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Abstract

In this paper, we establish the Hyers-Ulam-Rassias stability of the mixed type additive-cubic
functional equation

f(2x+ y) + f(2x− y)− f(4x) = 2[f(x+ y) + f(x− y)]− 8f(2x) + 10f(x)− 2f(−x),

with x⊥y, where ⊥ is the orthogonality in the sense of Rätz in modular spaces.
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1 Introduction

The study of stability problems for functional equations is related to a question of Ulam [21] in 1940,
concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by
Hyers [10]. In 1950, a generalized version of Hyers’ theorem for approximate additive mapping was
given by Aoki [2]. In 1978, Rassias [17] provided a generalization of Hyers Theorem which allows the
Cauchy difference to be unbounded. This stability phenomenon is called the Hyers-Ulam-Rassias
stability.

Stability problems for some functional equations have been extensively investigated by several
authors, and in particular one of the most important functional equation in this topic is

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (1.1)

which is studied by Adam [1], P. Gǎvruta [7], M. Eshaghi [6], and A. Najati [13].
Recently, Gh. Sadeghi [19] proved the Hyers-Ulam stability of the generalized Jensen functional

equation f(rx+ sy) = rg(x) + sh(x) in modular spaces, using the fixed point method, also Iz. EL-
Fassi and S. Kabbaj in [5] investigated the Hyers-Ulam-Rassias stability of (1.1) in modular spaces.
The theory of modulars on linear spaces and the corresponding theory of modular linear spaces
were founded by H. Nakano [14]. In the present time the theory of modulars and modular spaces
is extensively applied, in particular, in the study of various Orlicz spaces [15] and interpolation
theory [12]. The importance for applications consists in the richness of the structure of modular
spaces, that-besides being Banach spaces (or F−spaces in more general setting)- are equipped with
modular equivalent of norm or metric notions. Numerous papers on the stability of some functional
equations have been published by different authors, we refer, for example, to [3], [4], [11] and [20].
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There are several orthogonality notions on a real normed spaces as Birkhoff-James, Carlsson,
Singer, Roberts, Pythagorean, isosceles and Diminnie. Let us recall the orthogonality space in the
sense of Rätz; cf. [18].

Suppose E is a real vector space with dimE ≥ 2 and ⊥ is a binary relation on E with the
following properties:

(O1) totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ E;
(O2) independence: if x, y ∈ E − {0}, x⊥y, then, x, y are linearly independent;
(O3) homogeneity: if x, y ∈ E, x⊥y, then αx⊥βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of E, x ∈ P and λ ∈ R+, then

there exists y0 ∈ P such that x⊥y0 and x+ y0⊥λx− y0.
The pair (E,⊥) is called an orthogonality space. By an orthogonality normed space, we mean

an orthogonality space having a normed structure. Some interesting examples of orthogonality
spaces are:

(i) The trivial orthogonality on a vector space E defined by (O1), and for nonzero elements
x, y ∈ E, x⊥y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (E, 〈.〉) given by x⊥y if and only if
〈x, y〉 = 0.

(iii) The Birkhoff-James orthogonality on a normed space (E, ‖.‖) defined by x⊥y if and only
if ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x⊥y implies that y⊥x for all x, y ∈ E. Clearly examples
(i) and (ii) are symmetric but example (iii) is not. However, it is remarkable to note, that a real
normed space of dimension greater than or equal to 3 is an inner product space if and only if the
Birkhoff-James orthogonality is symmetric.

The Orthogonal Cauchy functional equation

f(x+ y) = f(x) + f(y) (x, y ∈ E, x⊥y) (1.2)

in which ⊥ is an abstract orthogonally was first investigated by S. Gudder and D. Strawther [9]. R.
Ger and J. Sikorska discussed the orthogonal stability of the equation (1.2) in [8]. S. Ostadbashi and
J. Kazemzadeh [16] investigated the problem of the Orthogonal stability of the mixed additive-cubic
functional equation

f(2x+ y) + f(2x− y)− f(4x) = 2[f(x+ y) + f(x− y)]− 8f(2x) + 10f(x)− 2f(−x) (x⊥y), (1.3)

in Banach space.
In the present paper, we establish the Hyers-Ulam-Rassias stability of orthogonally mixed

additive-cubic functional equation (1.3) in modular spaces. Therefore, we generalized the main
results of [16].

2 Preliminary

In this section, we give the definitions that are important in the following.
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Definition 2.1. Let X be an arbitrary vector space.
(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X,

(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0,

(b) if (iii) is replaced by
(iii)’ ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .

Let ρ be a convex modular, the modular space Xρ can be equipped with a norm called the Luxem-
burg norm, defined by

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}
.

A function modular is said to satisfy the ∆2−condition if there exists κ > 0 such that ρ(2x) ≤
κρ(x) for all x ∈ Xρ.

Definition 2.2. Let {xn} and x be in Xρ. Then

(i) we say {xn} is ρ−convergent to x and write xn
ρ→ x if and only if ρ(xn − x)→ 0 as n→∞,

(ii) the sequence {xn}, with xn ∈ Xρ, is called ρ−Cauchy if ρ(xn − xm)→ 0 as m,n→∞,
(iii) a subset S of Xρ is called ρ−complete if and only if any ρ−Cauchy sequence is ρ−convergent

to an element of S.

The modular ρ has the Fatou property if and only if ρ(x) ≤ limn→∞ inf ρ(xn) whenever the
sequence {xn} is ρ−convergent to x.

Remark 2.3. If x ∈ Xρ then ρ(ax) is a nondecreasing function of a ≥ 0. Suppose that 0 < a < b,
then property (iii) of definition 2.1 with y = 0 shows that

ρ(ax) = ρ
(a
b
bx
)
≤ ρ(bx).

Moreover, if ρ is convex modular on X and |α| ≤ 1 then, ρ(αx) ≤ |α|ρ(x) and also ρ(x) ≤ 1
2ρ(2x) ≤

κ
2ρ(x) if ρ satisfy the ∆2− condition for all x ∈ X.

Throughout this paper, N and R denote the sets of all positive integers and all real numbers,
respectively.

3 Orthogonal Stability of Eq (1.3) in Modular Spaces

In this section we assume that the convex modular ρ has the Fatou property such that satisfies the
∆2−condition with 0 < κ ≤ 2. In addition, we assume that (E,⊥) denotes an orthogonality space
and we define

Df(x, y) = f(2x+ y) + f(2x− y)− f(4x)− 2[f(x+ y) + f(x− y)] + 8f(2x)− 10f(x) + 2f(−x),

for all x, y ∈ E with x⊥y, on the other hand, we give the Hyers-Ulam-Rassias stability of the
equation (1.3) in modular spaces.
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Proposition 3.1. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space and Xρ is a
ρ−complete modular space. Let f : E → Xρ be an odd mapping satisfying

ρ(Df(x, y)) ≤ ε(‖x‖p + ‖y‖p), (3.1)

for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping Ac : E → Xρ such that

ρ(f(2x)− 8f(x)−Ac(x)) ≤ ε

2− κ2p−1
‖x‖p (3.2)

for all x ∈ E. Moreover

Ac(x) = lim
n→∞

f(2n+1)− 8f(2nx)

2n

Proof. Letting (x, y) = (0, 0) in (3.1), we get f(0) = 0. Put y = 0 in (3.1). We can do this because
of (O1). Then

ρ(10f(2x)− f(4x)− 16f(x)) ≤ ε ‖x‖p

for all x ∈ E. Hence
ρ(f(4x)− 8f(2x)− 2(f(2x)− 8f(x))) ≤ ε ‖x‖p (3.3)

for all x ∈ E. By letting F (x) = f(2x)− 8f(x) in (3.3), we obtain

ρ(F (2x)− 2F (x)) ≤ ε ‖x‖p (3.4)

for all x ∈ E. We have

ρ

(
F (2x)

2
− F (x)

)
= ρ

(
1

2
(F (2x)− 2F (x))

)
≤ ε

2
‖x‖p (3.5)

for all x ∈ E. Replacing x by 2x in (3.5), we arrive to

ρ

(
F (22x)

2
− F (2x)

)
≤ ε2p−1 ‖x‖p (3.6)

for all x ∈ E. By (3.5) and (3.6), we have

ρ

(
F (22x)

22
− F (x)

)
= ρ

(
F (22x)

22
− F (2x)

2
+
F (2x)

2
− F (x)

)
≤ κ

2
ρ

(
F (2x)

2
− F (x)

)
+

κ

22
ρ

(
F (22x)

2
− F (2x)

)
≤ ε

2
(1 + κ2p−2) ‖x‖p (3.7)

for all x ∈ E. By mathematical induction, we can easily see that

ρ

(
F (2nx)

2n
− F (x)

)
≤ ε

2

n−1∑
i=0

κi2i(p−2) ‖x‖p (3.8)
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for all x ∈ E. Indeed, for n = 1 the relation (3.8) is true. Assume that the relation (3.8) is true for
n, and we show this relation rest true for n+ 1, thus we have

ρ

(
F (2n+1x)

2n+1
− F (x)

)
= ρ

(
F (2n+1x)

2n+1
− F (2x)

2
+
F (2x)

2
− F (x)

)
≤ κ

2
ρ

(
F (2x)

2
− F (x)

)
+

κ

22
ρ

(
F (2n+1x)

2n
− F (2x)

)
≤ κ

2

ε

2
‖x‖p +

ε

2

n−1∑
i=0

κi+12(i+1)(p−2) ‖x‖p

≤ ε

2

n∑
i=0

κi2i(p−2) ‖x‖p ,

hence the relation (3.8) is true for all x ∈ E and n ∈ N∗ (∈ N∗: the set of positive integers). Then
(3.8) become

ρ

(
F (2nx)

2n
− F (x)

)
≤ ε

2

1− (κ2p−2)n

1− κ2p−2
‖x‖p (3.9)

for all x ∈ E. Replacing x by 2mx (with m ∈ N∗) in (3.9), we obtain

ρ

(
F (2n+mx)

2n
− F (2mx)

)
≤ ε

2

1− (κ2p−2)n

1− κ2p−2
2mp ‖x‖p (3.10)

for all x ∈ E. Whence

ρ

(
F (2n+mx)

2n+m
− F (2mx)

2m

)
≤ 1

2m
ρ

(
F (2n+mx)

2n
− F (2mx)

)
≤ ε

2

1− (κ2p−2)n

1− κ2p−2
2m(p−1) ‖x‖p (3.11)

for all x ∈ E. If m,n→∞ we get, the sequence
{
F (2nx)

2n

}
is ρ−Cauchy sequence in the ρ−complete

modular space Xρ. Hence
{
F (2nx)

2n

}
is ρ−convergent in Xρ, and we well define the mapping

Ac = limn→∞
F (2nx)

2n from E into Xρ satisfying

ρ(Ac(x)− F (x)) ≤ ε

2− κ2p−1
‖x‖p , (3.12)

for all x ∈ E, since ρ has Fatou property. To prove Ac satisfies Df(x, y) = 0, replace (x, y) by
(2n+1x, 2n+1y) in (3.1), it follows that

ρ

(
Df(2n+1x, 2n+1y)

2n

)
≤ 1

2n
ρ(Df(2n+1x, 2n+1y))

≤ ε2n(p−1)+p(‖x‖p + ‖y‖p), (3.13)
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for all x, y ∈ E. Again replace (x, y) by (2nx, 2ny) in (3.1), it follows that

ρ

(
Df(2nx, 2ny)

2n

)
≤ 1

2n
ρ(Df(2n+1x, 2n+1y))

≤ ε2n(p−1)(‖x‖p + ‖y‖p), (3.14)

for all x, y ∈ E. By (3.13) and (3.14), we get

ρ

(
Df(2n+1x, 2n+1y)− 8Df(2nx, 2ny)

2n

)
≤ κ

2
ρ

(
Df(2n+1x, 2n+1y)

2n

)
+
κ4

2
ρ

(
Df(2nx, 2ny)

2n

)
≤ κ

2
ε2n(p−1)+p(‖x‖p + ‖y‖p) +

κ4

2
ε2n(p−1)(‖x‖p + ‖y‖p)

If n → ∞ then, we conclude that DAc(x, y) = 0, for all x, y ∈ E with x⊥y. Therefore Ac : E →
Xρ is an orthogonally cubic-additive mapping satisfying (1.3). To prove the uniqueness, assume
A′c : E → Xρ to be another orthogonally cubic-additive mapping satisfying (3.12). Then, for each
x, y ∈ E and for all m ∈ N on has

ρ(Ac(x)−A′c(x)) = ρ

(
Ac(2

mx)

2m
− A′c(2

mx)

2m

)
≤ κ

2m+1
[ρ(Ac(2

mx)− F (2mx)) + ρ(A′c(2
mx)− F (2mx))]

≤ κε2m(p−1)

2− κ2p−1
‖x‖p

If m→∞, we obtain Ac = A′c. q.e.d.

Proposition 3.2. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space and Xρ is a
ρ−complete modular space. Let f : E → Xρ be an odd mapping satisfying

ρ(Df(x, y)) ≤ ε(‖x‖p + ‖y‖p), (3.15)

for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 < p < 3. Then there exists a unique orthogonally cubic-
additive mapping Ca : E → Xρ such that

ρ(f(2x)− 2f(x)− Ca(x)) ≤ ε

8− κ2p−1
‖x‖p (3.16)

for all x ∈ E. Moreover

Ca(x) = lim
n→∞

f(2n+1)− 2f(2nx)

8n

Proof. By (3.3), we have

ρ(f(4x)− 2f(2x)− 8(f(2x)− 2f(x))) ≤ ε ‖x‖p (3.17)

for all x ∈ E. By letting G(x) = f(2x)− 2f(x) in (3.17), we get

ρ

(
G(2x)

8
−G(x)

)
≤ ε

8
‖x‖p (3.18)
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for all x ∈ E. Now replacing x by 2x in (3.18), we find

ρ

(
G(22x)

8
−G(2x)

)
≤ ε2p

8
‖x‖p (3.19)

for all x ∈ E. Then

ρ

(
G(22x)

82
− G(2x)

8

)
≤ ε2p−3

8
‖x‖p (3.20)

for all x ∈ E. From (3.18) and (3.20), we have

ρ

(
G(22x)

82
−G(x)

)
≤ κ

2
ρ

(
G(22x)

82
− G(2x)

8

)
+
κ

2
ρ

(
G(2x)

8
−G(2x)

)
≤ ε

8
(1 +

κ

2
2p−3) ‖x‖p

for all x ∈ E. In general, using induction on a positive integer n, we obtain

ρ

(
G(2nx)

8n
−G(x)

)
≤ ε

8

n−1∑
i=0

(κ
2

)i
2i(p−3) ‖x‖p

=
ε

8

1− (κ2p−4)n

1− κ2p−4
‖x‖p (3.21)

for all x ∈ E. Replacing x by 2mx (with m ∈ N∗) in (3.21), we get

ρ

(
G(2n+mx)

8n
−G(2mx)

)
≤ ε

8

1− (κ2p−4)n

1− κ2p−4
2mp ‖x‖p (3.22)

for all x ∈ E. Whence

ρ

(
G(2n+mx)

8n+m
− F (2mx)

8m

)
≤ ε

8

1− (κ2p−4)n

1− κ2p−4
2m(p−3) ‖x‖p (3.23)

for all x ∈ E. If m,n→∞ we get, the sequence
{
G(2nx)

8n

}
is ρ−Cauchy sequence in the ρ−complete

modular space Xρ. Hence
{
G(2nx)

8n

}
is ρ−convergent in Xρ, and we well define the mapping

Ca = limn→∞
G(2nx)

8n from E into Xρ satisfying

ρ(Ca(x)−G(x)) ≤ ε

8− κ2p−1
‖x‖p , (3.24)

for all x ∈ E, since ρ has Fatou property. The rest of the proof is similar to the proof of proposition
3.1. q.e.d.

Theorem 3.3. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space and Xρ is a ρ−complete
modular space. Let f : E → Xρ be an odd mapping satisfying

ρ(Df(x, y)) ≤ ε(‖x‖p + ‖y‖p), (3.25)
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for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E → Xρ such that

ρ(f(x)−AC(x)) ≤ κε

12

{
1

2− κ2p−1
+

1

8− κ2p−1

}
‖x‖p (3.26)

for all x ∈ E. Moreover

AC(x) =
−1

6
Ac(x) +

1

6
Ca(x)

for all x ∈ E.

Proof. By proposition 3.1 and proposition 3.2, we have

ρ(f(x)−AC(x)) = ρ

(
f(x) +

1

6
Ac(x)− 1

6
Ca(x)

)
= ρ

(
−1

6
[f(2x)− 8f(x)−Ac(x)] +

1

6
[f(2x)− 2f(x)− Ca(x)]

)
≤ κ

12
{ρ([f(2x)− 8f(x)−Ac(x)]) + ρ([f(2x)− 2f(x)− Ca(x)])}

≤ κε

12

{
1

2− κ2p−1
+

1

8− κ2p−1

}
‖x‖p

for all x ∈ E. q.e.d.

Remark 3.4. [16] Let f : E → Xρ be an even mapping satisfying (1.3) (with x⊥y), then f = 0 on
E.

Proposition 3.5. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space and Xρ is a
ρ−complete modular space. Let f : E → Xρ be an even mapping satisfying

ρ(Df(x, y)) ≤ ε(‖x‖p + ‖y‖p), (3.27)

for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 < p < 1. Then

ρ(f(x)) ≤ ε

2

1 + κ2p−2

1− κ2p−2
‖x‖p (3.28)

for all x ∈ E.

Proof. Letting (x, y) = (0, 0) in (3.27), we get f(0) = 0. Putting (x, y) = (0, x) in (3.27), we obtain

ρ(f(x)) = ρ

(
1

2
2f(x)

)
≤ 1

2
ρ(2f(x)) ≤ ε

2
‖x‖p (3.29)

for all x ∈ E. Replacing x by 2x in (3.29), we find

ρ(f(2x)) ≤ ε2p

2
‖x‖p (3.30)
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for all x ∈ E. Thus

ρ

(
1

2
f(2x)− f(x)

)
≤ κ

22
ρ(f(2x)) +

κ

2
ρ(f(x))

≤ ε

2
(1 + κ2p−2) ‖x‖p (3.31)

for all x ∈ E. Now replacing x by 2x in (3.31), we get

ρ

(
f(22x)

22
− f(2x)

2

)
≤ 1

2
ρ

(
1

2
f(22x)− f(2x)

)
≤ ε

2
(1 + κ2p−2)2p−1 ‖x‖p (3.32)

for all x ∈ E. It follows that

ρ

(
f(22x)

22
− f(x)

)
= ρ

(
f(22x)

22
− f(2x)

2
+
f(2x)

2
− f(x)

)
≤ κ

2
ρ

(
f(22x)

22
− f(2x)

2

)
+
κ

2
ρ

(
f(2x)

2
− f(x)

)
≤ ε(1 + κ2p−2)

2

(
1 +

κ

2
2p−1

)
‖x‖p (3.33)

for all x ∈ E. In general, using induction on a positive integer n, we obtain

ρ

(
f(2nx)

2n
− f(x)

)
≤ ε(1 + κ2p−2)

2

n−1∑
i=0

(κ
2

)i
2i(p−1) ‖x‖p

=
ε(1 + κ2p−2)

2

1− (κ2p−2)n

1− κ2p−2
‖x‖p (3.34)

for all x ∈ E. Since
{
f(2nx)

2n

}
is ρ−Cauchy sequence in the ρ−complete modular space Xρ (the

proof is similar to that of proposition 3.1). Hence
{
f(2nx)

2n

}
is ρ−convergent in Xρ, and we well

define the mapping Ae = limn→∞
f(2nx)

2n from E into Xρ satisfying

ρ(f(x)−Ae(x)) ≤ ε

8− κ2p−1
‖x‖p , (3.35)

for all x ∈ E, since ρ has Fatou property. The proof of DAe(x, y) = 0 (with x⊥y) is similar to the
proof of proposition 3.1. Ae is even orthogonally cubic-additive mapping, by remark 3.4, Ae(x) = 0
for all x ∈ E, and this completes the proof. q.e.d.

Theorem 3.6. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space and Xρ is a ρ−complete
modular space. Let f : E → Xρ be a mapping satisfying

ρ(Df(x, y)) ≤ ε(‖x‖p + ‖y‖p), (3.36)
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for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E → Xρ such that

ρ(f(x)−AC(x)) ≤ κε

4

{
1 + κ2p−2

1− κ2p−2
+
κ

6

[
1

2− κ2p−1
+

1

8− κ2p−1

]}
(3.37)

for all x ∈ E.

Proof. Let fe and f0 are even and odd part of f such that fe(x) = f(x)+f(−x)
2 , fo(x) = f(x)−f(−x)

2 .
Then we have

ρ(Dfe(x, y)) = ρ

(
Df(x, y) +Df(−x,−y)

2

)
≤ 1

2
ρ(Df(x, y)) +

1

2
ρ(Df(−x,−y))

≤ ε(‖x‖p + ‖y‖p).

By proposition 3.5, we have

ρ(fe(x)) ≤ ε

2

1 + κ2p−2

1− κ2p−2
‖x‖p (3.38)

for all x ∈ E. Similarly we obtain

ρ(Dfo(x, y)) = ρ

(
Df(x, y)−Df(−x,−y)

2

)
≤ 1

2
ρ(Df(x, y)) +

1

2
ρ(Df(−x,−y))

≤ ε(‖x‖p + ‖y‖p).

By theorem 3.3, there exists a unique orthogonally cubic-additive mapping AC : E → Xρ such that

ρ(fo(x)−AC(x)) ≤ κε

12

{
1

2− κ2p−1
+

1

8− κ2p−1

}
‖x‖p (3.39)

for all x ∈ E. It follows from (3.38) and (3.39) that

ρ(f(x)−AC(x)) = ρ(fe(x) + fo(x)−AC(x)) ≤ κ

2
ρ(fe(x)) +

κ

2
ρ(fo(x)−AC(x))

≤ κε

4

1 + κ2p−2

1− κ2p−2
‖x‖p +

κ2ε

24

{
1

2− κ2p−1
+

1

8− κ2p−1

}
‖x‖p

=
κε

4

{
1 + κ2p−2

1− κ2p−2
+
κ

6

[
1

2− κ2p−1
+

1

8− κ2p−1

]}
for all x ∈ E. q.e.d.

Corollary 3.6.1. [16] Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space and X is a Banach
space. Let f : E → X be mappings satisfying

‖Df(x, y)‖ ≤ ε(‖x‖p + ‖y‖p), (3.40)

for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 < p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E → X such that

‖f(x)−AC(x)‖ ≤ ε

2

{
1 + 2p−1

1− 2p−1
+

1

3

[
1

2− 2p
+

1

8− 2p

]}
(3.41)

for all x ∈ E.
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Proof. It is well known that every normed space is a modular space with the modular ρ(x) = ‖x‖
and κ = 2. q.e.d.

A convex function ϕ defined on the interval [0,∞), non-decreasing and continuous for α ≥ 0
and such that ϕ(0) = 0, ϕ(α) > 0 for α > 0 , ϕ(α) → ∞ as α → ∞, is called an Orlicz function.
The Orlicz function ϕ satisfies the ∆2-condition if there exist k > 0 such that ϕ(2α) ≤ kϕ(α) for all
α > 0. Let (Ω,Σ, µ) be a measure space. Let us consider the space L0

µ consisting of all measurable
real-valued (or complex-valued) function on Ω. Define for every f ∈ L0

µ the Orlicz modular ρϕ(f)
by the formula

ρϕ(f) =

∫
Ω

ϕ(|f |)dµ

The associated modular function space with respect to this modular is called an Orlicz space, and
will be denoted by Lϕµ(Ω) or briefly Lϕ. In other words

Lϕ =
{
f ∈ L0

µ : ρϕ(λf)→ 0 asλ→ 0
}

or equivalently as
Lϕ =

{
f ∈ L0

µ : ρϕ(λf) <∞ for someλ > 0
}
.

It is known that the Orlicz space Lϕ is ρϕ-complete. Moreover, (Lϕ, ‖.‖ρϕ) is a Banach space,

where the Luxemburg norm ‖.‖ρϕ is defined as follows

‖f‖ρϕ = inf

{
λ > 0 :

∫
Ω

ϕ

(
|f |
λ

)
dµ ≤ 1

}
.

Moreover, if ` is the space of sequences x = (xi)
∞
i=1 with real or complex terms xi, ϕ = (ϕi)

∞
i=1, ϕi

are Orlicz functions and πϕ(x) = Σ∞i=1ϕi(|xi|), we shall write `ϕ in place of Lϕ. The space `ϕ is
called the generalized Orlicz sequence space. The motivation for the study of modular spaces (and
Orlicz spaces) and many examples are detailed in [14, 15]. Now, we give a following examples.

Example 3.7. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space, ϕ is an Orlicz function
and satisfy the ∆2-condition with 0 < κ ≤ 2 . Let f : E → Lϕ be a mapping satisfying∫

Ω

ϕ(|Df(x, y)|)dµ ≤ ε(‖x‖p + ‖y‖p), (3.42)

for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 ≤ p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E → Lϕ such that∫

Ω

ϕ(|f(x)−AC(x)|)dµ ≤ κε

4

{
1 + κ2p−2

1− κ2p−2
+
κ

6

[
1

2− κ2p−1
+

1

8− κ2p−1

]}
for all x ∈ E.

Example 3.8. Let (E, ‖.‖) with dimE ≥ 2 be a real normed linear space, ϕ̂ = (ϕi) be sequence of
Orlicz functions satisfying the ∆2-condition with 0 < κ ≤ 2 and let (`ϕ̂, πϕ̂) be generalized Orlicz
sequence space associated to ϕ̂ = (ϕi). Let f : E → `ϕ̂ be a mapping satisfying

πϕ̂(Df(x, y)) ≤ ε(‖x‖p + ‖y‖p),
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for all x, y ∈ E with x⊥y, ε ≥ 0 and 0 ≤ p < 1. Then there exists a unique orthogonally cubic-
additive mapping AC : E → `ϕ̂ such that

πϕ̂(f(x)−AC(x)) ≤ κε

4

{
1 + κ2p−2

1− κ2p−2
+
κ

6

[
1

2− κ2p−1
+

1

8− κ2p−1

]}
for all x ∈ E.
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