondence with distributive laws is given by A +— w = sT'- PPm -
PXT. As we are not using this correspondence in what follows, the interested reader is referred to
the literature (such as [17]) for details.

For the remainder of this section, we consider a distributive law A of a monad T over a monad
P on K, equivalently described by the corresponding lax extension T to KI(P).

Definition 2.2. A (strict) A-algebra (X, &) is given by an object X and a morphism « : TX—PX
in K satisfying
a-mx =sx-Pa-Ax-Ta and a-ex =yx.

Defining (strict) A»-homomorphisms f : (X, a) — (Y, ) to be K-morphisms f : X — Y satisfying
Pf = /8 : Tf7
we obtain the category A-Alg=.
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Considering a A-algebra structure o : TX — PX on X as a morphism 7TX — X in KI(P),
one easily confirms that a M-algebra (X, «) is nothing but an Eilenberg-Moore T-algebra; and for
f:(X,a)— (Y, B) to be a A-homomorphism amounts to f. being a T-homomorphism.

(ex)« Ta (Tf)«
X ———TX T —+—TX TX —+———TY
a (mx )« o o B
(I1x)«
X TX 4|a—>X X ﬂ—>

When the meaning of T is clear from the context, we often write (T, P)-Alg™ instead of A-Alg=.
Note that, when P is the identity monad, (T,P)-Alg= is just the Eilenberg-Moore category EM(T),
and when T is the identity monad (identically extended), (T,P)-Alg™ is the Kleisli category KI(P).
Because of this double role, we don’t expect (T, P)-Alg™ to inherit good categorical properties from
K. Nevertheless, let us look at a rather natural example.

Example 2.3. The adjunction whose right adjoint is the underlying Set-functor of the category
of pointed sets, induces the monad P = (P, m, e) on Set with PX = X + 1 and the obvious natural
maps X +14+1—X+1 and X— X +1, for every set X. Its Kleisli category is equivalently described
as the category ParSet of sets and partial(ly defined) maps, whose morphisms ¢ : X —— Y are

spans (X <> A——Y) in Set; the composite with (Y <> B—— Z) is the span

Yol -1
cp=(X = (B)———"2).

Given any monad T on Set, since T' preserves monomorphisms, for A < X we may assume
TA — TX and define an extension T to ParSet by

T (X A25Y) o (TX « TA—25TY).

The corresponding category (T,P)-Alg= may be described as the category of strong partial T-
algebras and strong T-homomorphisms. Its objects are sets X equipped with an operation o which
assigns to some terms in T X a value in X, subject to the two Eilenberg-Moore-algebra laws, which
must be read carefully: for all z € X, a(ex(x)) is defined and equals x; and for all 7 € TTX,
a(mx (7)) is defined precisely when o(T'«(7)) is defined, and then the two values are equal. Similarly
for morphisms f : (X,a) — (Y, 3): these are maps f : X — Y with the property that, for all
t € TX, at) is defined precisely when S(T f(t)) is defined, which then equals f(«a(t)).

It may be worth noting that, in the example above, Set may be replaced by any lextensive
category K (in the sense of [7]). The subobjects A < X are then given by coproduct injections,
i.e., by direct summands A of X, and the monad T needs to preserve finite coproducts, so that T'A
becomes a direct summand of T'X.

Realizing that ParSet carries a natural order, making it a 2-category (even when we replace
Set by a lextensive category), we may define the larger (and more natural) category of partial
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T-algebras and their T-homomorphisms, thus foregoing “strength”, by relaxing the strict commu-
tativity conditions for the diagrams above, as follows:

(ex)« T (Tf)«
X 9 L rx rrx — % srx  rx-ry
< « (mx )« > «a (e < B
X TX — X X ——Y

Still, the resulting category has poor properties; it’s lacking even a terminal object. However,
these diagrams do provide a good way of defining a category (T,P)-Alg in full generality; but we
need to relax the conditions on the extension T, and strengthen the conditions on the 2-categorical
structure of KI(IP) to arrive at a satisfactorily behaved category. This is our starting point for the
next section.

3 Topological platforms
We continue to work with monads T and P on a category K. These may be assumed to be 2-monads
on a 2-category later on, with the 2-cells given by (pre)order.

Definition 3.1. (T,P) is a topological platform over I if

(sup) KI(P) is a quantaloid, i.e., a category enriched in the category Sup of complete lattices and
suprema-preserving maps; in particular, with the order on its hom-sets, KI(P) is a 2-category;

(map) for every K-morphism f : X — Y, its image f. under Fp in KI(P) is a map in Lawvere’s
sense, i.e., f, has a right adjoint f*:Y — X;

(ext) T comes with a laz extension T = (T, 1, ¢é) of T along Fp to KI(P), that is:

KI(P) — KI(PP) is a lax functor, coinciding with T' on objects;

- hx = (mx). and éx = (ex). define oplax natural transformations 7 : TT —T and
e : lxp) — T, respectively;

(whi) 7' satisfies the right-whiskering condition: T(1) o f,) = T'(¢)) o (T'f)s, for all f: X —Y in K
and ¢ : Y — Z in KI(P).

The category Alg(T,P) of laz (T, P)-algebras (X, ) and their laz (T, P)-homomorphisms is defined
by the last set of lax-commutative diagrams of the previous section.

Remark 3.2. (1) It is important to keep in mind that T is an integral part of the given data.
Whenever needed, one should write more accurately Alg(T, P, ’]T) instead of Alg(T,P).

(2) Since, as one readily sees, the right adjoint (1x)* necessarily coincides with (1x)., it is
convenient to denote the identity morphism on X in KI(P) by 1%.

(3) By adjunction, the oplax naturality conditions

(my)s 0o TT < T o (mx), and (ey )y 0 p < T o (ex)s
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may be written equivalently as the lax naturality conditions
TTeomk <mi oTyp and poey <eboTlyp

for all ¢ : X ==Y in KI(P), so that there are lax natural transformations m* : T —TT and
e*:T—> 1K|(]P’)'

(4) Given that T is a lax functor and, hence, preserves the order of the hom-sets, the right
whiskering condition may be equivalently stated as the left-whiskering condition T(h* o) = (Th)*o
T, forall p: X ==Y in KI(P) and h : Z—Y in K. This is best proved by showing that each
of the two whiskering conditions is equivalent to the condition that

(Tf). <T(f.) and (Tf)* <T(f),

for all f: X—Y in K. (The proof proceeds as the proofs of Prop. II1.1.4.3 in [17] and of Prop.
6.3 in [41]).

Unlike Alg(T,P)= of the previous section, Alg(T,P) inherits many of the good standard prop-
erties that  may have, including (total) (co)completeness (but excluding cartesian closedness, of
course), for the simple reason that has been noted repeatedly in the literature in narrower contexts,
as follows.

Proposition 3.3. The forgetful functor Alg(T,P) — K is topological.

Proof. Since the condition f. oa < o (Tf), for a lax (T, P)-homomorphism f : (X, a) — (Y, )
may be rewritten equivalently as o < f* o 8o (Tf)., one sees easily that enforcing equality in
the last inequality defines cartesian liftings for a single morphism. Now, the quantalic structure of
KI(P) allows us to do the same simultaneously for any family f; : X —Y; of morphisms in K with
common domain, with every Y; carrying a (T, P)-structure §;; one simply puts

a:= N fioBio(Tf).

icl
to obtain the initial structure on X, thus showing topologicity. Q.E.D.

Remark 3.4. (1) The functor of Proposition 3.3 has also the following additional two proper-
ties, sometimes required by some authors (see, for example, [15, 1, 5]) for functors to qualify as
topological: it has small fibres (granted that K has small hom-sets), and it is amnestic, so that
isomorphisms in the domain of the functor that are being mapped to identity morphisms must be
identity morphisms themselves.

(2) Definition 3.1 describes topological platforms in terms of lax extensions T to KI(P). But it
is important to note that the bijective correspondences of strict extensions with distributive laws
of T over P and liftings P as alluded to in Section 2 extend to the lax environment, as follows.
Given monads P, T on K satisfying conditions (sup) and (map), laz extensions T satisfying (ext)
and (whi) are in bijective correspondence with each of the following:

o Lax distributive laws X : TP — PT, given by lax natural transformations A satisfying condi-
tions (1), (2) of Section 2 laxly, as well as a monotonicity condition; hence, when we consider
K-morphisms ¢ : X — PY always as morphisms X — Y in KI(P), the morphisms Ax must
satisfy
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(0) PTf-Ax <Ay -TPf, forall f: X—Y in K;

(1) yrx < Ax -Tyx, srx-PAx-Apx <Ax-Tsx;

(2) Pex < Ax-epx, Pmx-Arx-TAx <Ax - mpx;

(3) whenever ¢ <, then Ay - T < Ay - T, for all p,¢: X — PY in K.

e Laz liftings P of P, given by an assignment P which gives for every strict T-algebra (X,¢) lax

T-algebras (PX, €), (PPX,€) (to be understood as in the diagrams at the end of Section 2),
such that

(a) yx : (X,6)— (PX,§), sx : (PPX, g) — (P, €) are lax T-homomorphisms;

(b) for every strict T-homomorphism f : (X, &)—(Y,v), P makes Pf : (PX,£)— (PY,0)
a lax T-homomorphism;

(c) for f=¢€:(TX,mx)—(X,€) in (b), Pf remains strict, that is: P -mx = £-TPE.

Proofs for these bijective correspondences require a very careful re-examination of the proofs for
the strict cases, the details of which must be largely left to the reader. For the first correspondence,
details are to be found in [41, 24], albeit in more special environments. We note that condition (3)
comes for free in a 2-categorical setting when T is a 2-functor. Likewise, lax liftings may also be
described slightly more compactly in that setting.

4 Principal examples

Throughout this section, let V be a (unital, but not necessarily commutative) quantale, i.e., a
one-object quantaloid; hence, V is a complete lattice that comes with a monoid structure, so that
its binary operation ® distributes over arbitrary joins from either side; we denote the ®-neutral
element in V by k, and L is its bottom element.

Example 4.1. Let P =Py = (Py,s,y) be the V-powerset monad on K = Set, given by

PuX =V¥, Pu(X oY) = fi: VX VY with filo)y) =\ ola),

zef~ly
sx : VW — VX with sx(2)(x) = \/ (o) @ o(a),
oeVvX
X k ify==x
yx : X —V* with y(2)(y) = 1 else .

A morphism ¢ : X =Y in KI(Py) may be described equivalently as a map X x Y —V, i.e., as a
V-valued relation from X to Y, and its Kleisli composite with ¢ : Y — Z may then be computed
as
Wop)(z,2) = \/ o(,y) @Yy, 2). (+)
yey

Hence, KI(Py) is the category of sets and V-relations as defined in [17], which here we denote by
V*-Rel; when one orders its hom-sets pointwise as in V, it becomes a quantaloid. Trivially, every
map f: X — Y gives the adjunction f, 4 f* with

f*(x,y){ kl if fx)=vy }f*(y,x).

else
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Hence, conditions (sup) and (map) of Definition 3.1 hold, and for a Set-monad T = (T, m,e) to
satisfy conditions (ext), (whi) means precisely that the monad T comes, in the terminology of [17],
with a lax extension T to V*-Rel. Moreover,

Alg(T,Py) = (T,V)-Cat

is precisely the category of (small) (T, V)-categories (X, : TX — X) and their (T,V)-functors
f:+ (X, a)— (Y, ) as defined in [17], i.e., structured sets X,Y and maps f : X — Yrequired to
satisfy

k< alex(x),z), Ta(X,n)@a(y,z) < almx(X),2), alxy) <BTfE), f(y),

for all z,y,z € X,r,np € TX,X € TTX. Of course, for T = I the identity monad (identically
extended to V-Rel), (T, V)-Cat = V-Cat. Less trivially, when the complete lattice V is completely
distributive and T is the ultrafilter monad U (as induced by the adjunction that has the forgetful
CompHaus — Set as a right adjoint), then one has a lax extension U, usually named after Barr
[3], whose lax functor U : V*-Rel — V*-Rel, given by

Upwm)= AV o),

AeX,BeyzcAyeB

for all V-relations ¢ : X —+— Y,r € UX y € UY, actually turns out to be a genuine functor; for
proofs, see [22].

We mention here the protaganistic examples for V, which have been discussed earlier in various
iterations in more restrictive contexts (see [17]), namely the two-element chain 2, the Lawvere
quantale ([0, 00],4,0) (see [26]), and the quantale A of all distribution functions [0, co] — [0, 1]
(which, as noted in [41], is nothing but the coproduct of two copies of the Lawvere quantale
in the category of commutative quantales). For these three quantales, with T = I one obtains
respectively the categories Ord, Met, ProbMet of (pre)ordered sets, (generalized) metric spaces,
and (generalized) probabilistic metric spaces, respectively, and with T = U the categories Top,
App, ProbApp of topological spaces, approach spaces ([28]), and probabilistic approach spaces,
respectively. We refer to [22] for details.

Remark 4.2. In [41] and other recent papers, V-Rel denotes the category of sets and V-relations
with the composition rule

(Woe)(x,2) =\ ¥(y,2) @ p(x,y). (+)

yey
With * referring to the interchange of the arguments in the tensor product of V, one then has
V*-Rel & (V-Rel)P.

Using (*) rather than (4) of 4.1 makes it more natural to consider ¢(z,y), ¥ (y, z) as morphisms
and ® as a category composition, a point that becomes relevant when one replaces the quantale V
more generally by a quantaloid Q, as has been done in [41] and elsewhere. Hence in, what follows,
we will use (x), rather than (+), i.e., work with V-Rel rather than V*-Rel. Of course, this makes
no difference to the concrete quantales considered in 4.1, namely 2,[0,00] and A, as these are all
commutative.
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We are ready to consider the non-discrete version of Example 4.1.

Example 4.3. Let K be the 2-category V-Cat, and let V-Mod denote the category of (small)
V-categories and their V- (bi)modules ¢ : (X, a) = (Y, 3), i.e., the V-relations ¢ : X — Y with
Bopoa < p. With the V-relational composition (x) one obtains a quantaloid, in which the identity
morphism 1% on X = (X, «a) is given by a. More generally, for a V-functor f : (X, a) — (Y, 5),
one has the adjunction f, 4 f*: (Y, 8) — (X, ) in V-Mod, where

felw,y) = B(fz,y)  and  f*(y,2) = Bly, fr),

for all x € X,y € Y. The quantale V itself becomes a V-category with its internal hom [v,w]
as the V-structure, defined by (u < [v,w] <= u®v < w), for all u,v,w € V. Every hom-set
V-Mod(X,Y) inherits that structure when one puts

vl= N ey, ¢,y)).

rzeX,yey
In particular, for Y = E the singleton-set generator ({x}, k) of V-Cat, we obtain the V-category
PX =PyX =V-Mod(X,E)

of V-presheaves o on X = (X, a), i.e., of those o € VX satisfying o(y) ® a(x,y) < o(z), for all
xz,y € X. In a natural way, P becomes an endo-2-functor of V-Cat, with Pf = f, : PX —PY, 0 —
oo f*forall f: X—Y, and even a 2-monad P = (P,s,y), with

yx : X —PX, z+—1%(—,2), and sx : PPX —PX, E— o (yx)..

It is well known (and verified directly in [40]) that the Kleisli category of P is precisely V*-Mod,
the dual of V-Mod.

In [23] we studied lax extensions of 2-monads T on V-Cat to V-Mod, required to satisfy the
conditions (ext) and (whi) of Definition 3.1, and showed that there is a rich supply of these. To start
with, given any Set-monad with a lax extension to V-Rel as in Example 4.1, one may extend that
monad to a 2-monad on V-Cat (by applying the lax extension to the structure of the V-category,
see [39, 17]), which then itself allows for a lax extension to V-Mod, satisfying (ext) and (whi).
Beyond these examples that arise from the discrete setting, in [24] we have given four examples
of 2-monads T on V-Cat which allow for lax extension to V-Mod, describing also the categories
Alg(T,P) in each case, namely for T the V-presheaf 2-monad P itself, the copresheaf 2-monad PT,
the double presheaf 2-monad PP, or the double copresheaf 2-monad PP. Moreover, in [23], we
showed that the restriction to conical (co)presheaves, which defines the Hausdorff submonads of
P,P' as previously considered in [2, 38], admit lax extensions as well; and when V is completely
distributive, such lax extensions exist also for the two iterated monads.

Remark 4.4. All statements of Example 4.3 remain valid if the quantale V is traded for a (small)
quantaloid Q. For details we refer to [24, 23].

5 Representing P

Our next goal is to simplify (and thereby specialize) the notion of topological platform, by represent-
ing the monad P and the lax extension T in a convenient manner. With respect to a representation
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of P, we are guided by Example 4.3, where V-Mod(E, E) 2 V, with E the singleton-set generator of
V-Cat. The following theorem, adapted from [40], gives general conditions under which Example
4.3 turns out to be rather all-encompassing.

Theorem 5.1. Let P = (P,m,e) be a monad on a category K satisfying conditions (sup) and (map)
of Definition 3.1. If there is an object E in K with |K(E,E)| =1 and

Vo woat=1%

€K (E,X)

for all X in K, then there is a quantale V and a functor |-| : K—V-Cat which may be extended
to a full and faithful homomorphism |-| : KI(P) — V-Mod of quantaloids such that

—>V Cat

K

KI(B) ——— V-Mod

commutes.

Proof. (Sketch—for details see [40], Theorem 3.1.) Since KI(P) is a quantaloid, the monoid
V := KI(P)(E, E) becomes a quantale. The hom-functor |-| := IC(E,-) takes values in V-Cat when
one puts 1, X‘(x y) = y* ox, for all z,y € | X]|, and it extends to a homomorphism of quantaloids
when one puts |p|(z,y) == y* opoux, for all ¢ : X ==Y in KI(P) and z € |X|,y € |Y|. The
homomorphism turns out to be fully faithful with respect to both, 1-cells and 2-cells. Q.E.D.

Remark 5.2. (1) The paper [40] elaborates on contexts in which the assignment (P — V) as
produced by Theorem 5.1 may be considered as a retraction to a functor which assigns to every
quantale V its presheaf monad Py. In fact, the paper produces restricted environments in which
the former assignment gives a left adjoint to the latter.

(2) The consideration of an object E with the properties required by Theorem 5.1 (in particular
that IC(E, E') must be a singleton) is somewhat restrictive. For example, the Theorem may generally
not be applied to the presheaf monad on K = Q-Cat, for a small quantaloid Q that is not a quantale
(see the note at the end of Section 4). However, there is a natural way of generalizing the Theorem,
as follows. In an ordered category K with a terminal object 1 and a monad P satisfying (sup) and
(map), instead of a single object E one may assume to have a representative set of atoms of 1, that
is, of the minimal strong subobjects of 1, and treat that set as a small full subquantaloid Q of the
Kleisli category of P. If the identity morphisms of KI(P) allow for a sup-representation as in the
Theorem, but with x now ranging over all -morphisms A — X, where A is an atom of 1, then
the assertion of the Theo! rem remains true in “quantaloidic form”. The details are to be given in
joint work with H. Lai.

6 Representing T

Theorem 5.1 affirms that, with a rather special object E in K, the monad P = (P,s,y) of a
topological platform may be largely retrieved from the quantalic structure on the set |PE| =
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K(E, PE). We propose the following definition, in order to achieve a similar concentration of
information for the lax extension T of T, keeping in mind that such extensions correspond to
certain lax liftings P of P, as described in Remark 3.4. As has been done there, we consider K-
morphisms ¢ : X — PY always as morphisms X — Y in KI(P), and conversely. For f: X —Y
in X, under conditions (sup) and (map) of Definition 3.1 we put

fi=sx-(Pf)*: PY — PX.

Definition 6.1. A quantalic topological theory on a category K is given by monads T = (T, m,e)
and P = (P,s,y) on K satisfying (sup) and (map), and an object E equipped with a morphism
7: PE— FE in K, such that

- FE carries a strict T-algebra structure ¢, and PFE a lax T-algebra structure &, making 7 :
(PE,§)— (F,() a strict T-homomorphism;

- yp : (E,() — (PE§) and sg : (PPE,0)— (PE,¢) are lax T-homomorphisms, with the
induced lax T-algebra structure 0 := P¢- (¢ - T7)" - ¢ - TPT on PPE;

- whenever ¢ <, then £ - Tp < &-T, for all p,v: X — PFE in K.
Let us discuss this definition in the context of Example 4.1.

Example 6.2. For a quantale V = (V,®,k), let P = Py as in 4.1. With F = {x} terminal in
K = Set, for any monad T, E carries a unique T-algebra structure, and there is a unique map
7:V =PyE— E. Now the provision of a quantalic topological theory requires giving just a map
& : TV —V such that, in the pointwise order inherited from V, one has:

- (V,§) is a lax T-algebra, that is: 1y < &-ey, £-TE <& - my;

- the maps yg = k : E—V, x — k, and sp : VY —V, ¥ — V oy Z(u) ® u, are lax
T-homomorphisms, where VV is provided with the lax T-algebra structure

0=¢&-(C-T7) - €-T(n): T(VV)—VV;

- whenever ¢ <, then £ - T < £ - T, for all maps @, : X — V.

One calls such quantalic topological theory natural if
- Ex(p):=€6-Ty (p € PyX = VX) defines a natural transformation Py — Py/T.

It is time to compare the natural quantalic topological theories with Hofmann’s [16] notion of
topological theory. Given the monad T on Set and a commutative quantale V, he requires the
map £ : TV —V to satisfy the same conditions as above, except that the somewhat cumbersome
condition that sg : (VV,0) — (V,€) be a lax T-homomorphism gets traded for the condition that
the monoid operation ® : V x V—V be a lax T-homomorphism; here the domain carries the
standard product structure as inherited from (V, ). On first sight, this difference may appear to be
minor, but conceptually it is not. While the notion of natural quantalic topological theory emerges
from a setting which emphasizes the role of the presheaf monad induced by V, Hofmann’s notion
emphasizes the role of the monoid structure of V from a universal-algebraic perspective.
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It is therefore not surprising that proving the equivalence of the two concepts takes considerable
effort, and it requires in any case some degree of well-behaviour of the monad T vis-a-vis cartesian
structures: the endofunctor 7' of T needs to satisfy the Beck-Chevalley Condition (BC), which here
means that the Set-functor T needs to preserve weak pullback diagrams. One obtains the following
equivalence theorem, established in [41]:

Theorem 6.3. For a commutative quantale V and a Set-monad T = (T, m,e) with T satisfying
BC, the natural quantalic topological theories are precisely Hofmann’s topological theories.

Proof. (Sketch—for details see Theorem 8.2 of [41].) One can prove rather directly (and with
modest effort) that, when sp : V¥V — V is a lax T-homomorphism, so is ® : V x V—V, by
employing the map

) v _ Jou ifw=v,
VXV o) =us vo)w) ={ 5T ]
which satisfies sg - x = ®. For the converse proposition, starting with a Hofmann theory £, one
considers the lax extension T¢ of T to V-Rel, as given by Hofmann [16], Definition 3.4:

(Te@)(x.0) = \/{(€- Tl (w) | w € T(X x V), Tmi(w) =, Tma(w) =y}, (f)

for all V-relations ¢ : X —+=Y, r € TX,y € TY, with product projections 71,72 and |¢| : X x
Y —V denoting the underlying map of ¢. But, as shown in [41], Theorem 5.5, every lax extension
of T (in the guise of its corresponding lax distributive law) induces a quantalic topological theory
which, when the lax extension is T¢, turns out to return the same &. Q.E.D.

Example 6.4. In Example 6.2 one may trade the quantale V for a small quantaloid Q and consider
again its (discrete) preseheaf monad P = Pg. With the set E now being the object set of Q, which
must carry a strict T-algebra structure ¢, and with 7 the extent (or type map) of the Q-category
PE, a quantic topological theory is again given by a map & : TPE——PFE over F satisfying the same
conditions as in Example 6.2 (with V traded for PE and VV for PPE, and “map” to mean “map
over E”), and making 7 : PE— F a strict T-homomorphism. Theses are precisely the topological
theories as defined in [41], Definition 5.4.

Remark 6.5. (1) As shown in [16], the Barr extension U of the ultrafilter monad as discussed in
Example 4.1 is often induced by a topological theory ¢ via formula (1), so that U = Ug, leading in
particular to the presentation of Top and App as categories of (U, V)-categories. But, as clarified
further by their characterizations given in [10, 41], lax extensions of type T¢ are rather special.

(2) There does not seem to be a natural way of extending Hofmann’s notion of topological
theory from its monoidal context of a quantale to the bicategorical context of a quantaloid, as has
been done for quantic topological theories when moving from Example 6.2 to Example 6.4.

(3) A discussion of quantalic topological theories in the context of Example 4.3 when K = V-Cat
must appear elsewhere.

Let us finish by admitting that we do not know which topological categories over K are pre-
sentable in the form Alg(T,P) for some topological platform (T,P), even when K = Set. Also in
the much narrower context of Example 4.1 the question has been left unanswered for quite some
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time, except that one knows that, under a slight restriction of the admissible lax extensions of T,
the question of which topological categories are presentable in the form (T, V)-Cat may be reduced
to the case V = 2: see Corollary IV.3.2.3 of [17].
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