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Abstract

In this paper, a general theorem on absolute Riesz summability factors of infinite series is
proved under weaker conditions. Also we have obtained some new and known results.
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1 Introduction

Let
∑
an be a given infinite series with partial sums (sn). We denote by uαn the nth Cesàro mean

of order α, with α > −1, of the sequence (sn), that is (see [6]),

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv (1)

where

Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα−n = 0 for n > 0. (2)

A series
∑
an is said to be summable | C,α; δ |k, k ≥ 1 and δ ≥ 0, if (see [8])

∞∑
n=1

nδk+k−1 | uαn − uαn−1 |k<∞. (3)

If we take δ=0, then we obtain | C,α |k summability (see [7]). Let (pn) be a sequence of positive
numbers such that Pn =

∑n
v=0 pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). The sequence-to-

sequence transformation

vn =
1

Pn

n∑
v=0

pvsv (4)

defines the sequence (vn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence (sn),generated
by the sequence of coefficients (pn) (see [9]). The series

∑
an is said to be summable | N̄ , pn; δ |k,

k ≥ 1 and δ ≥ 0, if (see [3])

∞∑
n=1

(Pn/pn)δk+k−1 | vn − vn−1 |k<∞. (5)

If we take δ=0, the we obtain | N̄ , pn |k summability (see [1]). In the special case pn = 1 for all
values of n | N̄ , pn; δ |k summability is the same as | C, 1; δ |k summability. Also if we take δ = 0
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and k = 1, then we get | N̄ , pn | summability.

2. Known results. The following theorems are known dealing with | N̄ , pn |k and | N̄ , pn; δ |k
summability factors of infinite series.
Theorem A ([2]). Let (Xn) be a positive non-decreasing sequence and suppose that there exists
sequences (βn) and (λn) such that

| ∆λn |≤ βn, (6)

βn → 0 as n→∞, (7)

∞∑
n=1

n | ∆βn | Xn <∞, (8)

| λn | Xn = O(1). (9)

If
m∑
n=1

| sn |k

n
= O(Xm) as m→∞, (10)

and (pn) is a sequence such that
Pn = O(npn), (11)

Pn∆pn = O(pnpn+1), (12)

then the series
∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn |k, k ≥ 1.

Theorem B ([4]). Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn), (βn),
(λn), and (pn) satisfy the conditions (6)-(9), (11)-(12), and

m∑
n=1

(
Pn
pn

)δk | sn |k
n

= O(Xm) as m→∞, (13)

m+1∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1
= O((

Pv
pv

)δk
1

Pv
) as m→∞, (14)

then the series
∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn; δ |k , k ≥ 1 and 0 ≤ δ < 1/k.

Remark. It should be noted that if we take δ = 0, then we get Theorem A. In this case condition
(13) reduces to condition (10) and condition (14) reduces to

m+1∑
n=v+1

pn
PnPn−1

=

m+1∑
n=v+1

(
1

Pn−1
− 1

Pn

)
= O

(
1

Pv

)
as m→∞, (15)

which always holds. Also it may be noticed that, under the conditions on the sequence (λn) we
have that (λn) is bounded and ∆λn = O(1/n) (see [2]).

3. Main result. The aim of this paper is to prove Theorem B under weaker conditions. Now, we
shall prove the following theorem.
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Theorem. Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn), (βn), (λn), and
(pn) satisfy the conditions (6)-(9), (11)-(12), (14), and

m∑
n=1

(
Pn
pn

)δk | sn |k
nXk−1

n

= O(Xm) as m→∞, (16)

then the series
∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn; δ |k, k ≥ 1 and 0 ≤ δ < 1/k.

Remark. It should be noted that condition (16) is the same as condition (13) when k=1. When
k > 1, condition (16) is weaker than condition (13) but the converse is not true. As in [12], we can
show that if (13) is satisfied, then we get

m∑
n=1

(
Pn
pn

)δk | sn |k
nXk−1

n

= O(
1

Xk−1
1

)

m∑
n=1

(
Pn
pn

)δk | sn |k
n

= O(Xm).

To show that the converse is false when k > 1, as in [5], the following example is sufficient. We can
take Xn = nσ, 0 < σ < 1, and then construct a sequence (un) such that

un = (
Pn
pn

)δk
| sn |k

nXk−1
n

= Xn −Xn−1,

hence

m∑
n=1

(
Pn
pn

)δk
| sn |k

nXk−1
n

= Xm = mσ,

and so

m∑
n=1

(
Pn
pn

)δk | sn |k
n

=

m∑
n=1

(Xn −Xn−1)Xk−1
n =

m∑
n=1

(nσ − (n− 1)σ)nσ(k−1)

≥ σ

m∑
n=1

nσ−1nσ(k−1) = σ

m∑
n=1

nσk−1 ∼ mσk

k
as m→∞.

It follows that

1

Xm

m∑
n=1

(
Pn
pn

)δk | sn |k
n

→∞ as m→∞

provided k > 1. This shows that (13) implies (16) but not conversely.
We require the following lemmas for the proof of our theorem.

Lemma 1.1([10]). Under the conditions on (Xn), (βn) and (λn) as as expressed in the statement
of the theorem, we have the following ;

nXnβn = O(1), (17)
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∞∑
n=1

βnXn <∞. (18)

Lemma 3.2 ([11]). If the conditions (11) and (12) are satisfied, then ∆
(
Pn

npn

)
= O

(
1
n

)
.

4. Proof of the theorem. Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑∞
n=1

anPnλn

npn
.

Then, by definition, we have

Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr
rpr

=
1

Pn

n∑
v=1

(Pn − Pv−1)
avPvλv
vpv

.

Then we get that

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv
vpv

, n ≥ 1, (P−1 = 0).

By using Abel’s transformation, we have that

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

sv∆

(
Pv−1Pvλv

vpv

)
+
λnsn
n

=
snλn
n

+
pn

PnPn−1

n−1∑
v=1

sv
Pv+1Pv∆λv
(v + 1)pv+1

+
pn

PnPn−1

n−1∑
v=1

Pvsvλv∆

(
Pv
vpv

)
− pn
PnPn−1

n−1∑
v=1

svPvλv
1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)δk+k−1
| Tn,r |k<∞, for r = 1, 2, 3, 4. (19)

Applying Abel’s transformation, we have that

m∑
n=1

(
Pn
pn

)δk+k−1
| Tn,1 |k =

m∑
n=1

(
Pn
npn

)k−1(
Pn
pn

)δk
| λn |k−1| λn |

| sn |k

n

= O(1)

m∑
n=1

(
Pn
pn

)δk | sn |k
n

(
1

Xn

)k−1
| λn |

= O(1)

m−1∑
n=1

∆ | λn |
n∑
v=1

(
Pv
pv

)δk | sv |k
vXv

k−1

+ O(1) | λm |
m∑
n=1

(
Pn
pn

)δk | sn |k
nXn

k−1
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= O(1)

m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)

m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1), as m→∞,

by the hypotheses of the theorem and Lemma 3.1. Now, by using (12) and applying Hölder’s
inequality we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
| Tn,2 |k = O(1)

m+1∑
n=2

(
Pn
pn

)δk−1
1

P kn−1
|
n−1∑
v=1

Pvsv∆λv |k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk−1
1

P kn−1

{
n−1∑
v=1

Pv
pv
| sv | pv | ∆λv |

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk−1
1

Pn−1

n−1∑
v=1

(
Pv
pv

)k
| sv |k pvβvk

×

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)

m∑
v=1

(
Pv
pv

)k
| sv |k pvβvk

m+1∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1

= O(1)

m∑
v=1

(
Pv
pv

)k−1
βv
k−1βv

(
Pv
pv

)δk
| sv |k

= O(1)

m∑
v=1

(vβv)
k−1βv

(
Pv
pv

)δk
| sv |k

= O(1)

m∑
v=1

(
1

Xv

)k−1
βv

(
Pv
pv

)δk
| sv |k

= O(1)

m∑
v=1

vβv

(
Pv
pv

)δk | sv |k
vXv

k−1

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(
Pr
pr

)δk | sr |k
rXr

k−1

+ O(1) mβm

m∑
v=1

(
Pv
pv

)δk | sv |k
vXv

k−1

= O(1)

m−1∑
v=1

| ∆(vβv) | Xv +O(1)mβmXm
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= O(1)

m−1∑
v=1

| (v + 1)∆βv − βv | Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

v | ∆βv | Xv +O(1)

m−1∑
v=1

Xvβv +O(1)mβmXm = O(1),

as m→∞, by the hypotheses of the theorem and Lemma 3.1. Again, as in Tn,1, we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
| Tn,3 |k =

m+1∑
n=2

(
Pn
pn

)δk+k−1
| pn
PnPn−1

n−1∑
v=1

Pvsvλv∆

(
Pv
vpv

)
|k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk−1
1

P kn−1

{
n−1∑
v=1

Pv | sv || λv |
1

v

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk−1
1

P kn−1

{
n−1∑
v=1

(
Pv
pv

)
pv | sv || λv |

1

v

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk−1
1

Pn−1

n−1∑
v=1

(
Pv
vpv

)k
pv | sv |k| λv |k

×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)

m∑
v=1

(
Pv
vpv

)k
| sv |k pv | λv |k

m+1∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1

= O(1)

m∑
v=1

(
Pv
vpv

)k
pv | sv |k| λv |k

(
Pv
pv

)δk
1

Pv
.
v

v

= O(1)

m∑
v=1

(
Pv
vpv

)k−1
| λv |k−1| λv |

(
Pv
pv

)δk | sv |k
v

= O(1)

m∑
v=1

(
1

Xv

)k−1
| λv |

(
Pv
pv

)δk | sv |k
v

= O(1)

m∑
v=1

| λv |
(
Pv
pv

)δk | sv |k
vXv

k−1

= O(1)

m−1∑
v=1

Xvβv +O(1)Xm | λm |= O(1) as m→∞,

by the hypotheses of the theorem, Lemma 3.1 and Lemma 3.2. Finally, using Hölder’s inequality,
as in Tn,3, we have get

m+1∑
n=2

(
Pn
pn

)δk+k−1
| Tn,4 |k =

m+1∑
n=2

(
Pn
pn

)δk−1
1

P kn−1
|
n−1∑
v=1

sv
Pv
v
λv |k
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=

m+1∑
n=2

(
Pn
pn

)δk−1
1

P kn−1
|
n−1∑
v=1

sv
Pv
vpv

pvλv |k

≤
m+1∑
n=2

(
Pn
pn

)δk−1
1

Pn−1

n−1∑
v=1

| sv |k
(
Pv
vpv

)k
pv | λv |k

×

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)

m∑
v=1

(
Pv
vpv

)k (
Pv
pv

)δk
| sv |k pv | λv |k

1

Pv
.
v

v

= O(1)

m∑
v=1

(
Pv
vpv

)k−1
| λv |k−1| λv |

(
Pv
pv

)δk | sv |k
v

= O(1)

m∑
v=1

(
1

Xv

)k−1
| λv |

(
Pv
pv

)δk | sv |k
v

= O(1)

m∑
v=1

| λv |
(
Pv
pv

)δk | sv |k
vXv

k−1

= O(1)

m−1∑
v=1

Xvβv +O(1)Xm | λm |= O(1) as m→∞.

This completes the proof of the theorem. If we take δ=0, then we get a new result dealing with
| N̄ , pn |k summability factors of infinite series. If we take k = 1 and δ=0, then we get a known
result of Mishra and Srivastava dealing with | N̄ , pn | summability factors of infinite series (see [11]).
Finally, if we take pn = 1 for all values of n, then we get a new result concerning the | C, 1; δ |k
summability factors of infinite series.
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