# On new Fejér type inequalities for m-convex and quasi convex functions

Çetin Yildiz and M. Emin Özdemir

Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey E-mail: cetin@atauni.edu.tr, emos@atauni.edu.tr

#### Abstract

In this paper we establish new inequalities of weighted version of Hermite-Hadamard type inequality for functions whose derivatives absolute values are m- convex. Also we obtain some Fejér type inequalities for quasi-convex functions.

2010 Mathematics Subject Classification. **26D15**. 26D10 Keywords. Fejér inequality, Hermite-Hadamard inequality, m-convex functions, quasi-convex functions.

#### 1 Introduction

The following double inequality is well known in the literature as Hadamard's inequality:

Let  $f: I \subseteq \mathbb{R} \to \mathbb{R}$  be a convex function defined on an interval I of real numbers,  $a, b \in I$  and a < b, we have

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2}.$$
 (1.1)

Both inequalities hold in the reversed direction if f is concave.

It was first discovered by Hermite in 1881 in the Journal Mathesis (see [10]). The inequality (1.1) was nowhere mentioned in the mathematical literature until 1893. Beckenbach, a leading expert on the theory of convex functions, wrote that inequality (1.1) was proven by Hadamard in 1893 (see [11]). In 1974 Mitrinovič found Hermite's note in Mathesis. That is why, the inequality (1.1) was known as Hermite-Hadamard inequality.

In [1], Fejér established the following Fejér inequality which is the weighted generalization of Hermite-Hadamard inequality:

**Theorem 1.1.** Let  $f: I \to \mathbb{R}$  be convex on I and let  $a, b \in I$  with a < b. Then the inequality

$$f\left(\frac{a+b}{2}\right)\int_a^b g(x)dx \le \int_a^b f(x)g(x)dx \le \frac{f(a)+f(b)}{2}\int_a^b g(x)dx \tag{1.2}$$

holds, where  $g:[a,b]\to\mathbb{R}$  is nonnegative and symmetric to  $\frac{a+b}{2}$ .

If g = 1, then we are talking about the Hermite-Hadamard inequalities. More about those inequalities can be found in a number of papers and monographies. For recent results and generalizations concerning Fejér inequality (1.2) see [2]-[8].

**Tbilisi Mathematical Journal** 8(2) (2015), pp. 325–333. Tbilisi Centre for Mathematical Sciences.

Received by the editors: 02 February 2015.

Received by the editors: 02 February 2015. Accepted for publication: 15 November 2015. 326 Ç. Yildiz, M. E. Özdemir

**Definition 1.2.** A function  $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$  is said to be convex if whenever  $x,y \in [a,b]$  and  $t \in [0,1]$ , the following inequality holds:

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

We say that f is concave if (-f) is convex.

This definition has its origins in Jensen's results from [9] and has opened up the most extended, useful and multi-disciplinary domain of mathematics, namely, convex analysis. Convex curves and convex bodies have appeared in mathematical literature since antiquity and there are many important results related to them.

In [12], G. Toader defined m-convexity as the following:

**Definition 1.3.** The function  $f:[0,b]\to\mathbb{R}, b>0$ , is said to be m-convex, where  $m\in[0,1]$ , if we have

$$f(tx + m(1 - t)y) \le tf(x) + m(1 - t)f(y)$$

for all  $x, y \in [0, b]$  and  $t \in [0, 1]$ . Denote by  $K_m(b)$  the set of the m-convex functions on [0, b] for which  $f(0) \leq 0$ .

In [13], Set  $et\ al.$  proved the following inequality of Hermite-Hadamard type for m-convex functions.

**Theorem 1.4.** Let  $f: I^{\circ} \subset [0, b^*] \to \mathbb{R}, b^* > 0$ , be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b. If  $|f'|^q$  is m-convex on [a, b], q > 1 and  $m \in (0, 1]$ , then the following inequality holds:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{(b-a)}{4} \left\{ \left( \left| f'(a) \right|^{q} + 3m \left| f'\left(\frac{b}{m}\right) \right|^{q} \right)^{\frac{1}{q}} + \left( 3\left| f'(a) \right|^{q} + m \left| f'\left(\frac{b}{m}\right) \right|^{q} \right)^{\frac{1}{q}} \right\}.$$

$$(1.3)$$

In [8], Sarıkaya proved the following Lemmas for Fejér type inequalities:

**Lemma 1.5.** Let  $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$  be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b and  $w: [a, b] \to [0, \infty)$  be a differentiable mapping. If  $f' \in L[a, b]$ , then the following equality holds:

$$\int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx = (b-a)^{2} \int_{0}^{1} k(t)f'(ta + (1-t)b)dt$$

for each  $t \in [0, 1]$ , where

$$k(t) = \begin{cases} \int_0^t w(sa + (1-s)b)ds, & t \in \left[0, \frac{1}{2}\right) \\ -\int_t^1 w(sa + (1-s)b)ds, & t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

**Lemma 1.6.** Let  $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$  be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b and  $w: [a, b] \to [0, \infty)$  be a differentiable mapping. If  $f' \in L[a, b]$ , then the following equality holds:

$$\frac{f(a) + f(b)}{2} \int_{a}^{b} w(x)dx - \int_{a}^{b} f(x)w(x)dx = \frac{(b-a)^{2}}{2} \int_{0}^{1} p(t)f'(ta + (1-t)b)dt$$

for each  $t \in [0, 1]$ , where

$$p(t) = \int_{t}^{1} w(sa + (1-s)b)ds - \int_{0}^{t} w(sa + (1-s)b)ds.$$

The aim of this paper is to establish new inequalities of weighted version of Hermite-Hadamard type inequality for functions whose derivatives absolute values are m- convex. Also we obtain some new Fejér type inequalities for quasi-convex functions.

# 2 Inequalities for m-convex functions

**Theorem 2.1.** Let  $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$  be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b and  $w: [a, b] \to [0, \infty)$  be a differentiable mapping. If |f'| is m-convex on [a, b] for some fixed  $m \in (0, 1]$  then the following inequality holds:

$$\left| \int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx \right| \\
\leq \frac{(b-a)^{2}}{6} \left\{ \|w\|_{\left[0,\frac{1}{2}\right],\infty} \left( |f'(a)| + 2m \left| f'\left(\frac{b}{m}\right) \right| \right) + \|w\|_{\left[\frac{1}{2},1\right],\infty} \left( 2|f'(a)| + m \left| f'\left(\frac{b}{m}\right) \right| \right) \right\} \\
\leq \frac{(b-a)^{2}}{8} \|w\|_{\left[0,1\right],\infty} \left( |f'(a)| + m \left| f'\left(\frac{b}{m}\right) \right| \right).$$
(2.1)

*Proof.* From Lemma 1.5, using the properties of modulus, we have

$$\left| \int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx \right|$$

$$\leq (b-a)^{2} \left\{ \int_{0}^{\frac{1}{2}} \left| \int_{0}^{t} w(sa+(1-s)b)ds \right| |f'(ta+(1-t)b)| dt + \int_{\frac{1}{2}}^{1} \left| \int_{t}^{1} w(sa+(1-s)b)ds \right| |f'(ta+(1-t)b)| dt \right\}$$

$$\leq (b-a)^{2} \left\{ \|w\|_{\left[0,\frac{1}{2}\right],\infty} \int_{0}^{\frac{1}{2}} t |f'(ta+(1-t)b)| dt + \|w\|_{\left[\frac{1}{2},1\right],\infty} \int_{\frac{1}{2}}^{1} (1-t) |f'(ta+(1-t)b)| dt \right\}.$$

328 C. Yildiz, M. E. Özdemir

Since |f'| is m-convex on [a, b], we know that for  $t \in [0, 1]$ 

$$|f'(ta + (1-t)b)| = \left|f'(ta + m(1-t)\frac{b}{m})\right| \le t|f'(a)| + m(1-t)\left|f'\left(\frac{b}{m}\right)\right|,$$

hence

$$\left| \int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx \right|$$

$$\leq (b-a)^{2} \left\{ \|w\|_{\left[0,\frac{1}{2}\right],\infty} \int_{0}^{\frac{1}{2}} t\left[t\left|f'(a)\right| + m(1-t)\left|f'\left(\frac{b}{m}\right)\right|\right] dt + \|w\|_{\left[\frac{1}{2},1\right],\infty} \int_{\frac{1}{2}}^{1} (1-t)\left[t\left|f'(a)\right| + m(1-t)\left|f'\left(\frac{b}{m}\right)\right|\right] dt \right\}$$

$$\leq \frac{(b-a)^{2}}{6} \left\{ \|w\|_{\left[0,\frac{1}{2}\right],\infty} \left(|f'(a)| + 2m\left|f'\left(\frac{b}{m}\right)\right|\right) + \|w\|_{\left[\frac{1}{2},1\right],\infty} \left(2\left|f'(a)\right| + m\left|f'\left(\frac{b}{m}\right)\right|\right) \right\}.$$

$$(2.2)$$

Also

$$||w||_{[0,\frac{1}{2}],\infty} \le ||w||_{[0,1],\infty}$$

and

$$\|w\|_{\left[\frac{1}{2},1\right],\infty} \le \|w\|_{[0,1],\infty}$$

by using (2.2), we obtain (2.1). This completes the proof.

**Theorem 2.2.** Let  $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$  be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b and  $w: [a, b] \to [0, \infty)$  be a differentiable mapping. If |f'| is m-convex on [a, b], q > 1, for some fixed  $m \in (0, 1]$  then the following inequality holds:

$$\begin{split} & \left| \int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx \right| \\ & \leq & \frac{(b-a)^{2}}{4(p+1)^{1/p}} \left\{ \|w\|_{\left[0,\frac{1}{2}\right],\infty} \left(\frac{|f'(a)|^{q} + 3m \left|f'\left(\frac{b}{m}\right)\right|^{q}}{4}\right)^{\frac{1}{q}} \\ & + \|w\|_{\left[\frac{1}{2},1\right],\infty} \left(\frac{3 \left|f'(a)\right|^{q} + m \left|f'\left(\frac{b}{m}\right)\right|^{q}}{4}\right)^{\frac{1}{q}} \right\} \\ & \leq & \frac{(b-a)^{2}}{4(p+1)^{1/p}} \|w\|_{\left[0,1\right],\infty} \left\{ \left(\frac{|f'(a)|^{q} + 3m \left|f'\left(\frac{b}{m}\right)\right|^{q}}{4}\right)^{\frac{1}{q}} + \left(\frac{3 \left|f'(a)\right|^{q} + m \left|f'\left(\frac{b}{m}\right)\right|^{q}}{4}\right)^{\frac{1}{q}} \right\}. \end{split}$$

Proof. Using Lemma 1.5 and Hölder inequality, we obtain

$$\left| \int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx \right|$$

$$\leq (b-a)^{2} \left\{ \int_{0}^{\frac{1}{2}} \left| \int_{0}^{t} w(sa+(1-s)b)ds \right| |f'(ta+(1-t)b)| dt \right.$$

$$\left. + \int_{\frac{1}{2}}^{1} \left| \int_{t}^{1} w(sa+(1-s)b)ds \right| |f'(ta+(1-t)b)| dt \right\}$$

$$\leq (b-a)^{2} \left\{ \left( \int_{0}^{\frac{1}{2}} \left| \int_{0}^{t} w(sa+(1-s)b)ds \right|^{p} dt \right)^{\frac{1}{p}} \left( \int_{0}^{\frac{1}{2}} |f'(ta+(1-t)b)|^{q} dt \right)^{\frac{1}{q}} \right.$$

$$\left. + \left( \int_{\frac{1}{2}}^{1} \left| \int_{t}^{1} w(sa+(1-s)b)ds \right|^{p} dt \right)^{\frac{1}{p}} \left( \int_{\frac{1}{2}}^{1} |f'(ta+(1-t)b)|^{q} dt \right)^{\frac{1}{q}} \right\}$$

$$\leq (b-a)^{2} \left\{ ||w||_{[0,\frac{1}{2}],\infty} \left( \int_{0}^{\frac{1}{2}} t^{p} dt \right)^{\frac{1}{p}} \left( \int_{0}^{\frac{1}{2}} |f'(ta+(1-t)b)|^{q} dt \right)^{\frac{1}{q}} \right\}$$

$$+ ||w||_{[\frac{1}{2},1],\infty} \left( \int_{\frac{1}{2}}^{1} |1-t|^{p} dt \right)^{\frac{1}{p}} \left( \int_{\frac{1}{2}}^{1} |f'(ta+(1-t)b)|^{q} dt \right)^{\frac{1}{q}} \right\}$$

for  $\frac{1}{p} + \frac{1}{q} = 1$ . Since  $|f'|^q$  is m-convex on [a, b], we have

$$\left| \int_{a}^{b} f(x)w(x)dx - f\left(\frac{a+b}{2}\right) \int_{a}^{b} w(x)dx \right|$$

$$\leq \frac{(b-a)^{2}}{4(p+1)^{1/p}} \left\{ \left\| w \right\|_{\left[0,\frac{1}{2}\right],\infty} \left( \int_{0}^{\frac{1}{2}} \left[ t \left| f'(a) \right|^{q} + m(1-t) \left| f'\left(\frac{b}{m}\right) \right|^{q} \right] dt \right)^{\frac{1}{q}} + \left\| w \right\|_{\left[\frac{1}{2},1\right],\infty} \left( \int_{\frac{1}{2}}^{1} \left[ t \left| f'(a) \right|^{q} + m(1-t) \left| f'\left(\frac{b}{m}\right) \right|^{q} \right] dt \right)^{\frac{1}{q}} \right\}$$

$$= \frac{(b-a)^{2}}{4(p+1)^{1/p}} \left\{ \left\| w \right\|_{\left[0,\frac{1}{2}\right],\infty} \left( \frac{\left| f'(a) \right|^{q} + 3m \left| f'\left(\frac{b}{m}\right) \right|^{q}}{4} \right)^{\frac{1}{q}} + \left\| w \right\|_{\left[\frac{1}{2},1\right],\infty} \left( \frac{3 \left| f'(a) \right|^{q} + m \left| f'\left(\frac{b}{m}\right) \right|^{q}}{4} \right)^{\frac{1}{q}} \right\}$$

Also

$$\int_0^{\frac{1}{2}} t^p dt = \int_{\frac{1}{2}}^1 (1 - t)^p dt = \frac{1}{2^{p+1}(p+1)}.$$

330 Ç. Yildiz, M. E. Özdemir

This completes the proof. ■

**Remark 2.3.** Since  $\left(\frac{1}{p+1}\right)^{\frac{1}{p}} < 1$  and  $\frac{1}{4^{1/q}} < 1$ , if we choose w(x) = 1 in Theorem 2.2, we obtain the inequalties (1.3).

**Theorem 2.4.** Let  $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$  be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b and  $w: [a, b] \to [0, \infty)$  be a differentiable mapping. If |f'| is m-convex on [a, b] for some fixed  $m \in (0, 1]$  then the following inequality holds:

$$\left| \frac{f(a) + f(b)}{2} \int_{a}^{b} w(x) dx - \int_{a}^{b} f(x) w(x) dx \right|$$

$$\leq \frac{(b-a)^{2}}{4} \|w\|_{[0,1],\infty} \min \left\{ |f'(a)| + m \left| f'\left(\frac{b}{m}\right) \right|, m \left| f'\left(\frac{a}{m}\right) \right| + |f'(b)| \right\}.$$
(2.3)

*Proof.* Let  $x \in [a, b]$ . Using Lemma 1.6, we have

$$\left| \frac{f(a) + f(b)}{2} \int_{a}^{b} w(x) dx - \int_{a}^{b} f(x) w(x) dx \right|$$

$$\leq \frac{(b-a)^{2}}{2} \left\{ \int_{0}^{1} \left| \int_{0}^{t} w(sa + (1-s)b) ds \right| |f'(ta + (1-t)b)| dt \right.$$

$$\left. + \int_{0}^{1} \left| \int_{t}^{1} w(sa + (1-s)b) ds \right| |f'(ta + (1-t)b)| dt \right\}$$

$$\leq \frac{(b-a)^{2}}{2} ||w||_{[0,1],\infty} \left\{ \int_{0}^{1} t |f'(ta + (1-t)b)| dt + \int_{0}^{1} |1-t| |f'(ta + (1-t)b)| dt \right\}.$$

Since |f'| is m-convex on [a, b], we obtain

$$\begin{split} & \left| \frac{f(a) + f(b)}{2} \int_{a}^{b} w(x) dx - \int_{a}^{b} f(x) w(x) dx \right| \\ & \leq & \frac{(b-a)^{2}}{2} \left\| w \right\|_{[0,1],\infty} \left\{ \int_{0}^{1} t \left[ t \left| f'(a) \right| + m(1-t) \left| f'\left(\frac{b}{m}\right) \right| \right] dt \right. \\ & + \left. \int_{0}^{1} (1-t) \left[ t \left| f'(a) \right| + m(1-t) \left| f'\left(\frac{b}{m}\right) \right| \right] dt \right\} \\ & = & \frac{(b-a)^{2}}{4} \left\| w \right\|_{[0,1],\infty} \left\{ \left| f'(a) \right| + m \left| f'\left(\frac{b}{m}\right) \right| \right\}. \end{split}$$

Analogously we have

$$\left|\frac{f(a)+f(b)}{2}\int_{a}^{b}w(x)dx-\int_{a}^{b}f(x)w(x)dx\right|\leq\frac{(b-a)^{2}}{4}\left\|w\right\|_{[0,1],\infty}\left\{m\left|f'\left(\frac{a}{m}\right)\right|+\left|f'\left(b\right)\right|\right\},$$

which completes the proof.  $\blacksquare$ 

**Theorem 2.5.** Let  $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}$  be a differentiable mapping on  $I^{\circ}$ ,  $a, b \in I^{\circ}$  with a < b and  $w: [a, b] \to [0, \infty)$  be a differentiable mapping. If  $|f'|^q$  is m-convex on [a, b], q > 1, for some fixed  $m \in (0, 1]$  then the following inequality holds:

$$\left| \frac{f(a) + f(b)}{2} \int_{a}^{b} w(x) dx - \int_{a}^{b} f(x) w(x) dx \right|$$

$$\leq \frac{(b - a)^{2}}{(p + 1)^{\frac{1}{p}}} \|w\|_{[0,1],\infty} \min \left\{ \left[ \frac{|f'(a)|^{q} + m |f'(\frac{b}{m})|^{q}}{2} \right]^{\frac{1}{q}}, \left[ \frac{m |f'(\frac{a}{m})|^{q} + |f'(b)|^{q}}{2} \right]^{\frac{1}{q}} \right\}$$

where  $\frac{1}{p} + \frac{1}{q} = 1$ .

*Proof.* Using Lemma 1.6, Hölder's inequality and the m-convexity of  $|f'|^q$ , for  $\frac{1}{p} + \frac{1}{q} = 1$ , it follows that

$$\begin{split} &\left|\frac{f(a)+f(b)}{2}\int_{a}^{b}w(x)dx-\int_{a}^{b}f(x)w(x)dx\right| \\ &\leq \frac{(b-a)^{2}}{2}\left\{\left(\int_{0}^{1}\left|\int_{0}^{t}w(sa+(1-s)b)ds\right|^{p}dt\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f'(ta+(1-t)b)\right|^{q}dt\right)^{\frac{1}{q}} \right. \\ &\left. +\left(\int_{0}^{1}\left|\int_{t}^{1}w(sa+(1-s)b)ds\right|^{p}dt\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f'(ta+(1-t)b)\right|^{q}dt\right)^{\frac{1}{q}}\right\} \\ &\leq \frac{(b-a)^{2}}{2}\left\|w\right\|_{[0,1],\infty}\left\{\left(\int_{0}^{1}t^{p}dt\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left[t\left|f'(a)\right|^{q}+m(1-t)\left|f'\left(\frac{b}{m}\right)\right|^{q}\right]dt\right)^{\frac{1}{q}} \right. \\ &\left. +\left(\int_{0}^{1}(1-t)^{p}dt\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left[t\left|f'(a)\right|^{q}+m(1-t)\left|f'\left(\frac{b}{m}\right)\right|^{q}\right]dt\right)^{\frac{1}{q}}\right\} \\ &= \frac{(b-a)^{2}}{(p+1)^{\frac{1}{p}}}\left\|w\right\|_{[0,1],\infty}\left[\frac{\left|f'(a)\right|^{q}+m\left|f'\left(\frac{b}{m}\right)\right|^{q}}{2}\right]^{\frac{1}{q}} \end{split}$$

and analogously

$$\left| \frac{f(a) + f(b)}{2} \int_{a}^{b} w(x) dx - \int_{a}^{b} f(x) w(x) dx \right| \leq \frac{(b - a)^{2}}{(p + 1)^{\frac{1}{p}}} \|w\|_{[0, 1], \infty} \left[ \frac{m \left| f'\left(\frac{a}{m}\right)\right|^{q} + \left| f'\left(b\right)\right|^{q}}{2} \right]^{\frac{1}{q}}$$

which completes the proof.

### 3 Inequalities for quasi-convex functions

**Theorem 3.1.** Let  $f:[0,\infty)\to\mathbb{R}$  be a quasi-convex function,  $a,b\in[0,\infty)$  with a< b and  $g:[a,b]\to\mathbb{R}$  be nonnegative, integrable and symetric about  $\frac{a+b}{2}$ . Then

$$\int_{a}^{b} f(x)g(x)dx \le \max\left\{f(a), f(b)\right\} \int_{a}^{b} g(x)dx.$$

332 Ç. Yildiz, M. E. Özdemir

*Proof.* Since f is quasi-convex and g is nonnegative, integrable and symetric about  $\frac{a+b}{2}$ , we have

$$\begin{split} \int_{a}^{b} f(x)g(x)dx &= \frac{1}{2} \left[ \int_{a}^{b} f(x)g(x)dx + \int_{a}^{b} f(a+b-x)g(a+b-x)dx \right] \\ &= \frac{1}{2} \left\{ \int_{a}^{b} \left[ f(x) + f(a+b-x) \right] g(x)dx \right\} \\ &= \frac{1}{2} \left\{ \int_{a}^{b} \left[ f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) + f\left(\frac{x-a}{b-a}a + \frac{b-x}{b-a}b\right) \right] g(x)dx \right\} \\ &\leq \frac{1}{2} \left\{ \int_{a}^{b} \left[ \max \left\{ f(a), f(b) \right\} + \max \left\{ f(a), f(b) \right\} \right] g(x)dx \right\} \\ &= \max \left\{ f(a), f(b) \right\} \int_{a}^{b} g(x)dx. \end{split}$$

This completes the proof.  $\blacksquare$ 

# References

- [1] L. Fejér, *Uberdie Fourierreihen*, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906), 369-390, (in Hungarian).
- [2] F. Qi and Z.-L. Yang, Generalizations and refinements of Hermite-Hadamard's inequality, The Rocky Mountain J. of Math., 35(2005), 235-251.
- [3] S.-H. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, The Rocky Mountain J. of Math., 39(2009), 1741-1749.
- [4] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula, Taiwanese J. of Math., 15(4)(2011), 1737-1747.
- [5] K.-L. Tseng, S.R. Hwang, and S.S. Dragomir, On some new inequaties of Hermite-Hadamard-Fejér type involving convex functions, Demons. Math., 40(1)(2007).
- [6] K.-L. Tseng, S.R. Hwang, and S.S. Dragomir, Fejér-Type Inequalities (I), Journal of Inequalities and Applications, 2010, 2010:531976.
- [7] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequaliries, Comp. Math. App., 58(2009), 1869-1877.
- [8] M.Z. Sarıkaya, On new Hermite Hadamard Fejér type integral inequalities, Stud. Univ. Babeş-Bolyai Math. 57(3)(2012), 377-386.
- [9] J. L. W. V. Jensen, On konvexe funktioner og uligheder mellem middlvaerdier, Nyt. Tidsskr. Math. B., 16, 49-69, 1905.

- [10] D.S. Mitrinovič and I.B. Lackovič, Hermite and convexity, Aequat. Math. 28(1985), 229-232.
- [11] E.F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54(1948), 439-460.
- [12] G. Toader, Some generalizations of the convexity, Proceedings of The Colloquium On Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.
- [13] E. Set, M.E. Özdemir and M.Z. Sarıkaya, *Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are m-convex*, AIP Conferences Proceeding, 1309, 861, (2010).