On some new results for non-decreasing sequences

Hüseyin Bor

P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

E-mail: hbor33@gmail.com

Abstract

In this paper, a general theorem on absolute Riesz summability factors of infinite series is proved under weaker conditions. Also we have obtained some new and known results.

2010 Mathematics Subject Classification. 26D15. 40D15, 40F05, 40G99
Keywords. Riesz mean, summability factors, sequences, Hölder inequality, Minkowski inequality.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence $\left(s_{n}\right)$, that is (see [6]),

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{2}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

If we take $\delta=0$, then we obtain $|C, \alpha|_{k}$ summability (see [7]). Let $\left(p_{n}\right)$ be a sequence of positive numbers such that $P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad$ as $n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)$. The sequence-tosequence transformation

$$
\begin{equation*}
v_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{4}
\end{equation*}
$$

defines the sequence $\left(v_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$,generated by the sequence of coefficients $\left(p_{n}\right)$ (see [9]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}$, $k \geq 1$ and $\delta \geq 0$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|v_{n}-v_{n-1}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

If we take $\delta=0$, the we obtain $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [1]). In the special case $p_{n}=1$ for all values of $\mathrm{n}\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability is the same as $|C, 1 ; \delta|_{k}$ summability. Also if we take $\delta=0$
and $k=1$, then we get $\left|\bar{N}, p_{n}\right|$ summability.
2. Known results. The following theorems are known dealing with $\left|\bar{N}, p_{n}\right|_{k}$ and $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of infinite series.
Theorem A ([2]). Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and suppose that there exists sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{6}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{7}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{8}\\
\quad\left|\lambda_{n}\right| X_{n}=O(1) \tag{9}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{10}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{11}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right), \tag{12}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Theorem B ([4]). Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the sequences $\left(X_{n}\right),\left(\beta_{n}\right)$, $\left(\lambda_{n}\right)$, and (p_{n}) satisfy the conditions (6)-(9), (11)-(12), and

$$
\begin{gather*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{13}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{14}
\end{gather*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
Remark. It should be noted that if we take $\delta=0$, then we get Theorem A. In this case condition (13) reduces to condition (10) and condition (14) reduces to

$$
\begin{equation*}
\sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=\sum_{n=v+1}^{m+1}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right)=O\left(\frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{15}
\end{equation*}
$$

which always holds. Also it may be noticed that, under the conditions on the sequence $\left(\lambda_{n}\right)$ we have that $\left(\lambda_{n}\right)$ is bounded and $\Delta \lambda_{n}=O(1 / n)$ (see [2]).
3. Main result. The aim of this paper is to prove Theorem B under weaker conditions. Now, we shall prove the following theorem.

Theorem. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the sequences $\left(X_{n}\right),\left(\beta_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the conditions (6)-(9), (11)-(12), (14), and

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{16}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
Remark. It should be noted that condition (16) is the same as condition (13) when $\mathrm{k}=1$. When $k>1$, condition (16) is weaker than condition (13) but the converse is not true. As in [12], we can show that if (13) is satisfied, then we get

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n}=O\left(X_{m}\right)
$$

To show that the converse is false when $k>1$, as in [5], the following example is sufficient. We can take $X_{n}=n^{\sigma}, 0<\sigma<1$, and then construct a sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=X_{n}-X_{n-1},
$$

hence

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=X_{m}=m^{\sigma}
$$

and so

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n} & =\sum_{n=1}^{m}\left(X_{n}-X_{n-1}\right) X_{n}^{k-1}=\sum_{n=1}^{m}\left(n^{\sigma}-(n-1)^{\sigma}\right) n^{\sigma(k-1)} \\
& \geq \sigma \sum_{n=1}^{m} n^{\sigma-1} n^{\sigma(k-1)}=\sigma \sum_{n=1}^{m} n^{\sigma k-1} \sim \frac{m^{\sigma k}}{k} \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

It follows that

$$
\frac{1}{X_{m}} \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n} \rightarrow \infty \quad \text { as } \quad m \rightarrow \infty
$$

provided $k>1$. This shows that (13) implies (16) but not conversely. We require the following lemmas for the proof of our theorem.

Lemma 1.1([10]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as as expressed in the statement of the theorem, we have the following ;

$$
\begin{equation*}
n X_{n} \beta_{n}=O(1) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{18}
\end{equation*}
$$

Lemma 3.2 ([11]). If the conditions (11) and (12) are satisfied, then $\Delta\left(\frac{P_{n}}{n p_{n}}\right)=O\left(\frac{1}{n}\right)$.
4. Proof of the theorem. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}}
$$

Then we get that

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}, \quad n \geq 1, \quad\left(P_{-1}=0\right)
$$

By using Abel's transformation, we have that

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v p_{v}}\right)+\frac{\lambda_{n} s_{n}}{n} \\
& =\frac{s_{n} \lambda_{n}}{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \frac{P_{v+1} P_{v} \Delta \lambda_{v}}{(v+1) p_{v+1}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} P_{v} \lambda_{v} \frac{1}{v} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{19}
\end{equation*}
$$

Applying Abel's transformation, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=1}^{m}\left(\frac{P_{n}}{n p_{n}}\right)^{k-1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \frac{\left|s_{n}\right|^{k}}{n} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n}\left(\frac{1}{X_{n}}\right)^{k-1}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 3.1. Now, by using (12) and applying Hölder's inequality we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k} \\
&=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|s_{v}\right| p_{v}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
&=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v} \beta_{v}{ }^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
&=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v} \beta_{v}{ }^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
&=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} \beta_{v}{ }^{k-1} \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)^{k-1} \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1} \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m} v \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
&=O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|s_{r}\right|^{k}}{r X_{r}{ }^{k-1}} \\
&=O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
&+O(1) m \beta_{m} \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
&=O
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) m \beta_{m} X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by the hypotheses of the theorem and Lemma 3.1. Again, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 3}\right|^{k} & =\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right) p_{v}\left|s_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}} \cdot \frac{v}{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) X_{m}\left|\lambda_{m}\right|=O(1) a s \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem, Lemma 3.1 and Lemma 3.2. Finally, using Hölder's inequality, as in $T_{n, 3}$, we have get

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 4}\right|^{k}=\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v} \lambda_{v}\right|^{k}
$$

$$
\begin{aligned}
& =\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v p_{v}} p_{v} \lambda_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|\lambda_{v}\right|^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \frac{1}{P_{v}} \cdot \frac{v}{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) X_{m}\left|\lambda_{m}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of the theorem. If we take $\delta=0$, then we get a new result dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series. If we take $k=1$ and $\delta=0$, then we get a known result of Mishra and Srivastava dealing with $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series (see [11]). Finally, if we take $p_{n}=1$ for all values of n, then we get a new result concerning the $|C, 1 ; \delta|_{k}$ summability factors of infinite series.

References

[1] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc., 97 (1985), 147-149.
[2] H. Bor, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Indian J. Pure Appl. Math., 18 (1987), 330-336.
[3] H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl., 179 (1993), 646-649.
[4] H. Bor, A study on absolute Riesz summability factors, Rend. Circ. Mat. Palermo (2), 56 (2007), 358-368.
[5] H. Bor, Quasi-monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp.
[6] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math., 14 (1890), 114-120.
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[8] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., 8 (1958), 357-387.
[9] G. H. Hardy, Divergent Series, Oxford Univ. Press., Oxford, (1949).
[10] K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math., 14 (1983), 40-43.
[11] K. N. Mishra and R. S. L. Srivastava, On $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, Indian J. Pure Appl. Math., 15 (1984), 651-656.
[12] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput., 216 (2010), 2645-2648.

