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Abstract

One of the famous mathematical inequality is Minkowski’s inequality. It is an important
inequality from both mathematical and application points of view. In this paper, a Minkowski
type inequality for fuzzy and pseudo-integrals is studied. The established results are based on
the classical Minkowski’s inequality for integrals.
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1 Introduction

The theory of fuzzy measures and fuzzy integrals was introduced by Sugeno [37] as a tool for
modelling non-determinstic problems. Fuzzy integrals or Sugeno integrals have very interesting
properties from a mathematical point of view which have been studied by many authors, studied
by many authors including Pap [24], Ralescu and Adams [26], Wang and Klir [40] among others.
Ralesco and Adams [26] studied several equivalent definitions of fuzzy integrals, while Pap [24]
and Wang and Klir [40], provided an overview of fuzzy measure theory. The fuzzy integral for
monotone functions was presented in [27]. In fact, fuzzy measures and fuzzy integrals are versatile
operators which can be used in different areas. They have a broad use in information fusion,
electronic auctions, decision making, and etc. Chen et al. [4] employed fuzzy integral and fuzzy
measure to establish a public attitude analysis model. The integral inequalities are useful results
in several theoretical and applied fields. For instance, integral inequalities play a major role in the
development of a time scales calculus. Ozkan et al. [22] obtained Holders inequality, Minkowskis
inequality and Jensen’s inequality on time scales. Also H. M. Srivastava et.al [34, 35] studied some
generalizations of Maroni’s inequality and some weighted Pial-type inequalities on time scales. Some
famous inequalities have been generalized to fuzzy integral. Romén-Flores and Chalco-Cano [28]
analyzed an interesting type of geometric inequalities for fuzzy integral with some applications to
convex geometry. Romén-Flores et al. [29, 30] studied a Jensen type inequality and a convolution
type inequality for fuzzy integrals. Also, they have investigated a Chebyshev type inequality and
a Stolarsky type inequality for fuzzy integrals [12, 31]. In [12], a fuzzy Chebyshev inequality for
a special case was obtained which has been generalized by Ouyang et al. [21]. Furthermore,
Chybyshev type inequalities for fuzzy integral were proposed in a rather general form by Mesiar
and Ouyang [17]. Recently, B. Daraby and L. Arabi Proved a related Fritz Carlson type inequality
for Sugeno integrals [8]. For more refrences on integral inequalities and its applications you can see
(39, 20, 41, 36].

Pseudo-analysis is a generalization of the classical analysis, where instead of the field of real
numbers a semiring is taken on a real interval [a, b] C [—00, 00| endowed with pseudo-addition & and
with pseudo-multiplication ® ([11, 9, 8, 5, 25, 6, 37]). Based on this structure there where developed
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the concepts of @-measure (pseudo-additive measure), pseudo-integral, pseudo-convolution, pseudo-
Laplace transform and ete. ([7, 12, 27]).

This paper is organized as follows: In Section 2 some preliminaries and summarization of some
previous known results are given. Section 3 proposes a Minkowski type inequality for fuzzy integrals.
Section 4, deals with a Minkowski type inequality for Pseudo-integrals. Finally, Section 5 contains
a short conclusion.

2 Preliminaries
In this section, some definitions and basic properties of the Sugeno and Pseudo integrals which will
be used in the next sections are presented.

Definition 2.1. Let ¥ be a o-algebra of subsets of X and let u: ¥ — [0,00) be a non-negative,
extended real-valued set function, we say that p is a fuzzy measure iff:

(FM1) (2) = 0;

(FM2) E,F €5 and E C F imply u(E) < p(F) (monotonicity);

(FM3) E,, C >, Ei1 CE,C...imply limu(E,)=p(lJ E,) (continuity from below);
i=1
(FM4) E,, €5, E1 2 Ey D ...,u(Fy) < oo imply limu(E,) = p(() En) (continuity from
i=1
above).

If f is a non-negative real-valued function on X, we will denote F, = {z € X | f(z) > a} =
{f > a}, the a —level of f, for a > 0. Fop ={x € X | f(x) > 0} = supp(f) is the support of f. We
know that: a« < 8= {f > B} C{f > a}.

If i is a fuzzy measure on X , we define the following;:

FHX)={f:X —[0,00)| fispu— measurable}.
Definition 2.2. Let u be a fuzzy measure on (X,%). If f € §(X) and A € %, then the Sugeno
integral (or fuzzy integral) of f on A, with respect to the fuzzy measure pu, is defined [40] as
f fdu = \/ (a A (AN Ey)).
A a>0
Where V, A denotes the operation sup and inf on [0, 00) respectively. In particular, if A = X then:
F sau=o fan=\/ (@ nu(r)).
X a>0

The following proposition gives most elementary properties of the fuzzy integral and can be
found in [40].

Proposition 2.3. Let (X, 3§, ) be a fuzzy measure space, with A, B € > and f,g € §. We have
L A, fdp < p(A).
2. f, kdp < k A p(A), for k nonnegative constant.



Minkowski type inequality for fuzzy and pseudo-integrals 161

3. If f < gon A, then f, fdu < f, gdpu.

4. if A C B, then f, fdu < §, gdp.

5. if p(A) < oo, then §, fdu > o e p(AN{f>a}) > o

6. p(An{f>a}) <a= A, fdu<a.

7. £, fdp < a & there exists v < a such that (AN{f >~}) < a.
8. §, fdu > a & there exists 7 > a such that (AN{f >~}) > a.

Remark 2.4. Let F(a) = p(AN F,), from parts (5) and (6) of the above Proposition, it very
important to note that

F(a)zaé][fdu:a.
A

Thus, from a numerical point of view, the Sugeno integral can be calculated by solving the equation
Fla)=a.

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of [—o0, oo]. The
full order on [a, b] will be denoted by =.

The operation @ (pseudo-addition) is a function @ : [a, b] X [a, b] — [a, b] which is commutative,
nondecreasing (with respect to <), associative and with a zero (neutral) element denoted by 0, i.e.,
for each = € [a,b],0 & 2 = z holds (usually O is either a or b). Let [a,b]; = {z|z € [a,b],0 < z}.

Definition 2.5. The operation ® (pseudo-multiplication) is a function ® : [a,b] X [a,b] — [a, ]
which is commutative, positively non-decreasing, i.e., <y implies 2 ® 2z 2 y ® z for all z € [a, b]4,
associative and for which there exists a unit element 1 € [a, b], i.e., for each z € [a,b],1 ® z = z.

We assume also 0 © x = 0 that ® is a distributive pseudo-multiplication with respect to &, i.e.,
2O y®z)=(x0y) ®(x®z). The structure ([a,b], ®,®) is a semiring ([14]). In this paper, we
will consider semirings with the following continuous operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication is not.

(a) x @y = sup(z,y), ® is arbitrary not idempotent pseudo-multiplication on the interval [a, b]. We
have 0 = a and the idempotent operation sup induces a full order in the following way: = =< y if
and only if sup(z,y) = v.

(b) z ®y = inf(z,y), ® is arbitrary not idempotent pseudo-multiplication on the interval [a, b]. We
have 0= b and the idempotent operation inf induces a full order in the following way: = < y if and
only if inf(x,y) = y.

Case II: The pseudo-operations are defined by a monotone and continuous function g : [a,b] —
[0, 0], i.e., pseudo operations are given with z &y = g~ (g(x) + g(x)) and x © y = g~ (g(z)g(x)).
If the zero element for the pseudo-addition is a, we will consider increasing generators. Then
g(a) = 0 and g(b) = oco. If the zero element for the pseudo-addition is b, we will consider decreasing
generators. Then g(b) = 0 and g(a) = oo. If the generator g is increasing (respectively decreasing),
then the operation @ induces the usual order (respectively opposite to the usual order) on the
interval [a, b] in the following way: x < y if and only if g(x) < g(y).

Case III: Both operations are idempotent. We have
(a) z @y = sup(x,y),x ©y = inf(z,y), on the interval [a,b]. We have 0 = ¢ and 1 = b. The
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idempotent operation sup induces the usual order (x <y if and only if sup(z,y) = y).

(b) x ®y = inf(z,y),z ®y = sup(x,y), on the interval [a,b]. We have 0 = b and 1 = a. The
idempotent operation infinduces an order opposite to the usual order (z < y if and only if inf (z,y) =
y)-

Let X be a non-empty set. Let A be a o-algebra of subsets of a set X.

We shall consider the semiring ([a, b], ®, ®), when pseudo-operations are generated by a mono-
tone and continuous function g : [a,b] — [0, 00], i.e., pseudo-operations are given with = ® y =
97 (g(x) +9(y)) and z © y = g~ (g(2)g(y))-

Then the pseudo-integral for a function f : [¢,d] — [a, b] reduces on the g-integral

s =g ([ o). @)

[e.d]

More on this structure as well as corresponding measures and integrals can be found in ([23]). The
second class is when @y = max(z,y) and Oy = g~ (g(x)g(y)), the pseudo-integral for a function
f:R — [a,b] is given by

®
[ s odm=sw (1) 0 v(w).
R
where function ¢ defines sup-measure m. Any sup-measure generated as essential supremum of a
continuouse denisty can be obtained as a limit of pseudo-additive measures with respect to generated

pseudo-additive. For any continuouse function f : [0,00] — [0, 0] the integral [ ® f®dm can be
obtained as a limit of g-integrals. We denoted by u the usual Lebesgue measure on R. We have

m(A) = esssup(z|z € A) = sup{a|u(z|r € A,x > a) > 0}.

Theorem 2.6. ([18]). Let m be a sup-measure on ([0, co], B[0, 00]), where B([0, co]) is the Borel o-
algebra on [0, 00], m(A) = esssup, (¢ (z)|z € A), and ¥ : [0,00] — [0, 0] is a continuouse density.
Then for any pseudo-addition & with a generator g there exists a family m) of ®,-measure on
([0, 0], B), where @, is a generated by ¢ (the function g of the power A), A € (0,00), such that
lim)\_,oo my =m.

Theorem 2.7. ([18]). Let ([0, 00],sup, ®) be a semiring, when ® is a generated with g, i.e., we
have z ® y = g~ 1(g(x)g(y)) for every x,y € (0,00). Let m be the same as in Theorem 2.6, Then
there exists a family {m,} of ©) -measures, where @, is a generated by ¢g*, A € (0,00) such that
for every continuous function f : [0, c0] — [0, o0],

sup D
/ fO©dm = lim f©dmy = lim (g)‘)ﬂ(/g)‘(f(x))da:).
A—00 A—00
Easyly a stright calculus give the following Lemma:

Lemma 2.8. Let f; and fy be integrable functions, A € > and f1 < fi, so we have:
L. £, fide < £ fodz.
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The classical Minkowski’s inequality was published by Minkowski [19] in his famous book “Ge-
ometrie der Zahlen”. A proof of Minkowski’s inequality as well as several extensions, related results,
and interesting geometrical interpretations can be found in [32, 33]. An extension of Minkowski’s
inequality, which is based on Holder’s inequality, is given in [40]. Applications of Minkowski’s in-
equality have been studied by many authors. For example ozkan et al. [22] applied Minkowski’s in-
equality, Holder’s inequality and Jensen’s inequality on time scales. Lu et al. [15] used Minkowski’s
inequality for fast full search in motion estimation. The classical Minkowski’s inequality [19] is as

follows:
( / (f(w)+g(w))sdw>s < ( / f(w)de)l ( / g(a:mx>s (2.9)

where 1 < s < oo and f,g:[0,1] — [0,00) are two nonnegative functions.
Note we recall the following inequalities which are the fuzzy versions of Minkowski’s inequality at
two cases and appears in [1].

Theorem 2.9. Let f,g : [0,1] — [0,00) be two real valued functions and let u be the Lebesgue
measure on R. If f, g are both continuous and strictly decreasing functions, then the inequality

(v = () (f50)

holds for all 1 < s < 0.

Theorem 2.10. Let f,g:[0,1] — [0,00) be two real valued functions and let x be the Lebesgue
measure on R. If f g are both continuous and strictly increasing functions, then the inequality

1 H 1 H 1 H
<][ (f+ g)sdu> < <][ fsdu> + (][ gsdu) (2.3)
0 0 0
holds for all 1 < s < oo.
The following theorem is pseudo version of Minkoeski’s inequality and appears in [2].

Theorem 2.11. Let f,g: X — [0,00) be two measurable functions and s € [1,00). If an additive
generator g : [a,b] — [0, 1] of the pseudo-addition & and the pseudo-multiplication ® are increasing.
Then for any ¢ — @-measure m it holds:

(/):B(J“rg)sciu>i < (/X@ fsd/L)i + (/X@gsdu)i (2.4)

The following theorem shows the new classical version of Minkowski’s inequality and appears in

3]-
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Theorem 2.12. Let f and g be positive functions satisfying
f (@)

0<m<—= <M, Vzé€lab], we have

g(z)

1
s

</abfs(:c)dgc>i + </abgs($)dm>l 30(/;(]“(:5)*9(@)3“) 7 (2.5)

M(m+1)+ (M +1)
(m+1)(M+1)

where 1 < s < oo and ¢ =

3 Minkowski’s inequality for fuzzy integrals

In this section, by an example we show that the Theorem 2.12 is not valid for the Sugeno integral.

Example 3.1. Let f(z) =2+ 1, g(z) =2z + 1 and s = 1. We have 0 < 3 < 583 <1 and

1
(i)ﬁ f@dn=\ larpte+1>ah]= \ lan(a-1)]=1,

a€(0,1] a€l0,1]
! a—1
W f g@in=\ farntzer1zap= \ an(*H =1,
0 a€l0,1] a€l0,1]
(i) { (@) +g@Ndn= \ lann(Gar2zah)= V lan(*52) =1,
0 a€l0,2] ac0,2]
Consequently,

2:]£ f(a:)du+]£ g(a:)duf_c]g (f(x)+9($))dM=§xZ:372,

inequality (2.5) is not valid for fuzzy integrals.

Tn the following theorem we show a Minkoeski tupe inequality derived from (2.5) for the Sugeno
integral.

Theorem 3.2. (Fuzzy Minkowski’s inequality, decreasing case). Let f, g : [0,1] — [0,00) be two
real valued and non-negative functions and let p be the Lebesgue measure on R. Let f, g be both
continuous and strictly decreasing functions. If functions satisfying

O<m§@§M7 vV € [0,1]

g(z)

then the inequality

(f r@a)’ + (f vw) <oe({ 0@ +oeyra)’ 1)

M(m+1)+ (M +1)
(m+1)(M+1)

1
s

=

holds, where 1 < s < o0 and ¢ =
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Proof. Since % <M, f < M(f(z)+g(x)) — M f(z). Therefore

(M +1)°f(x)® < M*(f(z) + g(x))*

and so,
S Ms S
@) < Gy o)+ a(@)
Now we have
(f r@ran)’ < (£ G (@ +g)ra) (32)
By Lemma 2.8 (1) we have
1oy 1
]€ M—|—1d$<]€ ldz = 1. (3.3)

So by (3.2) and (3.3) we can write

(]f f(x)sdu)i < ({(f(@ +g<m))5du>i. )

On the other hand, since mg(z) < f(x), Hence

9 (f(@) +9(@)) ~ —gl).

Therefore,
1

(4 1%(2)" < () (@) + 9(a))"

and so, by Lemma 2.8 (1) we have

(f g(sc)Scm)i <(f G irow +g(x))8d/¢)i | (35)

1
Since T < 1, then

1y 1
][ dz <][ ldz = 1. (3.6)
o m—+1 0

The inequalities (3.5) and (3.6) follows that

1 1

({ g(a:)sdu> ’ < (]gl(f(a:) + g(x))sdu) ’ . (3.7)
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Now with adding the inequalities (3.4) and (3.7):

( 01 f(ff)sdu>l + <]£1 g(ﬂﬁ)sdu>i

2(f )+ o))

2 f )+ o))

The proof is now complete. Q.E.D.

IA

IN

Example 3.3. Let f,g : [0,1] — [0,00) be two real valued functions defined as f(z) = 1 — =z,
g(z) =1 — 22 and u be the Lebesgue measure on R. Let s = 1. A straightforward calculus shows
that0<l§i§1and

][f V feru{i-zzahl= \ lan(i-a)=5=05

a€l0,1] a€l0,1]

<ﬁ)]€ g@dn=\ larun{i—2*>a})]= \/ [anvI—a]=0618,

a€lo,1] a€l0,1]
1
(iii)]é(f—kg)d,u = \/ [ A p({—2? —2+2 > a})]

_ \/ (—7+; (9—4a))] = 0.732.

€[o,1

Therefore

1.11820.5—}—0.6182(]ilfdu)—l—(yilgdu) < 2c(f01(f+g)du)

= 2¢x0.732
= 1.464c.
Theorem 3.4. (Fuzzy Minkowski’s inequality, decreasing case). Let f, g : [0,1] — [0,00) be two

real valued and non-negative functions and let p be the Lebesgue measure on R. Let f, g be both
continuous and strictly decreasing functions and satisfying

I(@)
g(z)

0<m< <M, Vzel0,1]

then the inequality

1
s

(f swra)’ + (f stwran)’ <2e(f 76+ o)an)

Mm+1)+(M+1)
(m+1)(M+1)
Proof. The proof is similar Theorem 3.2. Q.E.D.

holds, where 1 < s < oo,n > 2 and ¢ =
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4 Minkowski’s inequality for pseudo-integrals

Our purpose in this section is to prove the Minkowski’s inequality derived from (2.5) for the pseudo-
integrals.

Theorem 4.1. (Pseudo Minkowski’s inequality, decreasing case). Let f,h : [0,1] — [0,1] be
continuous and strictly decreasing functions and p be the Lebesgue measure on R. If the pseudo-
operations are defined by a continuous and decreasing ¢ : [0, 1] — [0, 0o] and functions satisfying

f(z)
0<m§m§M, Vz € [0,1]
then the inequality
D 1 =y 1 o .
( o f(x)sdu> + ( o h(x)sdu> < 2c(/[0,1}(f(x) +h(x))sdu> ’ (4.1)

Mm+1)+(M+1)

holds, where 1 < de=
olds, where 1 < s <00, and ¢ (m+1)(M+1)

Proof. Since ;‘Eig <M, f(z) < M(f(z)+ g(z)) — M f(x). Therefore

(M +1)°f(x)* < M*(f(z) + g(x))°
and so,
MS

f(x)sﬁm

(f(@) + g(x))*.

Now from Lemma 2.8 (2),

@ 1 e Mo .
( [0,1] [0’1](M n 1) (f(x) + g(x)) d,u)

< 1, from Lemma 2.8 (2), we have

D % [+ s
( f<x>8du> <</ (f($)+9($))sd#> . (4.3)
[0,1] [0,1]

On the other hand, since mg(z) < f(x), Hence

Since

M
M+1

Therefore,
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and so, from Lemma 2.8 (2),

@ . 3 ® L S
() = ([ oo o)

1
Since 7 < 1, from Lemma 2.8 (2) and the inequality (4.4) we have

P % > %
(/ g(x)Sdu> s(/ (f(x)+g(ﬂf))sdu>
[0,1] [0,1]

Now with adding the inequalities (4.3) and (4.5) we have

IN

¢ : @ : ® :
< - f(z) du) + (/[O,l}g(x) du) 2 (/[071](]‘(95) + g(z)) du)

IN
[\)
()
—
=
= D
=
8
S~—
+
=2
8
S~—
S~—
W
=
=
~_

The proof is now complete.

Example 4.2. Let f,h:[0,1] — [0, 1] be two real valued functions as f(z)

@ =

(4.5)

Q.E.D.

—z+3, h(z) = —z+3

and p be the Lebesgue measure on R. Let s = 1, g(z) = —x, A straightforward calculus shows that

O<%§§§2. Since

©® 1
(i)/[ fl@)dp = 9‘1/0 g(f(x))dp

0,1]
! 1
= 971/ —(—$+§)du
0
1
_ 1
= g 1/ (@ = 5)dp
0
1 1
= ! 5552— §x|(l))
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@ w@an = o [ o

0,1]

and

@ 1
() [ (F+medn = a7 [ ol + R

[0,1]

Therefore

—_
I
e
+
—_

I
/N
=
= 52
~
U
<
N~—
+
/N
=
= 52]
Q
U
<
N—
N

20( /[i](f + g)du)

2xcex1
= 2c.

IN

Theorem 4.3. (Pseudo Minkowski inequality, increasing case). Let f, h : [0, 1] — [0, 1] be continu-
ous and strictly increasing functions and p be the Lebesgue measure on R. If the pseudo-operations
are defined by a continuous and increasing g : [0,1] — [0, 1] and functions satisfying

O<m§@§M7 YV € [0,1]

(z)
then the inequality

1

( f(z)sdu> +</ h(x)sdu> Sn(/ (f(z)+h(x))5du> 7 (4.6)
[0,1] [0,1] [0,1]

M(m+1)+ (M +1)

holds, where 1 < s < o0 and ¢ = (m+1)(M +1)
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Proof. By using the same argument in Theorem 4.1 proof is obvious. Q.E.D.

Now we generaliz the Minkowski type inequality by the semiring ([0, 1], max, ®), where ® is
generated.

Theorem 4.4. Let f,h :[0,1] — [0, 1] be continuous and strictly decreasing functions and let m
be the same as in Theorem 2.6. If ® is represented by an decreasing multiplicative generator g and
functions satisfying

f(z)

<—= <M 1
O<m_h(x)_ , Vrel0,1]

then the inequality

( S“pst)dm) + (/Suphsg)dm> s < nc </Sup(f+h)8®dm> S , (4.7)
[0,1] [0,1] [0,1]
M(m+1)+ (M+1)

(m+1)(M +1)

Proof. Since J;E;g <M, f<M(f(z)+ g(x)) — M f(x). Therefore

holds, where 1 < s < co,n > 2 and ¢ =

(M +1)°f(2)* < M*(f(2) + g(2))°

and so, .
flz)® < m(f(x) +g(2).
Now,
D . H N M ) S 1
< [0,1] /e de> - </[0,1](M+1) (f(z) +g(z)) ®dm>
Since M]\i 1 <1, so

@l

1
s

D E D s
( f(x)S@dm> s(/ <f<x>+g<m>>S@dm>
[0,1] [0,1]

It follows that

D
lim (2)° ®dm
A—o0 [0,1]

sup
(2)* ®dm
[0,1]

o=

1
s

Da d
< <nm /[ <f<x>+g<x>>s@dm>

A—00 0,1]
S <

Finally,

0 =

1
s

[ )+ gy @dm> . (@5)

[0,1]
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On the other hand, since mg(x) < f(z), hence

o(2) < - (f(2) +9(@) ~ —gle).
Therefore, . .
(- +1g()* < () (@) + g(a))°
and so,
D . : D 1 . N s
( [, ot dm> < ( L G U@ gy dm>
Since 1 <1, s0

w =

It follows that

@ =

Finally,

ol

sup % sup % sup s
( (@) @dm> + (/ o(2)* @dm> < 9 (/ (F(@) + g(a))* @dm>
[0,1] (0,1] [0,1]
sup %
< 2l [ (@) +g@) o dm
(0,1]
The proof is now complete. Q.E.D.

Example 4.5. Let f,h:[0,1] — [0,00) be a g-measurable, and ¢g*(z) = x~*. So

A

c®y= (2 +y M and zoOy=ay.

Therefore Relation (4.7) reduces on the following inequality:
sup ((£(2)")F +w(x)) +sup (A(2)")* +¥(@)) < nesup ((f +h)*(2) + ().

where 1 is from Theorem 2.6.
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Theorem 4.6. Let f,h:[0,1] — [0,00) are continuous and strictly increasing functions and let m
be the same as in theorem 2.6. If ® is represented by an increasing multiplicative generator g and
functions satisfying

0<m< /

< T <M, Vrelo]

then the inequality

sup % sup
ffodn| + / h® ©dm
[0,1] [0,1]
M(m+1)+ (M +1)
(m+1)(M+1)

1
s

<2 (/Sup(f +h) o dm> - (4.10)
[

0,1]

w |-

holds, where 1 < s < o0 and ¢ =

Proof. The proof is similar to Theorem 4.4. Q.E.D.

Note that third important case @ =max and ® =min has been studied in [38] and the Pseudo-
integrals in such a case yields the Sugeno integral.

Conclusion: The classical Minkowski inequality is an important result in theoretical and ap-
plied fields. This paper proposed a Minkowski type inequality for fuzzy antegrals. Also, we proved
this inequality for pseudo integrals: The first class is including the pseudo-integral based on a func-
tion reduces on the g—integral, where pseudo-addition and pseudo-multiplication are defined by a
monotone and continuous function g. The second class is including the pseudo-integral based on
the semiring ([a, b], max, ®) is given by sup —measure, where x ® y is generated by g~ *(g(z)g(y))-
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