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Abstract

In this paper, we establish the Hyers-Ulam-Rassias stability of the mixed type additive-cubic
functional equation

f@x+y)+ fQ2z —y) — f(4x) = 2[f(z +y) + f(z —y)] — 8 (2z) + 10f(x) — 2f(—=),

with x_Ly, where L is the orthogonality in the sense of Rétz in modular spaces.
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1 Introduction

The study of stability problems for functional equations is related to a question of Ulam [21] in 1940,
concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by
Hyers [10]. In 1950, a generalized version of Hyers’ theorem for approximate additive mapping was
given by Aoki [2]. In 1978, Rassias [17] provided a generalization of Hyers Theorem which allows the
Cauchy difference to be unbounded. This stability phenomenon is called the Hyers-Ulam-Rassias
stability.

Stability problems for some functional equations have been extensively investigated by several
authors, and in particular one of the most important functional equation in this topic is

fle+y) + fl@—y) =2f(z) +2f(y), (1.1)

which is studied by Adam [1], P. Gavruta [7], M. Eshaghi [6], and A. Najati [13].

Recently, Gh. Sadeghi [19] proved the Hyers-Ulam stability of the generalized Jensen functional
equation f(rz + sy) = rg(z) 4+ sh(z) in modular spaces, using the fixed point method, also Iz. EL-
Fassi and S. Kabbaj in [5] investigated the Hyers-Ulam-Rassias stability of (1.1) in modular spaces.
The theory of modulars on linear spaces and the corresponding theory of modular linear spaces
were founded by H. Nakano [14]. In the present time the theory of modulars and modular spaces
is extensively applied, in particular, in the study of various Orlicz spaces [15] and interpolation
theory [12]. The importance for applications consists in the richness of the structure of modular
spaces, that-besides being Banach spaces (or F'—spaces in more general setting)- are equipped with
modular equivalent of norm or metric notions. Numerous papers on the stability of some functional
equations have been published by different authors, we refer, for example, to [3], [4], [11] and [20].
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There are several orthogonality notions on a real normed spaces as Birkhoff-James, Carlsson,
Singer, Roberts, Pythagorean, isosceles and Diminnie. Let us recall the orthogonality space in the
sense of Rétz; cf. [18].

Suppose E is a real vector space with dimE > 2 and | is a binary relation on F with the
following properties:

(O1) totality of L for zero: 10, 0Lz for all z € E;

(02) independence: if z,y € E — {0}, x_Ly, then, x,y are linearly independent;

(O3) homogeneity: if z,y € E, zly, then ax LBy for all a, 8 € R;

(O4) the Thalesian property: if P is a 2-dimensional subspace of E, x € P and A € R, then
there exists yg € P such that 1y and z 4+ yoLAx — yp.

The pair (E, 1) is called an orthogonality space. By an orthogonality normed space, we mean
an orthogonality space having a normed structure. Some interesting examples of orthogonality
spaces are:

(i) The trivial orthogonality on a vector space E defined by (O1), and for nonzero elements
z,y € B, zly if and only if x,y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (F,(.)) given by xzLy if and only if
(z,y) = 0.

(iii) The Birkhoff-James orthogonality on a normed space (E, |.||) defined by =Ly if and only
if ||z]| < ||z + Ayl for all A € R.

The relation L is called symmetric if 1y implies that y Lz for all x,y € E. Clearly examples
(i) and (ii) are symmetric but example (iii) is not. However, it is remarkable to note, that a real
normed space of dimension greater than or equal to 3 is an inner product space if and only if the
Birkhoff-James orthogonality is symmetric.

The Orthogonal Cauchy functional equation

fla+y)=fl@)+ fly) (v,yeE, vly) (1.2)

in which L is an abstract orthogonally was first investigated by S. Gudder and D. Strawther [9]. R.
Ger and J. Sikorska discussed the orthogonal stability of the equation (1.2) in [8]. S. Ostadbashi and
J. Kazemzadeh [16] investigated the problem of the Orthogonal stability of the mixed additive-cubic
functional equation

fRz+y)+ fQ2z—y) — f(4r) = 2[f(z +y) + f(z —y)] - 8/ (22) +10f(z) — 2f(—=) (zLy), (1.3)

in Banach space.

In the present paper, we establish the Hyers-Ulam-Rassias stability of orthogonally mixed
additive-cubic functional equation (1.3) in modular spaces. Therefore, we generalized the main
results of [16].

2 Preliminary

In this section, we give the definitions that are important in the following.
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Definition 2.1. Let X be an arbitrary vector space.
(a) A functional p: X — [0, 00] is called a modular if for arbitrary z,y € X,
(i) p(x) =0 if and only if z =0,
(i) p(ax) = p(x) for every scalar a with |a| =1,
(iil) p(ax + By) < p(z) + p(y) if and only if « + 8 =1 and o, 8 > 0,
(b) if (iii) is replaced by
(iii)” p(azx + By) < ap(x) + Bp(y) if and only if « + =1 and o, 8 > 0,
then we say that p is a convex modular.
A modular p defines a corresponding modular space, i.e., the vector space X, given by
X,={re X :p(Az) - 0as A — 0}.

Let p be a convex modular, the modular space X, can be equipped with a norm called the Luxem-

burg norm, defined by
lzl|,, = inf{)\ >0:p (g) < 1} .

A function modular is said to satisfy the Ay—condition if there exists x > 0 such that p(2x) <
kp(zx) for all z € X,.
Definition 2.2. Let {z,} and « be in X,. Then
(i) we say {z,} is p—convergent to = and write x,, 2 z if and only if p(x, —x) — 0 as n — oo,
(ii) the sequence {z,}, with z,, € X,,, is called p—Cauchy if p(x,, — ;) — 0 as m,n — oo,
(iii) a subset S of X, is called p—complete if and only if any p—Cauchy sequence is p—convergent
to an element of S.

The modular p has the Fatou property if and only if p(z) < lim,_ . inf p(z,) whenever the
sequence {x,} is p—convergent to x.

Remark 2.3. If € X, then p(ax) is a nondecreasing function of a > 0. Suppose that 0 < a < b,
then property (iii) of definition 2.1 with y = 0 shows that

plaz) = p (Fbz) < plba).
Moreover, if p is convex modular on X and |a| < 1 then, p(az) < |a|p(z) and also p(z) < $p(22) <
&p(x) if p satisfy the Ao— condition for all z € X.
Throughout this paper, N and R denote the sets of all positive integers and all real numbers,
respectively.
3 Orthogonal Stability of Eq (1.3) in Modular Spaces

In this section we assume that the convex modular p has the Fatou property such that satisfies the
Ay—condition with 0 < k¥ < 2. In addition, we assume that (F, L) denotes an orthogonality space
and we define

Df(z,y) = f2z +y) + (2 —y) — f(42) = 2[f(z + y) + f(z —y)] + 8 (22) — 10f (z) + 2 (=),

for all z,y € E with z 1y, on the other hand, we give the Hyers-Ulam-Rassias stability of the
equation (1.3) in modular spaces.
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Proposition 3.1. Let (E,|.||) with dimE > 2 be a real normed linear space and X, is a
p—complete modular space. Let f: ' — X, be an odd mapping satisfying

p(Df(x,y)) < (=] + llyl"), (3.1)

for all x,y € E with z 1y, ¢ > 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping A : £ — X, such that

p(f(2x) = 8f(x) — Ac(w)) < 5 o1 Bl (3.2)

for all x € E. Moreover
f@rth) —8f(2"a)
n— oo AL
Proof. Letting (x,y) = (0,0) in (3.1), we get f(0) = 0. Put y = 0 in (3.1). We can do this because
of (O1). Then

p(10f(22) — f(4x) — 16f(x)) < e [|l2[”
for all x € E. Hence

p(f(4z) — 8f(2x) — 2(f(2z) — 8f(x))) < e l=||” (3.3)
for all x € E. By letting F(x) = f(2z) — 8f(x) in (3.3), we obtain
p(F(22) = 2F(z)) <e|lz||” (3.4)
for all z € E. We have
p (P52 - r@) = o (5(F20) ~ 2P@)) < 5 Jal” (3.5)

for all z € E. Replacing = by 2z in (3.5), we arrive to

/ (F‘Z, z) _ F<2m>) < e ] (3.6)

for all z € E. By (3.5) and (3.6), we have
p(F(Q x) —F(x)) =p<F(2 z) F(2z) n F(2z) —F(m))

22 22 2 2
<20 (22— rw)) + 20 (P22 - ron)
< S+ 27 |l (3.7)

for all x € E. By mathematical induction, we can easily see that

n—1

F(2"x € i i (p—

p(FE2 - r@)) < 55 w22 i (8)
=0
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for all x € E. Indeed, for n = 1 the relation (3.8) is true. Assume that the relation (3.8) is true for
n, and we show this relation rest true for n + 1, thus we have

) (F(Q"‘Hx) B Fm) _, <F(2"+13§) _ F(22) N F(2z) F@)

2n+1 2n+1 2 2
k [ F(2x) K (F(2" )
i - F BARP i L VA A )
_2p(2 w0+?p( - (20)
K€ el ,
< 55 Hx”p + 5 2 :H1+12(Z+1)(p—2) ”pr

=0

IN

%Z 4 i9i(p—2) lz|)?,
i=0

hence the relation (3.8) is true for all z € F and n € N* (€ N*: the set of positive integers). Then
(3.8) become

o (T - F@) < 5 el 39)

for all € E. Replacing x by 2™z (with m € N*) in (3.9), we obtain

p(F@Mmm

- F(2m$)> P e G

< s 2™ |l (3.10)

for all x € E. Whence

F(2ntmg)  F(2mg) 1 [(F(2rtm)
- <_—pl—=" " _p@Em
el— (H2p—2)n m(p—1) P
< 2 || (3.11)

F(2"z)
27L

forall x € E. If m,n — oo we get, the sequence { } is p—Cauchy sequence in the p—complete

F(2"z)
2’!1.

modular space X,. Hence { } is p—convergent in X,, and we well define the mapping

A, =lim, o0 % from E into X, satisfying

p(Aclz) = F(2)) < 5 [2]”, (3.12)

2— k2

for all z € E, since p has Fatou property. To prove A. satisfies Df(x,y) = 0, replace (x,y) by
(2ntly, 27 1y) in (3.1), it follows that

Df(2ntix, 2ntly 1 n "
p( ( o )) < g P(Df 2,27 y))

(L (3.13)




236 Iz. El-Fassi, S. Kabbaj

for all z,y € E. Again replace (z,y) by (2", 2"y) in (3.1), it follows that

P (Df(27;i:z7 2”1/)) < %P(Df(2n+1$7 2n+1y))

< 2"V (|l + [ly]1”), (3.14)
for all x,y € E. By (3.13) and (3.14), we get

) <Df(2”+1$, 2n+1y) _ 8Df(2n$, 2"?])) K (Df(2n+1$, 2n+1y)> N H4 (Df(znm, 2"?]))

2/’

on on 2 on

IN

4
K n(n— K -
Fe2" (" + [lyll”) + Ze2" @V (lll” + [yl

If n — oo then, we conclude that DA.(x,y) = 0, for all z,y € E with x Ly. Therefore A, : E —
X, is an orthogonally cubic-additive mapping satisfying (1.3). To prove the uniqueness, assume
Al 1 E — X, to be another orthogonally cubic-additive mapping satisfying (3.12). Then, for each
x,y € E and for all m € N on has

o) = Ayt = p (FG - 25

2m 2m
K m m m m
< s P Ac(2) = F(@™)) + p(AL(2"™) — F(2"))
552777,(])71)
S5 o1 ] ”
2 — k2P
If m — oo, we obtain A. = A.. Q.E.D.
Proposition 3.2. Let (E,|.||) with dinE > 2 be a real normed linear space and X, is a
p—complete modular space. Let f : £ — X, be an odd mapping satisfying

p(Df(z,y)) < e(lzll” + llyll), (3.15)

for all z,y € E with z 1y, ¢ > 0 and 0 < p < 3. Then there exists a unique orthogonally cubic-
additive mapping C, : E — X, such that

pI22) = 2/ (@) = Cala) < g [ (3.16)

for all z € E. Moreover

f@m) —2f(2")

Ca(z) = lim 8"
Proof. By (3.3), we have
p(f(4x) — 2f(22) - 8(f(22) — 2f(2))) < e |lz|” (3.17)
for all # € E. By letting G(z) = f(2z) — 2f(z) in (3.17), we get

G(2x)

p (452 - 6w) < § ol (3.18)
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for all z € E. Now replacing x by 2z in (3.18), we find

22 2P
p(“ ”G@m)sgmw (3.19)
8 8
for all x € E. Then ( ) ) (20) .
G(24x G2z 2P~
— < p .
p (G52 - E8) < 2 (3.20)

for all z € E. From (3.18) and (3.20), we have

(O ) < 5 (S G 1, (92 g
< (14527 ]

for all x € E. In general, using induction on a positive integer n, we obtain

p(CZ0 ) < 5 (5) 2070 pare

=0
_el—(k2ph)m
T8 1— k24

lz]” (3.21)

for all z € E. Replacing = by 2™z (with m € N*) in (3.21), we get

G(2"+™ ) e1— (k2r—4)n
N\ ) m < V= J omp p .
p ( o G(2 x)) g 2P ||z || (3.22)

for all z € E. Whence
n+m m _ p—4\n
) (G(2 xz) F(2 x)) L&l (k2P~%)

gntm gm =87 _ o4 2m(P=3) ”x”p (3.23)

forall z € E. If m,n — oo we get, the sequence {%} is p—Cauchy sequence in the p—complete
G(2"x)
8'IL

modular space X,. Hence {

G(2"z)
871/

} is p—convergent in X,, and we well define the mapping

Co = limy_ o0

from E into X, satisfying

p(Ca(w) — Gla) € ———

S ST |lz||”, (3.24)

for all x € F, since p has Fatou property. The rest of the proof is similar to the proof of proposition
3.1. Q.E.D.

Theorem 3.3. Let (E, ||.||) with dim E > 2 be a real normed linear space and X, is a p—complete
modular space. Let f: £ — X, be an odd mapping satisfying

p(Df(z,y)) <e(lzl” + yl”), (3.25)
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for all z,y € E with z 1y, ¢ > 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC' : E — X, such that

KE 1 1
_ < = p .
plita) = AC() < S {5 4 s e (3.26)
for all x € E. Moreover ) )
AC(z) = %Ac(x) + EC’G(J:)

for all z € E.

Proof. By proposition 3.1 and proposition 3.2, we have

p(f(x) — AC(x))

) (f(x) + éAc(m) _ éca(:@)

p (GH1720) - 87(0) — Ac(ol] + §L1(20) = 240) - Co(o)])
B Dl1F(22) — 85 () — Ae)]) + o(1S(22) — 21 (&) — Culal))}

< KE 1 + 1 ” Hp
S12\2- k1 T8t (I

for all x € F. Q.E.D.

IN

Remark 3.4. [16] Let f : E — X, be an even mapping satisfying (1.3) (with z_Ly), then f =0 on
E.

Proposition 3.5. Let (E,|.||) with dimnE > 2 be a real normed linear space and X, is a
p—complete modular space. Let f: £ — X, be an even mapping satisfying

p(Df(z,y)) <&

for all z,y € E with z 1y, e >0 and 0 < p < 1. Then

)"+ [lylI). (3.27)

€1+ K2rP~2

p(f(z)) < - =l (3.28)

= 21— k2
for all x € E.

Proof. Letting (z,y) = (0,0) in (3.27), we get f(0) = 0. Putting (z,y) = (0,z) in (3.27), we obtain

o) = o (320(0)) < pol2s) < 5 ol (3.29)
for all z € E. Replacing z by 2z in (3.29), we find

p(f22) < = ol” (3.30)
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for all x € E. Thus

p(3720) - 50)) < Folr@0) + Sol7 (@)
< 2(1 + 12P72) |la|? (3.31)

for all z € E. Now replacing x by 2z in (3.31), we get
f(22z f(2x 1 1
o (152 - 180) < L (Jreo) - s
3(1 + K2P2)2P 1 ||| (3.32)

IA

for all z € E. It follows that

, (f(22w) 1) = <f(22:v) S 130 y)

22 22 2 2
< gp (“jﬁx’ - JC(?) + gp (f(;x) - f(fv))
< 5(1%“21)_2) (1+ 52771 Jal? (3.33)

for all x € E. In general, using induction on a positive integer n, we obtain

) (f(Z"z) 3 f(x)) < e(1 + k2P72) "z—:l (E>i2i(p71) I]?

2n 2 = 2
e(1+4 k2P72) 1 — (k2P72)"
= 5 T oo ||| (3.34)

for all x € E. Since {f(;:z)} is p—Cauchy sequence in the p—complete modular space X, (the

proof is similar to that of proposition 3.1). Hence {w} is p—convergent in X,, and we well

2TL
ﬂ;:m) from E into X, satisfying

define the mapping A, = lim,,
€ P
p(F () — Acla)) < g (33))

for all z € E, since p has Fatou property. The proof of DA.(z,y) = 0 (with x_Ly) is similar to the
proof of proposition 3.1. A, is even orthogonally cubic-additive mapping, by remark 3.4, A.(x) =0
for all z € F, and this completes the proof. Q.E.D.

Theorem 3.6. Let (E, ||.||) with dim E > 2 be a real normed linear space and X, is a p—complete
modular space. Let f : ' — X, be a mapping satisfying

p(Df(x,y)) < e(ll=]l” + [lyl"), (3.36)
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for all z,y € E with z 1y, ¢ > 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC' : E — X, such that

ke [14+rK2P72 g 1 1
pU) = AC@)) < = {1 a2 {2 "1 TR ,%21”1} } (3:37)

for all z € E.

Proof. Let f¢ and f° are even and odd part of f such that f¢(z) = w, fe(x) = W
Then we have

05 (o) = p (PHELEPIERZ) < 2D, ) + ot DA (-, -)

< e(ll=l” + lyl™)-

By proposition 3.5, we have
€14 k2P2
e < Z P .
pU() < S (339)

for all x € E. Similarly we obtain

p(Dfo(x,y)) =) (Df(z,y) —;)f(—:t, _y)

< e(ll=)l” + llyll”)-

) < 5D @) + 5o(DF =)

By theorem 3.3, there exists a unique orthogonally cubic-additive mapping AC : E — X, such that

pl*(a) = ACG) < 5o {5 4 g ol (3.39)
for all x € E. It follows from (3.38) and (3.39) that
p(f () — AC()) = p(*(a) + [°(x) — AC(x)) < 5plf*(a)) + Sp(f°(x) — AC(x)

K€1+I€2p72 /4;25 1 1
< Re2ThRE e S »
S TT oz T {2 “har 1§ o } Il

_ KE 1+I€2p*2+n 1 n 1
T4 | 1—k2P2 6 |2—k2P-1 8 — g2P—1

for all z € E. Q.E.D.

Corollary 3.6.1. [16] Let (E, ||.||) with dim E' > 2 be a real normed linear space and X is a Banach
space. Let f: E — X be mappings satisfying
IDf ()l < e(llz]” + [lyll”), (3.40)

for all xz,y € E with z 1y, ¢ > 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : F — X such that

p—1
1) - acwl < S {1+ 3 |2 + 5w ) (3.41)

for all z € E.
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Proof. Tt is well known that every normed space is a modular space with the modular p(x) = ||z||
and x = 2. Q.E.D.

A convex function ¢ defined on the interval [0, 00), non-decreasing and continuous for o« > 0
and such that ¢(0) =0, ¢(a) > 0 for @ > 0, p(a) = 00 as a — o0, is called an Orlicz function.
The Orlicz function @ satisfies the As-condition if there exist k& > 0 such that p(2a) < k() for all

a> 0. Let (,%, 4) be a measure space. Let us consider the space Lg consisting of all measurable

real-valued (or complex-valued) function on 2. Define for every f € Lg the Orlicz modular p,(f)
by the formula

polf) = / o(1f)du

The associated modular function space with respect to this modular is called an Orlicz space, and
will be denoted by L¥(€2) or briefly L¥. In other words

LY = {fEngpw()\f)—)Oas)\%O}

or equivalently as
L?={fe L?L : po(Af) < cofor some A > 0} .

It is known that the Orlicz space L¥ is p,-complete. Moreover, (L?,||.|[, ) is a Banach space,
where the Luxemburg norm ||. |, is defined as follows

171, =it {3>0: [ (4)aus1f.

Moreover, if ¢ is the space of sequences = = (x;)$°, with real or complex terms z;, ¢ = (¢;)524, ¥i
are Orlicz functions and 7, (z) = 352, ¢;(|x;]), we shall write £# in place of L¥. The space ¢% is
called the generalized Orlicz sequence space. The motivation for the study of modular spaces (and
Orlicz spaces) and many examples are detailed in [14, 15]. Now, we give a following examples.

Example 3.7. Let (E,||.||) with dim E > 2 be a real normed linear space, ¢ is an Orlicz function
and satisfy the As-condition with 0 < x < 2. Let f: E — L¥ be a mapping satisfying

/Q (1D f (@, y))du < (2] + 9]7), (3.42)

for all x,y € E with z 1y, ¢ > 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E — L¥ such that

[t - actpan < = {2l 11T

1— k2r—2 2 — g2p—1 8 — g2r-1
for all x € E.

Example 3.8. Let (E,|.||) with dim E > 2 be a real normed linear space, ¢ = (¢;) be sequence of
Orlicz functions satisfying the As-condition with 0 < x < 2 and let (£#,75) be generalized Orlicz
sequence space associated to @ = (p;). Let f : E — £¥ be a mapping satisfying

mo(Df(x,y)) < e(lz]” + llyll”),
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for all z,y € E with z 1y, ¢ > 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E — £¥ such that

ke [14+rK2P72 g 1 1
mo(fl@) — AC()) < { [ r22 6 {2 “ 1 TR /-@2?1} }

for all x € E.
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