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Abstract

One of the famous mathematical inequality is Minkowski’s inequality. It is an important
inequality from both mathematical and application points of view. In this paper, a Minkowski
type inequality for fuzzy and pseudo-integrals is studied. The established results are based on
the classical Minkowski’s inequality for integrals.
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1 Introduction

The theory of fuzzy measures and fuzzy integrals was introduced by Sugeno [37] as a tool for
modelling non-determinstic problems. Fuzzy integrals or Sugeno integrals have very interesting
properties from a mathematical point of view which have been studied by many authors, studied
by many authors including Pap [24], Ralescu and Adams [26], Wang and Klir [40] among others.
Ralesco and Adams [26] studied several equivalent definitions of fuzzy integrals, while Pap [24]
and Wang and Klir [40], provided an overview of fuzzy measure theory. The fuzzy integral for
monotone functions was presented in [27]. In fact, fuzzy measures and fuzzy integrals are versatile
operators which can be used in different areas. They have a broad use in information fusion,
electronic auctions, decision making, and etc. Chen et al. [4] employed fuzzy integral and fuzzy
measure to establish a public attitude analysis model. The integral inequalities are useful results
in several theoretical and applied fields. For instance, integral inequalities play a major role in the

development of a time scales calculus.
..

Ozkan et al. [22] obtained H
..
olders inequality, Minkowskis

inequality and Jensen’s inequality on time scales. Also H. M. Srivastava et.al [34, 35] studied some
generalizations of Maroni’s inequality and some weighted Pial-type inequalities on time scales. Some
famous inequalities have been generalized to fuzzy integral. Román-Flores and Chalco-Cano [28]
analyzed an interesting type of geometric inequalities for fuzzy integral with some applications to
convex geometry. Román-Flores et al. [29, 30] studied a Jensen type inequality and a convolution
type inequality for fuzzy integrals. Also, they have investigated a Chebyshev type inequality and
a Stolarsky type inequality for fuzzy integrals [12, 31]. In [12], a fuzzy Chebyshev inequality for
a special case was obtained which has been generalized by Ouyang et al. [21]. Furthermore,
Chybyshev type inequalities for fuzzy integral were proposed in a rather general form by Mesiar
and Ouyang [17]. Recently, B. Daraby and L. Arabi Proved a related Fritz Carlson type inequality
for Sugeno integrals [8]. For more refrences on integral inequalities and its applications you can see
[39, 20, 41, 36].

Pseudo-analysis is a generalization of the classical analysis, where instead of the field of real
numbers a semiring is taken on a real interval [a, b] ⊂ [−∞,∞] endowed with pseudo-addition ⊕ and
with pseudo-multiplication � ([11, 9, 8, 5, 25, 6, 37]). Based on this structure there where developed
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the concepts of ⊕-measure (pseudo-additive measure), pseudo-integral, pseudo-convolution, pseudo-
Laplace transform and etc. ([7, 12, 27]).

This paper is organized as follows: In Section 2 some preliminaries and summarization of some
previous known results are given. Section 3 proposes a Minkowski type inequality for fuzzy integrals.
Section 4, deals with a Minkowski type inequality for Pseudo-integrals. Finally, Section 5 contains
a short conclusion.

2 Preliminaries

In this section, some definitions and basic properties of the Sugeno and Pseudo integrals which will
be used in the next sections are presented.

Definition 2.1. Let Σ be a σ-algebra of subsets of X and let µ : Σ → [0,∞) be a non-negative,
extended real-valued set function, we say that µ is a fuzzy measure iff:

(FM1) µ(∅) = 0;
(FM2) E,F ∈

∑
and E ⊆ F imply µ(E) ≤ µ(F ) (monotonicity);

(FM3) En ⊆
∑
, E1 ⊆ E2 ⊆ . . . imply limµ(En) = µ(

∞⋃
i=1

En) (continuity from below);

(FM4) En ⊆
∑
, E1 ⊇ E2 ⊇ . . . , µ(E1) < ∞ imply limµ(En) = µ(

∞⋂
i=1

En) (continuity from

above).

If f is a non-negative real-valued function on X, we will denote Fα = {x ∈ X | f(x) ≥ α} =
{f ≥ α}, the α− level of f , for α > 0. F0 = {x ∈ X | f(x) > 0} = supp(f) is the support of f . We
know that: α ≤ β ⇒ {f ≥ β} ⊆ {f ≥ α}.

If µ is a fuzzy measure on X , we define the following:

Fµ(X) = {f : X → [0,∞)| f is µ−measurable}.

Definition 2.2. Let µ be a fuzzy measure on (X,Σ). If f ∈ Fµ(X) and A ∈ Σ, then the Sugeno
integral (or fuzzy integral) of f on A, with respect to the fuzzy measure µ, is defined [40] as

−
∫
A

fdµ =
∨
α≥0

(α ∧ µ(A ∩ Fα)).

Where ∨, ∧ denotes the operation sup and inf on [0,∞) respectively. In particular, if A = X then:

−
∫
X

fdµ = −
∫
fdµ =

∨
α≥0

(α ∧ µ(Fα)).

The following proposition gives most elementary properties of the fuzzy integral and can be
found in [40].

Proposition 2.3. Let (X,F, µ) be a fuzzy measure space, with A,B ∈
∑

and f, g ∈ F. We have

1. −
∫
A
fdµ ≤ µ(A).

2. −
∫
A
kdµ ≤ k ∧ µ(A), for k nonnegative constant.
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3. If f ≤ g on A, then −
∫
A
fdµ ≤ −

∫
A
gdµ.

4. if A ⊂ B, then −
∫
A
fdµ ≤ −

∫
A
gdµ.

5. if µ(A) <∞, then −
∫
A
fdµ ≥ α⇔ µ(A ∩ {f ≥ α}) ≥ α.

6. µ(A ∩ {f ≥ α}) ≤ α⇒ −
∫
A
fdµ ≤ α.

7. −
∫
A
fdµ < α⇔ there exists γ < α such that (A ∩ {f ≥ γ}) < α.

8. −
∫
A
fdµ > α⇔ there exists γ > α such that (A ∩ {f ≥ γ}) > α.

Remark 2.4. Let F (α) = µ(A ∩ Fα), from parts (5) and (6) of the above Proposition, it very
important to note that

F (α) = α⇒ −
∫
A

fdµ = α.

Thus, from a numerical point of view, the Sugeno integral can be calculated by solving the equation
F (α) = α.

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of [−∞,∞]. The
full order on [a, b] will be denoted by �.

The operation ⊕ (pseudo-addition) is a function ⊕ : [a, b]× [a, b]→ [a, b] which is commutative,
nondecreasing (with respect to � ), associative and with a zero (neutral) element denoted by 0, i.e.,
for each x ∈ [a, b],0⊕ x = x holds (usually 0 is either a or b). Let [a, b]+ = {x|x ∈ [a, b],0 � x}.

Definition 2.5. The operation � (pseudo-multiplication) is a function � : [a, b] × [a, b] → [a, b]
which is commutative, positively non-decreasing, i.e., x � y implies x� z � y� z for all z ∈ [a, b]+,
associative and for which there exists a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b],1� x = x.

We assume also 0� x = 0 that � is a distributive pseudo-multiplication with respect to ⊕, i.e.,
x � (y ⊕ z) = (x � y) ⊕ (x � z). The structure ([a, b],⊕,�) is a semiring ([14]). In this paper, we
will consider semirings with the following continuous operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication is not.
(a) x⊕y = sup(x, y),� is arbitrary not idempotent pseudo-multiplication on the interval [a, b]. We
have 0 = a and the idempotent operation sup induces a full order in the following way: x � y if
and only if sup(x, y) = y.
(b) x⊕ y = inf(x, y),� is arbitrary not idempotent pseudo-multiplication on the interval [a, b]. We
have 0= b and the idempotent operation inf induces a full order in the following way: x � y if and
only if inf(x, y) = y.

Case II: The pseudo-operations are defined by a monotone and continuous function g : [a, b]→
[0,∞], i.e., pseudo operations are given with x⊕ y = g−1(g(x) + g(x)) and x� y = g−1(g(x)g(x)).
If the zero element for the pseudo-addition is a, we will consider increasing generators. Then
g(a) = 0 and g(b) =∞. If the zero element for the pseudo-addition is b, we will consider decreasing
generators. Then g(b) = 0 and g(a) =∞. If the generator g is increasing (respectively decreasing),
then the operation ⊕ induces the usual order (respectively opposite to the usual order) on the
interval [a, b] in the following way: x � y if and only if g(x) ≤ g(y).

Case III: Both operations are idempotent. We have
(a) x ⊕ y = sup(x, y), x � y = inf(x, y), on the interval [a, b]. We have 0 = a and 1 = b. The
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idempotent operation sup induces the usual order (x � y if and only if sup(x, y) = y).
(b) x ⊕ y = inf(x, y), x � y = sup(x, y), on the interval [a, b]. We have 0 = b and 1 = a. The
idempotent operation inf induces an order opposite to the usual order (x � y if and only if inf(x, y) =
y).

Let X be a non-empty set. Let A be a σ-algebra of subsets of a set X.
We shall consider the semiring ([a, b],⊕,�), when pseudo-operations are generated by a mono-

tone and continuous function g : [a, b] → [0,∞], i.e., pseudo-operations are given with x ⊕ y =
g−1(g(x) + g(y)) and x� y = g−1(g(x)g(y)).

Then the pseudo-integral for a function f : [c, d]→ [a, b] reduces on the g-integral∫ ⊕
[c,d]

f(x)dx = g−1
(∫ d

c

g(f(x))dx
)
. (2.1)

More on this structure as well as corresponding measures and integrals can be found in ([23]). The
second class is when x⊕y = max(x, y) and x�y = g−1(g(x)g(y)), the pseudo-integral for a function
f : R→ [a, b] is given by ∫ ⊕

R
f � dm = sup

(
f(x)� ψ(x)

)
,

where function ψ defines sup-measure m. Any sup-measure generated as essential supremum of a
continuouse denisty can be obtained as a limit of pseudo-additive measures with respect to generated
pseudo-additive. For any continuouse function f : [0,∞] → [0,∞] the integral

∫ ⊕
f � dm can be

obtained as a limit of g-integrals. We denoted by µ the usual Lebesgue measure on R. We have

m(A) = ess sup(x|x ∈ A) = sup{a|µ(x|x ∈ A, x > a) > 0}.

Theorem 2.6. ([18]). Let m be a sup-measure on ([0,∞],B[0,∞]), where B([0,∞]) is the Borel σ-
algebra on [0,∞], m(A) = ess supµ(ψ(x)|x ∈ A), and ψ : [0,∞] → [0,∞] is a continuouse density.
Then for any pseudo-addition ⊕ with a generator g there exists a family mλ of ⊕λ-measure on
([0,∞],B), where ⊕λ is a generated by gλ (the function g of the power λ), λ ∈ (0,∞), such that
limλ→∞mλ = m.

Theorem 2.7. ([18]). Let ([0,∞], sup,�) be a semiring, when � is a generated with g, i.e., we
have x � y = g−1(g(x)g(y)) for every x, y ∈ (0,∞). Let m be the same as in Theorem 2.6, Then
there exists a family {mλ} of ⊕λ -measures, where ⊕λ is a generated by gλ, λ ∈ (0,∞) such that
for every continuous function f : [0,∞]→ [0,∞],∫ sup

f � dm = lim
λ→∞

∫ ⊕λ
f � dmλ = lim

λ→∞
(gλ)−1

(∫
gλ(f(x))dx

)
.

Easyly a stright calculus give the following Lemma:

Lemma 2.8. Let f1 and f2 be integrable functions, A ∈
∑

and f1 ≤ f1, so we have:

1. −
∫
A
f1dx ≤ −

∫
A
f2dx.

2.
∫ ⊕
A
f1dx ≤

∫ ⊕
A
f2dx.
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The classical Minkowski’s inequality was published by Minkowski [19] in his famous book “Ge-
ometrie der Zahlen”. A proof of Minkowski’s inequality as well as several extensions, related results,
and interesting geometrical interpretations can be found in [32, 33]. An extension of Minkowski’s
inequality, which is based on H

..
older’s inequality, is given in [40]. Applications of Minkowski’s in-

equality have been studied by many authors. For example
..
ozkan et al. [22] applied Minkowski’s in-

equality, H
..
older’s inequality and Jensen’s inequality on time scales. Lu et al. [15] used Minkowski’s

inequality for fast full search in motion estimation. The classical Minkowski’s inequality [19] is as
follows: (∫ b

a

(f(x) + g(x))sdx

) 1
s

≤

(∫ b

a

f(x)sdx

) 1
s

+

(∫ b

a

g(x)sdx

) 1
s

(2.2)

where 1 ≤ s <∞ and f, g : [0, 1]→ [0,∞) are two nonnegative functions.
Note we recall the following inequalities which are the fuzzy versions of Minkowski’s inequality at
two cases and appears in [1].

Theorem 2.9. Let f, g : [0, 1] → [0,∞) be two real valued functions and let µ be the Lebesgue
measure on R. If f, g are both continuous and strictly decreasing functions, then the inequality(

−
∫ 1

0

(f + g)sdµ

) 1
s

≤
(
−
∫ 1

0

fsdµ

) 1
s

+

(
−
∫ 1

0

gsdµ

) 1
s

holds for all 1 ≤ s <∞.

Theorem 2.10. Let f, g : [0, 1] → [0,∞) be two real valued functions and let µ be the Lebesgue
measure on R. If f, g are both continuous and strictly increasing functions, then the inequality

(
−
∫ 1

0

(f + g)sdµ

) 1
s

≤
(
−
∫ 1

0

fsdµ

) 1
s

+

(
−
∫ 1

0

gsdµ

) 1
s

(2.3)

holds for all 1 ≤ s <∞.

The following theorem is pseudo version of Minkoeski’s inequality and appears in [2].

Theorem 2.11. Let f, g : X → [0,∞) be two measurable functions and s ∈ [1,∞). If an additive
generator g : [a, b]→ [0, 1] of the pseudo-addition ⊕ and the pseudo-multiplication � are increasing.
Then for any σ −⊕-measure m it holds:(∫ ⊕

X

(f + g)sdµ

) 1
s

≤
(∫ ⊕

X

fsdµ

) 1
s

+

(∫ ⊕
X

gsdµ

) 1
s

(2.4)

The following theorem shows the new classical version of Minkowski’s inequality and appears in
[3].
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Theorem 2.12. Let f and g be positive functions satisfying

0 < m ≤ f(x)

g(x)
≤M, ∀x ∈ [a, b], we have

(∫ b

a

fs(x)dx

) 1
s

+

(∫ b

a

gs(x)dx

) 1
s

≤ c

(∫ b

a

(f(x) + g(x))sdx

) 1
s

, (2.5)

where 1 ≤ s <∞ and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.

3 Minkowski’s inequality for fuzzy integrals

In this section, by an example we show that the Theorem 2.12 is not valid for the Sugeno integral.

Example 3.1. Let f(x) = x+ 1, g(x) = 2x+ 1 and s = 1. We have 0 < 1
3 ≤

f(x)
g(x) ≤ 1 and

(i)−
∫ 1

0

f(x)dµ =
∨

α∈[0,1]

[α ∧ µ({x+ 1 ≥ α})] =
∨

α∈[0,1]

[α ∧ (α− 1)] = 1,

(ii)−
∫ 1

0

g(x)dµ =
∨

α∈[0,1]

[α ∧ µ({2x+ 1 ≥ α})] =
∨

α∈[0,1]

[α ∧ (
α− 1

2
)] = 1,

(iii)−
∫ 1

0

(f(x) + g(x))dµ =
∨

α∈[0,2]

[α ∧ µ({3x+ 2 ≥ α})] =
∨

α∈[0,2]

[α ∧ (
α− 2

3
)] =

5

4
,

Consequently,

2 = −
∫ 1

0

f(x)dµ+−
∫ 1

0

g(x)dµ � c−
∫ 1

0

(f(x) + g(x))dµ =
10

8
× 5

4
=

50

32
.

inequality (2.5) is not valid for fuzzy integrals.

Tn the following theorem we show a Minkoeski tupe inequality derived from (2.5) for the Sugeno
integral.

Theorem 3.2. (Fuzzy Minkowski’s inequality, decreasing case). Let f, g : [0, 1] → [0,∞) be two
real valued and non-negative functions and let µ be the Lebesgue measure on R. Let f, g be both
continuous and strictly decreasing functions. If functions satisfying

0 < m ≤ f(x)

g(x)
≤M, ∀x ∈ [0, 1]

then the inequality(
−
∫ 1

0

fs(x)dµ
) 1
s

+
(
−
∫ 1

0

gs(x)dµ
) 1
s ≤ 2c

(
−
∫ 1

0

(f(x) + g(x))sdµ
) 1
s

, (3.1)

holds, where 1 ≤ s <∞ and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.
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Proof. Since f(x)
g(x) ≤M,f ≤M(f(x) + g(x))−Mf(x). Therefore

(M + 1)sf(x)s ≤Ms(f(x) + g(x))s

and so,

f(x)s ≤ Ms

(M + 1)s
(f(x) + g(x))s.

Now we have (
−
∫ 1

0

f(x)sdµ
) 1
s ≤

(
−
∫ 1

0

(
M

M + 1
)s(f(x) + g(x))sdµ

) 1
s

. (3.2)

By Lemma 2.8 (1) we have

−
∫ 1

0

M

M + 1
dx < −

∫ 1

0

1dx = 1. (3.3)

So by (3.2) and (3.3) we can write(
−
∫ 1

0

f(x)sdµ

) 1
s

≤
(
−
∫ 1

0

(f(x) + g(x))sdµ

) 1
s

. (3.4)

On the other hand, since mg(x) ≤ f(x), Hence

g ≤ 1

m
(f(x) + g(x))− 1

m
g(x).

Therefore,

(
1

m
+ 1)sg(x)s ≤ (

1

m
)s(f(x) + g(x))s,

and so, by Lemma 2.8 (1) we have(
−
∫ 1

0

g(x)sdµ

) 1
s

≤
(
−
∫ 1

0

(
1

m+ 1
)s(f(x) + g(x))sdµ

) 1
s

. (3.5)

Since
1

m+ 1
< 1, then

−
∫ 1

0

1

m+ 1
dx < −

∫ 1

0

1dx = 1. (3.6)

The inequalities (3.5) and (3.6) follows that(
−
∫ 1

0

g(x)sdµ

) 1
s

≤
(
−
∫ 1

0

(f(x) + g(x))sdµ

) 1
s

. (3.7)
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Now with adding the inequalities (3.4) and (3.7):(
−
∫ 1

0

f(x)sdµ

) 1
s

+

(
−
∫ 1

0

g(x)sdµ

) 1
s

≤ 2

(
−
∫ 1

0

(f(x) + g(x))sdµ

) 1
s

≤ 2c

(
−
∫ 1

0

(f(x) + g(x))sdµ

) 1
s

.

The proof is now complete. q.e.d.

Example 3.3. Let f, g : [0, 1] → [0,∞) be two real valued functions defined as f(x) = 1 − x,
g(x) = 1 − x2 and µ be the Lebesgue measure on R. Let s = 1. A straightforward calculus shows
that 0 < 1

2 ≤
f
g ≤ 1 and

(i)−
∫ 1

0

f(x)dµ =
∨

α∈[0,1]

[α ∧ µ({1− x ≥ α})] =
∨

α∈[0,1]

[α ∧ (1− α)] =
1

2
= 0.5,

(ii)−
∫ 1

0

g(x)dµ =
∨

α∈[0,1]

[α ∧ µ({1− x2 ≥ α})] =
∨

α∈[0,1]

[α ∧
√

1− α] = 0.618,

(iii)−
∫ 1

0

(f + g)dµ =
∨

α∈[0,1]

[α ∧ µ({−x2 − x+ 2 ≥ α})]

=
∨

α∈[0,1]

[α ∧
(
− 1

2
+

1

2

√
(9− 4α)

)]
= 0.732.

Therefore

1.118 = 0.5 + 0.618 =
(
−
∫ 1

0

fdµ
)

+
(
−
∫ 1

0

gdµ
)
≤ 2c

(
−
∫ 1

0

(f + g)dµ
)

= 2c× 0.732

= 1.464c.

Theorem 3.4. (Fuzzy Minkowski’s inequality, decreasing case). Let f, g : [0, 1] → [0,∞) be two
real valued and non-negative functions and let µ be the Lebesgue measure on R. Let f, g be both
continuous and strictly decreasing functions and satisfying

0 < m ≤ f(x)

g(x)
≤M, ∀x ∈ [0, 1]

then the inequality(
−
∫ 1

0

f(x)sdµ
) 1
s

+
(
−
∫ 1

0

g(x)sdµ
) 1
s ≤ 2c

(
−
∫ 1

0

(f(x) + g(x))sdµ
) 1
s

,

holds, where 1 ≤ s <∞, n ≥ 2 and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.

Proof. The proof is similar Theorem 3.2. q.e.d.
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4 Minkowski’s inequality for pseudo-integrals

Our purpose in this section is to prove the Minkowski’s inequality derived from (2.5) for the pseudo-
integrals.

Theorem 4.1. (Pseudo Minkowski’s inequality, decreasing case). Let f, h : [0, 1] → [0, 1] be
continuous and strictly decreasing functions and µ be the Lebesgue measure on R. If the pseudo-
operations are defined by a continuous and decreasing g : [0, 1]→ [0,∞] and functions satisfying

0 < m ≤ f(x)

h(x)
≤M, ∀x ∈ [0, 1]

then the inequality(∫ ⊕
[0,1]

f(x)sdµ
) 1
s

+
(∫ ⊕

[0,1]

h(x)sdµ
) 1
s ≤ 2c

(∫ ⊕
[0,1]

(f(x) + h(x))sdµ
) 1
s

, (4.1)

holds, where 1 ≤ s <∞, and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.

Proof. Since f(x)
g(x) ≤M,f(x) ≤M(f(x) + g(x))−Mf(x). Therefore

(M + 1)sf(x)s ≤Ms(f(x) + g(x))s

and so,

f(x)s ≤ Ms

(M + 1)s
(f(x) + g(x))s.

Now from Lemma 2.8 (2),(∫ ⊕
[0,1]

f(x)sdµ
) 1
s ≤

(∫ ⊕
[0,1]

(
M

M + 1
)s(f(x) + g(x))sdµ

) 1
s

. (4.2)

Since
M

M + 1
< 1, from Lemma 2.8 (2), we have

(∫ ⊕
[0,1]

f(x)sdµ

) 1
s

≤

(∫ ⊕
[0,1]

(f(x) + g(x))sdµ

) 1
s

. (4.3)

On the other hand, since mg(x) ≤ f(x), Hence

g(x) ≤ 1

m
(f(x) + g(x))− 1

m
g(x).

Therefore,

(
1

m
+ 1)sg(x)s ≤ (

1

m
)s(f(x) + g(x))s.
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and so, from Lemma 2.8 (2),(∫ ⊕
[0,1]

g(x)sdµ

) 1
s

≤

(∫ ⊕
[0,1]

(
1

m+ 1
)s(f(x) + g(x))sdµ

) 1
s

. (4.4)

Since
1

m+ 1
< 1, from Lemma 2.8 (2) and the inequality (4.4) we have

(∫ ⊕
[0,1]

g(x)sdµ

) 1
s

≤

(∫ ⊕
[0,1]

(f(x) + g(x))sdµ

) 1
s

. (4.5)

Now with adding the inequalities (4.3) and (4.5) we have(∫ ⊕
[0,1]

f(x)sdµ

) 1
s

+

(∫ ⊕
[0,1]

g(x)sdµ

) 1
s

≤ 2

(∫ ⊕
[0,1]

(f(x) + g(x))sdµ

) 1
s

≤ 2c

(∫ ⊕
[0,1]

(f(x) + g(x))sdµ

) 1
s

.

The proof is now complete. q.e.d.

Example 4.2. Let f, h : [0, 1]→ [0, 1] be two real valued functions as f(x) = −x+ 1
2 , h(x) = −x+ 3

2
and µ be the Lebesgue measure on R. Let s = 1, g(x) = −x, A straightforward calculus shows that
0 < 4

3 ≤
f
g ≤ 2. Since

(i)

∫ ⊕
[0,1]

f(x)dµ = g−1
∫ 1

0

g(f(x))dµ

= g−1
∫ 1

0

−(−x+
1

2
)dµ

= g−1
∫ 1

0

(x− 1

2
)dµ

= g−1(
1

2
x2 − 1

2
x|10)

= g−1(0)

= 0,
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(ii)

∫ ⊕
[0,1]

h(x)dµ = g−1
∫ 1

0

g(h(x)dµ

= g−1
∫ 1

0

−(−x+
3

2
)dµ

= g−1
∫ 1

0

(x− 3

2
)dµ

= g−1(
1

2
x2 − 3

2
x|10)

= g−1(−1)

= 1,

and

(iii)

∫ ⊕
[0,1]

((f + h)(x))dµ = g−1
∫ 1

0

g((f + h)(x))dµ

= g−1
∫ 1

0

g(−2x+ 2)dµ

=

= g−1
∫ 1

0

(2x− 2)dµ

= g−1(x2 − 2x|10)

= g−1(−1)

= 1.

Therefore

1 = 0 + 1 =
(∫ ⊕

[0,1]

fdµ
)

+
(∫ ⊕

[0,1]

gdµ
)
≤ 2c

(∫ ⊕
[0,1]

(f + g)dµ
)

≤ 2× c× 1

= 2c.

Theorem 4.3. (Pseudo Minkowski inequality, increasing case). Let f, h : [0, 1]→ [0, 1] be continu-
ous and strictly increasing functions and µ be the Lebesgue measure on R. If the pseudo-operations
are defined by a continuous and increasing g : [0, 1]→ [0, 1] and functions satisfying

0 < m ≤ f(x)

h(x)
≤M, ∀x ∈ [0, 1]

then the inequality(∫ ⊕
[0,1]

f(x)sdµ

) 1
s

+

(∫ ⊕
[0,1]

h(x)sdµ

) 1
s

≤ nc

(∫ ⊕
[0,1]

(f(x) + h(x))sdµ

) 1
s

, (4.6)

holds, where 1 ≤ s <∞ and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.
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Proof. By using the same argument in Theorem 4.1 proof is obvious. q.e.d.

Now we generaliz the Minkowski type inequality by the semiring ([0, 1],max,�), where � is
generated.

Theorem 4.4. Let f, h : [0, 1] → [0, 1] be continuous and strictly decreasing functions and let m
be the same as in Theorem 2.6. If � is represented by an decreasing multiplicative generator g and
functions satisfying

0 < m ≤ f(x)

h(x)
≤M, ∀x ∈ [0, 1]

then the inequality(∫ sup

[0,1]

fs � dm

) 1
s

+

(∫ sup

[0,1]

hs � dm

) 1
s

≤ nc

(∫ sup

[0,1]

(f + h)s � dm

) 1
s

, (4.7)

holds, where 1 ≤ s <∞, n ≥ 2 and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.

Proof. Since f(x)
g(x) ≤M,f ≤M (f(x) + g(x))−Mf(x). Therefore

(M + 1)sf(x)s ≤Ms(f(x) + g(x))s

and so,

f(x)s ≤ Ms

(M + 1)s
(f(x) + g(x))s.

Now, (∫ ⊕λ
[0,1]

f(x)s � dm

) 1
s

≤

(∫ ⊕λ
[0,1]

(
M

M + 1
)s(f(x) + g(x))s � dm

) 1
s

.

Since
M

M + 1
< 1, so

(∫ ⊕λ
[0,1]

f(x)s � dm

) 1
s

≤

(∫ ⊕λ
[0,1]

(f(x) + g(x))s � dm

) 1
s

.

It follows that(
lim
λ→∞

∫ ⊕λ
[0,1]

f(x)s � dm

) 1
s

≤

(
lim
λ→∞

∫ ⊕λ
[0,1]

(f(x) + g(x))s � dm

) 1
s

.

Finally, (∫ sup

[0,1]

f(x)s � dm

) 1
s

≤

(∫ sup

[0,1]

(f(x) + g(x))s � dm

) 1
s

. (4.8)
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On the other hand, since mg(x) ≤ f(x), hence

g(x) ≤ 1

m
(f(x) + g(x))− 1

m
g(x).

Therefore,

(
1

m
+ 1)sg(x)s ≤ (

1

m
)s(f(x) + g(x))s

and so, (∫ ⊕λ
[0,1]

g(x)s � dm

) 1
s

≤

(∫ ⊕λ
[0,1]

(
1

m+ 1
)s(f(x) + g(x))s � dm

) 1
s

.

Since
1

m+ 1
< 1, so

(∫ ⊕λ
[0,1]

g(x)s � dm

) 1
s

≤

(∫ ⊕λ
[0,1]

(f(x) + g(x))s � dm

) 1
s

.

It follows that(
lim
λ→∞

∫ ⊕λ
[0,1]

g(x)s � dm

) 1
s

≤

(
lim
λ→∞

∫ ⊕λ
[0,1]

(f(x) + g(x))s � dm

) 1
s

.

Finally, (∫ sup

[0,1]

g(x)s � dm

) 1
s

≤

(∫ sup

[0,1]

(f(x) + g(x))s � dm

) 1
s

. (4.9)

Now with adding the inequalities (4.8) and (4.9):(∫ sup

[0,1]

f(x)s � dm

) 1
s

+

(∫ sup

[0,1]

g(x)s � dm

) 1
s

≤ 2

(∫ sup

[0,1]

(f(x) + g(x))s � dm

) 1
s

≤ 2c

(∫ sup

[0,1]

(f(x) + g(x))s � dm

) 1
s

.

The proof is now complete. q.e.d.

Example 4.5. Let f, h : [0, 1]→ [0,∞) be a µ-measurable, and gλ(x) = x−λ. So

x⊕ y = (x−λ + y−λ)−λ and x� y = xy.

Therefore Relation (4.7) reduces on the following inequality:

sup
(

(f(x)s)
1
s + ψ(x)

)
+ sup

(
(h(x)s)

1
s + ψ(x)

)
≤ nc sup ((f + h)s(x) + ψ(x)) .

where ψ is from Theorem 2.6.
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Theorem 4.6. Let f, h : [0, 1]→ [0,∞) are continuous and strictly increasing functions and let m
be the same as in theorem 2.6. If � is represented by an increasing multiplicative generator g and
functions satisfying

0 < m ≤ f

h
≤M, ∀x ∈ [0, 1]

then the inequality(∫ sup

[0,1]

fs � dm

) 1
s

+

(∫ sup

[0,1]

hs � dm

) 1
s

≤ 2c

(∫ sup

[0,1]

(f + h)s � dm

) 1
s

, (4.10)

holds, where 1 ≤ s <∞ and c =
M(m+ 1) + (M + 1)

(m+ 1)(M + 1)
.

Proof. The proof is similar to Theorem 4.4. q.e.d.

Note that third important case ⊕ =max and � =min has been studied in [38] and the Pseudo-
integrals in such a case yields the Sugeno integral.

Conclusion: The classical Minkowski inequality is an important result in theoretical and ap-
plied fields. This paper proposed a Minkowski type inequality for fuzzy antegrals. Also, we proved
this inequality for pseudo integrals: The first class is including the pseudo-integral based on a func-
tion reduces on the g−integral, where pseudo-addition and pseudo-multiplication are defined by a
monotone and continuous function g. The second class is including the pseudo-integral based on
the semiring ([a, b],max,�) is given by sup−measure, where x� y is generated by g−1(g(x)g(y)).
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[12] A. Flores-Franulič, H. Román-Flores, A Chebyshev type inequality for fuzzy integrals, Applied
Mathematics and Computation 190 (2007), 1178-1184.

[13] S. G. Krantz, Jensen’s Inequality, ] 9.1.3 in Handbook of Complex Variables, Boston, MA:
Birkh

..
auser, 119, 1999.

[14] W. Kuich, Semiring, Automata, Languages, Springer-verlag, Berlin, (1986).

[15] J.-Y. Lu , K.-S. Wu, J.-C. Lin, Fast full search in motion estimation by hierarchical use of
Minkowski’s inequality, Pattern Recognition 31 (1998), 945-952.

[16] R. Mesiar, E. Pap, Idempotent integral as limit of g−integrals, Fuzzy Sets and Systems 102
(1999), 385-392.

[17] R. Mesiar, Y. Ouyang, general Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets
and Systems 160 (2009), 58-64.

[18] R. Mesiar, E. Pap, Idempotent integral as limit of g-integrals, Fuzzy Sets and Systems 102
(1999), 385-392.

[19] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910.

[20] C. Mortici and H. M. Srivastava, Estimates for the arctangnt function related to Shafer’s
inequality, Colloq. Math. 136 (2014), 263-27.

[21] Y. Ouyang, J. Fang, L. Wang, Fuzzy Chebyshev type inequality, Internatinal Journal of Ap-
proximate Reasoning 48 (2008), 829-835.

[22] U. M,
..
ozkan, M. Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time

scales, Applied Mathematics Letters 21 (2008), 993-1000.

[23] E. Pap, An integral generated by decomposable measure, Univ. Novom Sadu Zb. Rad. Prirod.
-Mat. Fak. Ser. Mat. 20(1) (1990), 135-144.

[24] E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, 1995.



174 B. Daraby, F. Rostampour, A. Rahimi
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