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Abstract

In this paper, with the aid of weighted value sharing we study the uniqueness problems of
meromorphic functions when certain nonlinear differential polynomials generated by them share
a nonconstant polynomial with weight two. The result of the paper not only improves the results
due to the present first author [Bull. Math. Anal. Appl., 2(2010), 106-118] and of Zhang and
Xu [Comput. Math. Appl., 61(2011), 722-730], at the same time finds a possible answer of an
open question posed by Zhang and Xu.
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1 Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic functions in the
complex plane. We assume that the reader is familiar with the classical value distribution theory
of meromorphic functions as described in, say, the standard monograph [6, 16]. For a nonconstant
meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic of f and by S(r, f) any
quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ outside of a possible exceptional set E of finite
linear measure. The meromorphic function a(z) is called a small function of f if T (r, a) = S(r, f).

Two nonconstant meromorphic functions f and g share a small function a CM (counting mul-
tiplicities) provided that f − a and g− a have the same set of zeros with the same multiplicities; f
and g share a IM (ignoring multiplicities) if we do not consider the multiplicities. A finite value z0
is called a fixed point of f(z) if f(z0) = z0.

The following result is very well known in the value distribution theory (see [3, 4]).

Theorem A. Let f be a transcendental meromorphic function, and let n(≥ 1) be an integer. Then
fnf ′ = 1 has infinitely many solutions.

Corresponding to Theorem A the following result was proved by Yang and Hua [14] in 1997.

Theorem B. Let f and g be two nonconstant meromorphic functions, and let n(≥ 11) be an
integer. If fnf ′ and gng′ share the value 1 CM, then either f(z) = c1e

cz, g(z) = c2e
−cz, where

c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f = tg for a constant t such that
tn+1 = 1.

Regarding fixed point the following result was obtained by Fang and Qiu [5] in 2000.
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Theorem C. Let f and g be two nonconstant meromorphic functions, and let n(≥ 11) be an

integer. If fnf ′ and gng′ share z CM, then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c
are three nonzero complex constants satisfying 4(c1c2)n+1c2 = −1 or f = tg for a complex number
t satisfying tn+1 = 1.

A new trend in this direction is to consider the uniqueness of a meromorphic functions concerning
the value sharing of the k-th derivative of a linear expression of a meromorphic function. For the
last decade a handful number of astonishing results have been obtained regarding the value sharing
of nonlinear differential polynomials which are mainly the k-th derivative of some linear expressions
of f and g (see [8], [9], [10] and [11], for example). In 2010 Xu, Lu and Yi [12] proved the following
results for meromorphic functions where an additional condition namely the sharing of poles by the
meromorphic functions are taken into consideration.

Theorem D. Let f and g be two nonconstant meromorphic functions, and let n, k be two positive
integers with n > 3k + 10. If (fn)(k) and (gn)(k) share z CM, f and g share ∞ IM, then either

f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1
or f = tg for a constant t such that tn = 1.

Theorem E. Let f and g be two nonconstant meromorphic functions satisfying Θ(∞, f) > 2
n , and

let n, k be two positive integers with n ≥ 3k+ 12. If (fn(f − 1))(k) and (gn(g− 1))(k) share z CM,
f and g share ∞ IM, then f = g.

Observing the above results the following question is inevitable.

Question 1. Is it possible in any way to relax the nature of sharing the fixed point and in the
same time reduce the lower bound of n in Theorems D and E ?

To proceed further we need the following notion of weighted sharing of values which measures
how close a shared value is to being shared CM or to being shared IM.

Definition 1. [7] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞} we denote by Ek(a; f)
the set of all a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and k+1
times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point of f with
multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k) and z0 is an a-point
of f with multiplicity m(> k) if and only if it is an a-point of g with multiplicity n(> k), where m
is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g
share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g share a value
a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Keeping in mind the notion of weighted sharing of values, the present first author [9] proved
the following result in 2010 which deals with Question 1.

Theorem F. Let f and g be two transcendental meromorphic functions, and let n, k and m be
three positive integers satisfying n > 3k + m + 7. Suppose that P (w) = amw

m + ... + a1w + a0,
where a0(6= 0), a1, ... , am( 6= 0) are complex constants. If [fnP (f)](k) and [gnP (g)](k) share
(z, 2); f and g share (∞, 0) then either f = tg for a constant t such that td = 1, where d =
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gcd(n+m, ..., n+m− i, ..., n), am−i 6= 0 for some i = 0, 1, 2, ...,m or f and g satisfy the algebraic
equation R(f, g) = 0, where

R(w1, w2) = wn1 (amw
m
1 + ...+ a1w1 + a0)− wn2 (amw

m
2 + ...+ a1w2 + a0). (1.1)

It is now quite natural to ask the following question.

Question 2. What can be said if sharing fixed point in Theorem F is replaced by sharing a nonzero
polynomial ?

In 2011 Zhang and Xu [18] obtained the following result in which they replace fixed point sharing
by sharing a nonzero polynomial with degree ≤ 5.

Theorem G. Let f and g be two transcendental meromorphic functions, let p(z) be a nonzero
polynomial with deg(p) = l ≤ 5, n, k and m be three positive integers with n > 3k + m + 7. Let
P (w) = amw

m + ...+ a1w+ a0 be a nonzero polynomial. If [fnP (f)](k) and [gnP (g)](k) share p(z)
CM, f and g share ∞ IM, then one of the following three cases hold:
(i) f = tg for a constant t such that td = 1, where d = gcd(n+m, ..., n+m− i, ..., n), am−i 6= 0 for
some i = 0, 1, 2, ...,m;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) is given by (1.1);
(iii) P (w) is reduced to a nonzero monomial, namely, P (w) = aiw

i 6≡ 0 for some i ∈ {0, 1, ...,m}; if
p(z) is not a constant, then f(z) = c1e

cQ(z), g(z) = c2e
−cQ(z), where Q(z) =

∫ z
0
p(z)dz, c1, c2 and

c are three constants satisfying a2i (c1c2)n+i[(n + i)c]2 = −1, if p(z) is a nonzero constant b, then
f(z) = c3e

cz, g(z) = c4e
−cz, where c3, c4 and c are three constants such that (−1)ka2i (c3c4)n+i[(n+

i)c]2k = b2.

In the same paper the authors posed the following question, as far as we are aware, this remains
open.

Question 3. Is it possible in any way to remove the condition deg(p) = l ≤ 5 in Theorem G ?

In the paper our main concern is to find out the possible answer of the above question. The result
of the paper improves Theorem F by reducing the lower bound of n and also improves Theorem G
by relaxing the nature of sharing the polynomial as well as by reducing the lower bound of n. The
following is the main result of the paper.

Theorem 1. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant
polynomial of degree l, and let n(≥ 1), k(≥ 1) and m(≥ 0) be three integers with n > max{3k +
m+ 6, k + 2l}. Suppose that either k, l are co-prime or k > l when l ≥ 2. Let P (w) be defined as
in Theorem G. If [fnP (f)](k) − p and [gnP (g)](k) − p share (0, 2); f and g share (∞, 0), then the
following conclusions hold:
(i) If P (w) = amw

m + ... + a1w + a0 is not a monomial, then either f = tg for a constant t that
satisfies td = 1, where d = (n+m, ..., n+m− i, ..., n), am−i 6= 0 for some i = 0, 1, 2, ...,m; or f and
g satisfy the algebraic equation R(f, g) = 0, where R(f, g) is given by (1.1).
(ii) When P (w) = c0 or P (w) = amw

m, then either f = tg for a constant t that satisfies tn+m
∗

= 1,
or f(z) = b1e

bQ(z), g(z) = b2e
−bQ(z), where Q(z) is a polynomial without constant such that Q′(z) =

p(z), b1, b2 and b are three constants satisfying c20(nb)2(b1b2)n = −1 or a2m((n+m)b)2(b1b2)n+m =
−1, where m∗ is defined by

m∗ =

{
m if P (w) 6= c0;
0 if P (w) = c0.
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We now explain the following definitions and notations which are used in the paper.

Definition 2. [7] Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting function of simple
a points of f . For a positive integer p we denote by N(r, a; f |≤ p) the counting function of those
a-points of f (counted with proper multiplicities) whose multiplicities are not greater than p. By
N(r, a; f |≤ p) we denote the corresponding reduced counting function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 3. Let a be any value in the extended complex plane, and let k be an arbitrary non-
negative integer. We denote by Nk(r, a; f) the counting function of a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 4. [1] Let f and g be two nonconstant meromorphic functions that share (a, 2) for
a ∈ C∪{∞}. Let z0 be an a-point of f with multiplicity p and also an a-point of g with multiplicity
q. We denote by NL(r, a; f) (NL(r, a; g)) the reduced counting function of those a-points of f and

g, where p > q ≥ 3 (q > p ≥ 3). Also we denote by N
(3

E (r, a; f) the reduced counting function of
those a-points of f and g, where p = q ≥ 3.

Definition 5. [7] Let f and g be two nonconstant meromorphic functions sharing the value a IM.
We denote by N∗(r, a; f, g) the reduced counting function of those a-points of f whose multiplicities
differ from the multiplicities of the corresponding a-points of g. Clearly

N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

2 Lemmas

Let F and G be two nonconstant meromorphic functions defined in the complex plane C. We
denote by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 1. [13] Let f be a nonconstant meromorphic function and let an(z)( 6≡ 0), an−1(z), ... ,
a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2. [17] Let f be a nonconstant meromorphic function, and p, k be two positive integers.
Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.2)
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Lemma 3. [6] Suppose that f is a nonconstant meromorphic function, k ≥ 2 is an integer. If

N(r,∞; f) +N(r, 0; f) +N(r, 0; f (k)) = S

(
r,
f ′

f

)
,

then f = eaz+b, where a( 6= 0), b are constants.

Lemma 4. [2] Let F , G be two nonconstant meromorphic functions sharing (1, 2) and (∞, k) where
0 ≤ k <∞. If H 6≡ 0, then
(i) T (r, F ) ≤ N2(r, 0;F ) + N2(r, 0;G) + N(r,∞;F ) + N(r,∞;G) + N∗(r,∞;F,G) −m(r, 1;G) −
N

(3

E (r, 1;F )−NL(r, 1;G) + S(r, F ) + S(r,G);
(ii) T (r,G) ≤ N2(r, 0;F ) + N2(r, 0;G) + N(r,∞;F ) + N(r,∞;G) + N∗(r,∞;F,G) −m(r, 1;F ) −
N

(3

E (r, 1;G)−NL(r, 1;F ) + S(r, F ) + S(r,G).

Lemma 5. [15] Suppose that F and G be two nonconstant meromorphic functions and

V =

(
F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

)
. (2.3)

If F , G share (∞, 0) and if V = 0, then F = G.

Lemma 6. Let f and g be two nonconstant meromorphic functions, and let n(≥ 1), k(≥ 1) and

m(≥ 0) be three integers. Suppose that V is given as in (2.3), where F = (fnP (f))(k)

p(z) , G = (gnP (g))(k)

p(z) ,

P (w), p(z) are defined as in Theorem 1. If V 6≡ 0, F and G share (1, 2), f and g share ∞ IM, then
the poles of F and G are zeros of V and(

n+m+ k − 1
)
N(r,∞; f |≥ 1) =

(
n+m+ k − 1

)
N(r,∞; g |≥ 1)

≤ N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G)

+S(r, f) + S(r, g).

Proof. We note that the order of the possible poles of F and G are at least n+m+ k as f and g
share (∞, 0). Thus F and G share (∞, n+m+ k− 1). Now using Milloux theorem (see [6], p. 55)
and Lemma 1, we obtain from the definition of V that

m(r, V ) = S(r, f) + S(r, g).

Therefore(
n+m+ k − 1

)
N(r,∞; f |≥ 1) =

(
n+m+ k − 1

)
N(r,∞; g |≥ 1)

=
(
n+m+ k − 1

)
N
(
r,∞;F |≥ n+m+ k

)
≤ N(r, 0;V )

≤ T (r, V ) +O(1)

≤ N(r,∞;V ) +m(r, V ) +O(1)

≤ N(r,∞;V ) + S(r, f) + S(r, g)

≤ N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G)

+S(r, f) + S(r, g).

This proves the lemma. q.e.d.
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Lemma 7. Let f and g be two transcendental meromorphic functions, and let n(≥ 1), k(≥ 1),
m(≥ 0) be three integers. Suppose that F and G are defined as in Lemma 6. If there exist two
nonzero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) = N(r, 0;F ), then
n ≤ 3k +m+ 3.

Proof. By the second fundamental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + S(r, F ). (2.4)

Using (2.1), (2.2), (2.4) and Lemma 1 we obtain

(n+m)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0; fnP (f))

+O{log r}+ S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0; fnP (f)) +N(r,∞; f)

+O{log r}+ S(r, f)

≤ Nk+1(r, 0; fnP (f)) +Nk+1(r, 0; gnP (g)) +N(r,∞; f)

+kN(r,∞; g) +O{log r}+ S(r, f) + S(r, g)

≤ (k +m+ 2)T (r, f) + (2k +m+ 1)T (r, g)

+O{log r}+ S(r, f) + S(r, g). (2.5)

Similarly

(n+m)T (r, g) ≤ (k +m+ 2)T (r, g) + (2k +m+ 1)T (r, f)

+O{log r}+ S(r, f) + S(r, g). (2.6)

Combining (2.5), (2.6) and noting that log r = o(T (r, f)) = o(T (r, g)) we get

(n− 3k −m− 3){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which gives n ≤ 3k +m+ 3. This completes the proof of the lemma. q.e.d.

The following lemma can be proved in the line of the proof of Lemma 9 [18].

Lemma 8. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant
polynomial of degree l, and let n(≥ 1), k(≥ 1) and m(≥ 0) be three integers with n > k + 2l. If

(fnP (f))(k)(gnP (g))(k) = p2(z),

where P (w) is defined as in Theorem G, then P (w) is reduced to a nonzero monomial, namely
P (w) = aiw

i 6≡ 0 for some i ∈ {0, 1, ...,m}.
Lemma 9. Let f and g be two nonconstant meromorphic functions, p(z) be a nonconstant poly-
nomial of degree l, and let n, m and k be three positive integers with n > k + 2l. Futher assume
that either k, l are coprime or k > l when l ≥ 2. If

(fnP (f))(k)(gnP (g))(k) = p2(z), (2.7)

where P (z) = amz
m or P (z) = c0, then f(z) = b1e

bQ(z), g(z) = b2e
−bQ(z), where b1, b2 and b are

three constants satisfying a2m((n+m)b)2(b1b2)n+m = −1 or c20(nb)2(b1b2)n = −1 and Q(z) is same
as in Theorem 1.
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Proof. Let P (z) = amz
m. The case P (z) = c0 can be proved similarly. First we assume that k = 1.

Then (2.7) becomes

(amf
n+m)′(amg

n+m)′ = p2(z). (2.8)

Noting that n > k + 2l, we deduce from (2.8) that f and g have no zeros. We put

f = eα, g = eβ , (2.9)

where α and β are two nonconstant entire functions. Therefore from (2.8) we get

a2m(n+m)2α′β′e(n+m)(α+β) = p2(z).

From this it follows that α, β must be polynomials and α + β ≡ k1, where k1 is a constant. Thus
deg(α) = deg(β). Therefore α′ + β′ ≡ 0 and

a2m(n+m)2α′β′e(n+m)k1 = p2(z).

Simplifying we obtain α′ = bp(z) and β′ = −bp(z), where b(6= 0) is a constant. This gives α =
bQ(z)+d1 and β = −bQ(z)+d2, whereQ(z) is a polynomial without constant such thatQ′(z) = p(z)
and d1, d2 are constants. Therefore

f = b1e
bQ(z), g = b2e

−bQ(z),

where b1, b2 and b are three constants satisfying

a2m((n+m)b)2(b1b2)n+m = −1.

If k ≥ 2 then (2.7) becomes

(amf
n+m)(k)(amg

n+m)(k) = p2(z). (2.10)

Since f and g are transcendental meromorphic function, from (2.10) we obtain

N(r, 0; (amf
n+m)(k)) = O{log r}.

From this and (2.9) we get

N(r,∞; amf
n+m) +N(r, 0; amf

n+m) +N(r, 0; (amf
n+m)(k)) = O{log r}.

Suppose that α is a transcendental entire function. Then by Lemma 3 we deduce that α is a
polynomial, a contradiction. Next we assume that α, β are polynomials of degree p1 and p2
respectively. If p1 = p2 = 1, then

f = eAz+B , g = eCz+D,

where A( 6= 0), B, C(6= 0) and D are constants. So from (2.10) we obtain

a2m(AC)k(n+m)2ke(n+m){(A+C)z+(B+D)} = p2(z),

which is impossible. Thus max{p1, p2} > 1. We assume that p1 > 1. Then (amf
n+m)(k) =

Q1e
(n+m)α and (amg

n+m)(k) = Q2e
(n+m)β , where Q1, Q2 are polynomials of degree k(p1 − 1) and

k(p2 − 1) respectively. Therefore from (2.10) we obtain α + β ≡ k2, a constant, and therefore
p1 = p2 and k(p1 − 1) = l. This shows that l ≥ k ≥ 2, contradicting with the assumption that k, l
are prime to each other. This proves the lemma. q.e.d.
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3 Proof of the theorem

Proof of Theorem 1. We discuss the following three cases separately.

Case (i) Let P (z) = amz
m + am−1z

m−1 + ...+ a1z+ a0 is not a monomial. Suppose that F and G
are defined as in Lemma 6. Then F , G are transcendental meromorphic functions that share (1, 2)
and (∞, 0). Therefore

N∗(r,∞;F,G) ≤ N(r,∞;F |≥ n+m+ k) = N(r,∞; f |≥ 1).

If possible, we assume that H 6≡ 0. Then F 6≡ G. So from Lemma 5 we have V 6≡ 0. From Lemma
1 and (2.1) we obtain

N2(r, 0;F ) ≤ N2

(
r, 0; (fnP (f))(k)

)
+ S(r, f)

≤ T
(
r, (fnP (f))(k)

)
− (n+m)T (r, f) +Nk+2(r, 0; fnP (f))

+S(r, f)

≤ T (r, F )− (n+m)T (r, f) +Nk+2(r, 0; fnP (f))

+O{log r}+ S(r, f). (3.1)

Similarly

N2(r, 0;G) ≤ T (r,G)− (n+m)T (r, g) +Nk+2(r, 0; gnP (g))

+O{log r}+ S(r, g). (3.2)

Again by (2.2) we have

N2(r, 0;F ) ≤ Nk+2(r, 0; fnP (f)) + kN(r,∞; f) + S(r, f) (3.3)

and

N2(r, 0;G) ≤ Nk+2(r, 0; gnP (g)) + kN(r,∞; g) + S(r, g). (3.4)

From (3.1) and (3.2) we get

(n+m){T (r, f) + T (r, g)} ≤ T (r, F ) + T (r,G) +Nk+2(r, 0; fnP (f))

+Nk+2(r, 0; gnP (g))−N2(r, 0;F )−N2(r, 0;G)

+O{log r}+ S(r, f) + S(r, g). (3.5)
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Then using Lemma 1, Lemma 4, (3.3) and (3.4) we obtain from (3.5)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r,∞;F )

+2N(r,∞;G) + 2N∗(r,∞;F,G)

+Nk+2(r, 0; fnP (f)) +Nk+2(r, 0; gnP (g))

−NL(r, 1;F )−NL(r, 1;G) +O{log r}
+S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; fnP (f)) + 2Nk+2(r, 0; gnP (g))

+(k + 2)N(r,∞; f) + (k + 2)N(r,∞; g)

+2N∗(r,∞;F,G)−N∗(r, 1;F,G)

+O{log r}+ S(r, f) + S(r, g)

≤ 2(k +m+ 2){T (r, f) + T (r, g)}
+(k + 2)(N(r,∞; f) +N(r,∞; g))

+2N∗(r,∞;F,G)−N∗(r, 1;F,G)

+O{log r}+ S(r, f) + S(r, g).

Using Lemma 2, Lemma 6 and noting that f and g are transcendental meromorphic functions we
obtain from above

(n− 3k −m− 6){T (r, f) + T (r, g)}

≤ 2

n+m+ k − 1
[N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G)]

−N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 2

n+m+ k − 1
[Nk+1(r, 0; fnP (f)) + kN(r,∞; f)

+Nk+1(r, 0; gnP (g)) + kN(r,∞; g) +N∗(r, 1;F,G)]

−N∗(r, 1;F,G) + S(r, f) + S(r, g).

From this we obtain

[(n− 3k −m− 6)(n+m+ k − 1)− (4k + 2m+ 2)]{T (r, f) + T (r, g)}
≤ S(r, f) + S(r, g),

a contradiction as n > max{3k +m+ 6, k + 2l}.
Next we assume that H = 0. Then(

F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B, (3.6)
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where A( 6= 0), B are constants. Now we consider the following three subcases.

Subcase (i) Let B 6= 0 and A = B. Then from (3.6) we get

1

F − 1
=

BG

G− 1
. (3.7)

If B = −1, then from (3.7) we obtain

FG = 1,

i.e.,

(fnP (f))(k)(gnP (g))(k) = p2(z), (3.8)

a contradiction by Lemma 8.

If B 6= −1, from (3.7), we have 1
F = BG

(1+B)G−1 and so N(r, 1
1+B ;G) = N(r, 0;F ). Now from the

second fundamental theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G).

Using (2.1) and (2.2) we obtain from above inequality

T (r,G) ≤ Nk+1(r, 0; fnP (f)) + kN(r,∞; f) + T (r,G) +Nk+1(r, 0; gnP (g))

−(n+m)T (r, g) +N(r,∞; g) +O{log r}+ S(r, g).

Hence

(n+m)T (r, g) ≤ (2k +m+ 1)T (r, f) + (k +m+ 2)T (r, g) + S(r, g).

In a similar manner we can get

(n+m)T (r, f) ≤ (k +m+ 2)T (r, f) + (2k +m+ 1)T (r, g) + S(r, g).

Combining the above two inequality we obtain

(n− 3k −m− 3){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > max{3k +m+ 6, k + 2l}.
Subcase (ii) Let B 6= 0 and A 6= B. Then from (3.6) we get F = (B+1)G−(B−A+1)

BG+(A−B) and so

N(r, B−A+1
B+1 ;G) = N(r, 0;F ). Proceeding as in Subcase (i) we arrive at a contradiction.

Subcase (iii) Let B = 0 and A 6= 0. Then from (3.6) F = G+A−1
A and G = AF − (A − 1). If

A 6= 1, we have N(r, A−1A ;F ) = N(r, 0;G) and N(r, 1 − A;G) = N(r, 0;F ). So by Lemma 7 we
have n ≤ 3k +m+ 3, a contradiction. Thus A = 1 and hence F = G. Then

[fnP (f)](k) = [gnP (g)](k).
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Integrating we get

[fnP (f)](k−1) = [gnP (g)](k−1) + ck−1,

where ck−1 is a constant. If ck−1 6= 0, using Lemma 7 we deduce that n ≤ 3k+m, a contradiction.
Thus ck−1 = 0. Repeating k-times, we obtain

fnP (f) = gnP (g).

Then
fn(amf

m + ...+ a1f + a0) = gn(amg
m + ...+ a1g + a0). (3.9)

Let h = f
g . If h is a constant, by putting f = gh in (3.9) we get

amg
n+m(hn+m − 1) + am−1g

n+m−1(hn+m−1 − 1) + ...+ a0g
n(hn − 1) = 0,

which implies hd = 1, where d = gcd(n + m, ..., n + m − i, ..., n + 1, n), am−i 6= 0 for some i ∈
{0, 1, ...,m}. Thus f = tg for a constant t such that td = 1, d = gcd(n+m, ..., n+m− i, ..., n+1, n),
am−i 6= 0 for some i ∈ {0, 1, ...,m}.

If h is not a constant, then from (3.9) we see that f and g satisfy the algebraic equation
R(f, g) = 0, where R(f, g) is given by (1.1).

Case (ii) Now we assume that P (z) = amz
m, where am ( 6= 0) is a complex constant. Let F =

(amf
n+m)(k)

p(z) and G = (amg
n+m)(k)

p(z) . Then F and G are transcendental meromorphic functions that

share (1, 2) and (∞, 0). Proceeding in the like manner as Case (i) above we obtain either FG = 1
or F = G.
If FG = 1, then

(amf
n+m)(k)(amg

n+m)(k) = p2(z).

So by Lemma 9 we obtain f(z) = b1e
bQ(z), g(z) = b2e

−bQ(z), where b1, b2 and b are three constants
satisfying a2m((n + m)b)2(b1b2)n+m = −1 and Q(z) is same as in Theorem 1. If F = G, then
using Lemma 7 and proceeding similarly as in Case (i) we obtain f = tg for a constant t such that
tn+m = 1.

Case (iii) Let P (z) = c0. Taking F = (c0f
n)(k)

p(z) , G = (c0g
n)(k)

p(z) and arguing similarly as in Case (ii)

we obtain either f(z) = b1e
bQ(z), g(z) = b2e

−bQ(z), where b1, b2 and b are three constants satisfying
c20(nb)2(b1b2)n = −1, Q(z) is same as in Theorem 1 or f = tg for a constant t satisfying tn = 1.
This completes the proof of the theorem. q.e.d.
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