On direct modules

" Dedicated to Professor Yoshie Katsurada on her sixtieth birthday

By Tsutomu TAKEUCHI

Y. Utumi obtained that if a ring R is left self-injective then so is the
residue class ring R/J modulo the Jacobsn radical J of R. And B. L. Osofsky
[5] extended this result to the case of éndomorphism rings of quasi-injective
modules. In this note we study endomorphism rings of those modules which

are weaker than quasi-injectives, conforming to the method by Utumi [8]

1. Preliminaries. We will assume throughout that R is a nonzero
ring with identity and that M= M denotes a nonzero unital left R-module.
Let A be an (R-)submodule of M. A complement pA° of A in M
is a maximal submodule of pM such that ANA°=0. And, a double com-
plement A of A in M is a complement of a complement of A in M
such that Ac A®. Zorn’s lemma ensures the existence of pA° and pA*
for every submodule A of M. A is called complemented in M if A
is a complement of some submodule of M in xM. To be easily seen,
every direct summand of M is complemented in zM. Moreover, A is
essential in A and RA* is (essentially) closed in M, i.e, rA” has no
proper essential extension in pM.

The above leads the following smoothly:

LemMMA 1. Let rA be a submodule of zM. Then the following con-
ditions are equivalent: | |
(1) RA is closed in pM.

(11) RA is complemented in pM.

(iii) A=A for some double complement RA” of RA in pM.

(iv) A=A* for every double complement pA* of RA in rplM.

(v) Let zB be any submodule of M contained in A. If pB is essential
in RA, then there exists such a double complement B of zB in M that
Bre=A. v

The following notations will be adopted henceforth. Let .M be a left
R-module and let S be the (R-)endomorphism ring of pM, acting on the
right side. Therefore M= ;M is a left R- and right S-bimodule. For M
we set '
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Z(zM) = {ae M| z"a is essential in pR},
Z(Mg) = {ac M| a’% is essential in Sg}
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and - Y(S)={x€eS| Mz is essential in RM},
where Fa={reR|ra=0}, a®= {xeS|ar=0} and “x means the kernel of z.
Thus, to be easily proved, both Z(;M) and Z(Mj) are (R-S-)submodules of

Mg, Y(S) is a two-sided ideal of S, having no nonzero idempotent of S
and MY(S)CZ(M). -

2. Quasi-injective modules and pseudo-injective modules. LM is
called quasi-injective (or pseudo-injective *) if every (R-)homomorphism (or
every (R-)monomorphism) of any submodule ,AcC .M into oM can bé ex-
tended to an (R-)endomorphism of M. Let .M be an injective hull of
»M and T its endomorphism ring, acting on the right: M=,M,. Then
we recall the following characterization of quasi-injective modules:

[JounsoN-WonNG] M is quasi-injective if and only if M=MT.
Let 7" be the subset of T composed of all monomorphisms of M into

=M. .M is called to be finite-dimensional if every independent set of sub-
modules of M is finite. Then we have:

ProrosITION 1. Let M be finite-dimensional. Then RM is pseudo-

injective if and only if M=MT'. (Cf. [6, Theorem 3.7].) y
- Proor. It is proved similarly to the quasi-injective case that if M is

pseudo-injective then MxC M for all x€ 7" (without the assumption of M
finite-dimensional). .

Assume the finite-dimensional M=MT"’. Let ,A be a submodule of
#M, and ¢ any monomorphism of A into M. Since A is a finite-
dimensional submodule of M, Miyashita [4, Corollary 2, p. 175] implies
that ¢ can be extended to an automorphism x€7". Hence, as MxC M,
the contraction of x to M is an endomorphism of .M, which is an exten-
sion of ¢. X

3. Direct modules. Now, although quasi-injectivity implies pseudo-
injectivity evidently, we want to extract another type of property from quasi-
injective modules. Let rA, A" be submodules of ;M. Then RA’ will be
called a direct hull of A in RM, if A’ is an essential extension of A and
#A" i1s a direct summand of Mj. And, M will be called direct if every
submodule of M has a direct hull in ,M. Moreover, a direct M is called
uniquely direct if for any submodules rA, RBC zM every isomorphism be-
tween rA and B can be extended to an isomorphism between any direct
hulls A’ and B of A and B in pM respectively. If pM is injective,
then each submodule of M has an injective hull in M which is, of course,

*) See Singh and Jain [6]
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a direct summand of M. Therefore a direct hull in an injective module
is nothing but an injective hull contained in it. v

=M(#0) is called uniform if every nonzero submodule of zM is essentlal
in oM, or equivalently if every pair of nonzero submodules of M has a
nonzero intersection. Hence, M is uniform if and only if ;M is direct
and indecomposable.

LeEMMA 2. pM is direct if and only if every submodule of RAM which
is closed in xM is a direct summand of rM.

ProoF. Let oM be direct, and A any closed submodule of M. Then
A has a direct hull RA’ in pM. Since pA is essential in pA’, the closed
24 coincides with rA’, which is a direct summand of pM.

Conversely, assume that each closed submodule of zM is a direct sum-
mand of M. For any submodule rAC M, there exists a double com-
plement RA” of zA in M. By assumption A% is a direct summand of
=M. Since A is essential in rA®, RA” is a direct hull of zA in M.

If a submodule RAC M is contained in a direct summand M’ of =M,
then within M’ we can find a certain double complement ,A* of A in
=M, just as mentioned in [4, Theorem 2.3]. Therefore, if M is direct
A% is a direct summand of M and accordingly of pM'. Namely, every
direct summand of a direct module is direct.

If Z(,M)=0, then any submodule of .M has a unique closed essential
extension in M. Actually, let A’ and A" be two essential extensions of
<A in ;M which are both closed in M. Then Z(M)=0 implies that rA
is essential in , A’+ A", and hence A’=A". Thus we obtain the following :

PROPOSITION 2. If M is direct with Z(xM )=0, then every submodule
of xM has a unique direct hull in pM.

It is to be noted here that each submodule prAC M is a direct sum-
mand of M if and only if A=Me for some idempotent e€.S.

ProprOSITION 3. If oM is direct with Z(;M)=0, then Z(MS)
Proor. Let aeZ(Ms). Then there exists an idempotent e€.S such that
=Ra is essential in ;Me. Take any elements x€a®*NeS and beM. Since
%(be+ Ra) = {re R| rbe€ Ra}

is an essential left ideal of R, ®(be+ Ra)bx=0 implies that bxeZ(M), i.e.,
bx=0. Therefore a*NeS=0. As a% is essential in S5 eS=0 or e=0.
Thus a=0, as required.

Now we state some conditions concerning M.

ConpitioN (I):  Every submodule of M isomorphic to a direct sum-
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mand of ,M is also a direct summand of ;M.

ConpiTioN (I'): Every submodule of M isomorphic to a closed sub-
module of RM in zM is also closed in pM.

By [Lemma 2| Conditions (I) and (I') are equivalent if RM is dlrect
And, if R is a (von Neumann) regular ring, then (pM=) .R sitisfies Con-
dition (I).

ConpiTioN (II): If ;A and B are direct summands of ;M such that
ANB=0, then , A@B is also a direct summand of M.

It will be proved readily that this condition is equivalent to the next:

Conpition (II'): If MeNMf=0 for idempotents e, f€.S, then there
exists an idempotent g€S such that Me=Mg and Mfc M(1—g).

For ;M Condition (I) yields Condition (II), proved in this way. Suppose
MeN Mf=0 for e=é*, f=f%€S. Since RMf(1—e) is isomorphic to ,Mf, by
Condition (I) Mf(1—e)=Mjyg for some g=g’€S. Hence r Me@®Mf is iso-
morphic to r Me@®Mg=M(e+g—eq), where e+g—eg€eS is an idempotent.
Therefore, Condition (I) implies again that , Me@®Mf is a direct summand
of M. : '

We already know another characterization of quasi-injective modules:

[Fartu-UTtuMI1] pM is quasi-injective if and only if .M satisfies the
Jollowing : let zA and ,C be submodules of M and let ;C be closed in
#M.  Then every homomorphism of rA into C can be extended to a homo-
morphism of pM into ;C.

As an immediate consequence of this theorem we obtain that any closed
submodule of zM is a direct summand of ;M if M is quasi-injective. Thus,
we can set up the following:

ProrosiTION 4. Every quasi-injective module is pseudo-injective and
direct.

In case M is pseudo-injective, the following holds by a similar manner:
let zA, B and C be submodules of ,M such that B is an essential ex-
tension of A and zC is closed in M. Then every monomorphism ¢ of
#A into zC can be extended to a monomorphism ¢’ of B into zC.

In this condition, if ¢ is particularly an isomorphism of ,A onto ;C,
then A must coincide with B. Hence, a pseudo-injective M satisfies Con-
dition (I').

THEOREM 1. The following are equivalent:

(1) &M is uniquely direct.

(ii) M is pseudo-injective and direct.

(i) Let ;A and ,C be submodules of zM and let #C be closed in M.
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Then every monomorphism of pA into xC can be extended to a homomor-
phism of pM into xC.

If one of these conditions holds, then:

(iv) »M is direct with Condition (I).

And this implies that

(v) =M is direct with Condition (II).

Proor. (i) =(i): Let ¢ be any monomorphism of a submodule
RAC M into ;M. Then ;A and the image pA¢ have direct hulls pMe
and Mf, e=¢’, f=f?€S, respectively. And, there exists, by the uniqueness
of direct hulls, an isomorphism ¢’ of ,Me onto zMf which induces ¢ on
»A. Therefore ep’ gives an endomorphism of M, which is an extension
of ¢. This shows that M is pseudo-injective.

(i1) =>(ii): By we deduce that a closed C is a direct sum-
mand of M, say C=Me, e=€€S. Let ¢ be a monomorphism of ;A into
»C. Then the monomorphism ¢v, where v is the natural injection of RC
into M, can be extended to an endomorphism z€S, since pM is pseudo-
injective. Hence, the homomorphism ze of M into ,C is an extension
Of p- I

Immediately (iii) = (ii).

(ii)=>(i): In order to prove the -uniqueness of direct hulls, settle an
isomorphism ¢ of A onto zB for two submodules A, xkBCzM. Then since
»M is pseudo-injective, ¢ is induced by an endomorphism x€S. Take any
direct hulls ,A’'C .M of ,A and ;Me of .B, e=¢e’€S. The contraction of
x to RA’ and e compose a homomorphism ¢’ of A’ into pMe, which is
clearly an extension of ¢. However, as ,A is essential in zA’, ¢’ is mono-
morphic. Since pseudo-injectivity implies Condition (I'), as noticed before,
#A'¢" is closed in M. On the other hand ,B is essential in pMe, BC
A'¢'C Me, and therefore A'¢’=DMe. Thus ¢’ is an isomorphism of A’
onto pMe.

(ii) > (iv) =>(v): These implications have already been shown previ-
ously, completing the proof.

In our theorem if ,M=,R is suited to the statement of (iv), then R is
what is called Utumi’s left continuous ring. And, [7, Example 3] is to be
seen yet. :

If a submodule of M has two direct hulls zMe, Mf (e=¢€*, f=f?€S)
in M, then MeNM(1—f)=0 and pMe is isomorphic to pMef. Further-
more, if M satisfies Condition (II), then Me@M(1—f)=DMjy for some g=
g°€S. Therefore Mef=Mgf, where gf is an idempotent of .S, must coincide
with Mf since pMgf is essential in pMf. Thus we have: if ,M is direct
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with Condition (II), then any direct hulls of a submodule RAC M in ;M
are isomorphic leaving A elementwise fixed.

An application of Miyashita’s uniform dimension theorem to a uniquely
direct module yields the following, the proof of which will be omitted
because of its similarity to that of [4, Theorem 4.5].

ProrosiTiON 5. Let ;M be uniquely direct.

(1) Let {#A, |26/1} and {zB,|reI'} be maximal zndependent sets of uni-
Sform submodules of M, and let ,A', and #B', be any direct hulls of RA,
and pB, (A€ A, 7€) respectively. Then there exist a one-to-one correspondence
X of A onto I' and an automorphism x€S such that Ayx=By, for all 1€ A.

(ii) Moreover, let »M be finite-dimensional. Then M is a direct sum
of a finite number of pseudo-zn]ectwe uniform submodules and such a repre-
sentation of M is unique up to zsomorphzsm

(i1i) Let A and B be finite-dimensional submodules of M. Then
every zsomorphzsm between pA and B can be extended to an automorphism
of =M.

ProPOSITION 6. Let xM be direct with Condition (I). If ¢ is a homo-
morphism of any submodule rAC .M into .M such that AN Ap=0, then @
can be extended to an endomorphism of pM.

Proor. Take direct hulls zMe and Mf of A and pAe respectlvely,
where e=¢?, f=f?cS. Then since MeN Mf=0, we may assume ef=fe=
by Condition (II) for .M. Set .B={a+agp|acA}, which is a submodule of
»M contained in M(e+f). Since M is direct, there exists g=g*=g(e+f)eS
such that B is essential in ,Mg. Because BN M (1—e)=0, MgNM(1—e)=0
and so My is isomorphic to rMge. Hence by Condition (I) for zM, pMge
is a direct summand of M. However, since ,A=Be is essential in rMe,
Mge=DMe. Therefore given any element a€ M, there exists a unique element
bgeM (be M) such that ae=bge, i.e., there exists an endomorphism x€S
such that ar=bg. Hence e=ze and x=xg9. And an easy verification
implies that ap—axfe MfN Mg=0 for all acA. Thus xf is an extension
endomorphism of ¢.

[Proposition 6 will be used as a lemma to obtain the followmg

Let M be direct with Condition (I). And let ,M be a direct sum of
n submodules, n>1, say M=A@A,D - DA,, A CM (i=1,2, -+, m), such
that each X} @,.,A; contains an isomorphic image of zA;,. Then M is
quasi-injective.

To establish the proof see Utumi. [8, Theorem 7.1].

4. Endomorphism rings of uniquely direct lmodules. For the endo-
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morphism ring S of M, we let S=S/Y(S) denote the residue class ring of
S modulo Y(S). And for z€S, z will denote the residue class of x modulo
Y(S).

On lifting idempotents modulo Y(S) we have the following:

LeMMA 3. Let .M be direct with Condition (II). And let x, e=€’€S.
If z=ze==7 then there exists an idemotent f=fe=f€S such that z= Ff.

PrOOF. By our assumption x—xe, x—x*c Y(S), there exists an essential
submodule A of M such that A(x—zxe)=A(x—a*)=0. As pM is direct,
we can take direct hulls Mg of pAx=Azxe in pMe and pMh of RA(l—x)
in .M, where g=ge=g% h=h?¢S. And since AxNA(1—x)=0, MgN Mh=0.
It follows by Condition (II') that there exists f=f?cS such that Mg=Mf
and Mhc M(1—f). Thus Azx(1—f)=A(1—x)f=0 and so z(1—f), (1—x)f€
Y(S). Hence z—f€Y(S). And f=fe since MfC Me, completing the proof.

PrOPOSITION 7. Let xM be direct with Condition (I\. Then Y(S)
coincides with the Jacobson radical J(S) of S, and S is a regular ring.

Proor. Let first zeY(S). Then since ¥z is essential in M, "N
"1 +2)=0 implies *(1+x)=0. Hence M is isomorphic to zM(1+ x), which
is a direct summand of pM by Condition (I. On the other hand, M(1+x)
is essential in M as Yxrc M(1+2x). Hence M(1+x)=M. Thus 1+x is
an automorphism of M, meaning that x is a quasi-regular element of S;
z€J(S).. This shows the inclusion Y(S)CJ(S).

Let next y€S. Setting zA=y and A°=Me, e=e ES we have an
isomorphism of »A° onto A°%. Hence by Condition (I) there exists f=/"€S
such that A°y=Mf. Therefore, for any element a€ M we can find a unique
be A° such that af=by; there exists z€S such that f=zy. Since r ABA°
is essential in M, it follows from (A@A°)(y—y=zy)=0 that y—yzyeY(S)
Thus S is regular.

If in particular y€J(S), then yeY(S) since 1—yz is a unit of S. This
completes the proof.

Lemma 4. Let oM be direct with Condition (I) and let e,=é€S (A€ A).
If {sSe,|aeA} is an independent set, then so is {zMe,|2€4}.

ProoF. We have only to prove the lemma under $4< oo ; we deduce
that if {sSe,, s, -, s5e,} is independent, then so is {xMe,, xMe,, -, =Me,)}
for_idémpotents e, &, ,e,€S. TFirst we treat the case of n=2. Since S
is regular, there exists f=f%€S by 3 such that S&,=Sf and SecC
S(1—f). Evidently, (Me, N Me;) N e, f)C*(1— e1+e1 f). Since e,=eé,f, #e—
e.f) is essential in xM and so *(1—e +e,f)=0. Therefore (Me, N Me;) N

Me,f)=0. However, ;e.f) is essential in ,M since &, F=0. This yields
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Me, N Me,=0. Next, assume 7=>3 and that our assertion holds for n—1
idempotents of S. By assumption {.Me,, Me,, -+, zMe,_,} is independent.
Hence by Condition (II) for M, there exists e=e?’€S such that Me @ Me,
@D---PMe,_,= Me. Therefore, we can find idempotents e, &, -+, €, 1€S such
that Me;=Me; (i=1,2,---,n—1) and e;+e;+---+¢;.,=e. Since Se;=Se,C Se
(Z_la 2a Hn— )a Sel@sezg')"'@gén 1—’Sé{@§éé@ @Sé,,, - Sé s 'ACCOI'd-
ingly, SeN Se,=0 implies MeN Me, =0, whence it follows that {zMe,, RMez,
-+, xMe,} is independent. This completes the proof by induction.

THEOREM 2. If M is direct wzth Condition (I), then so is §S.

ProOF. Since S is regular by [Proposition 7, ¢S satisfies Condition (I);
Hence it is enough to show &S direct. Let % be any left ideal of S. Then,
in virtue of using Zorn’s lemma, there exist &,c9 (2€4) such that the dlrect
sum gZ @.Se, is essential in S Since S is regular, we can assume, by
LCemma 3, e,=ef€S for all 2e4. Hence, {«Me,| 2€ 4} is independent by
Lemma 4 Set zMe (e=¢*cS) be a direct hull of .Y @®,..Me, in M. Then,
it follows from this that ), @ ,.Se; is essential in ;Se. Because, let BC Se
be a left ideal of S such that BN Y, P,eSe,=0. If zeB, SzN 3, D:csS8,=0;
we may say r=Ixe=x 2¢,S and hence Mz N Y@, Me,=0 by [Lemma 4 Since
22 @D edMe, is essential in rMe, we have Mx=0, narnely, 2=0. This asserts
B=0, consequently.

On the other hand, for every yEi)I, s @D eaS ézﬂSy is essential in sS7.
Hence, ¢£eN<; 7 is essential in (S7 y. However, since S is regular, ;SeN Sy
is a direct summand of €. Therefore SeNSy=Sy and so yeSe. Thus
A Se, ‘whence it follows that (2 is essential in ¢Se. This shows that ¢Se
is a direct hull of A in S, completmg the proof.

THEOREM ‘3. If xM is uniquely direct, then so is 8.

Proor. By Theorems 1 and 2, we have only to prove that ¢S is pseudo-
injective. Let 2 be a left ideal of S and let ® be any monomorphism of
sU into zS. Then we shall extend @ to an endomorphism of . As in
the proof of Theorem 2, we can find e,=e2€S (1€4) such that the direct
sum ). @88 is essential in A, Let e@=x,€S, z,€S (1€4). Then
{sS7,]4€ 4} is an independent set and ) @S¢, is isomorphic to §) D ;esSE;.
Since S is regular, by Lemma 3 for each i€/ there exist y,, f;=/2€S such
that z,=,9,%, and 7,7,= f; Hence Sz,=Sf, for all i€4. By Lemma 4,
we can set submodules of M

| 2A =2 ®:eMe;, RB=2 @zeAMf;. )
as direct sums of direct summands of M. Let 3’ be a hbmbmorphism. of
»A into B, and 2’ a homomorphism of ;B into zA, defined as follows:
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’

RA(-——————R ’

zl

ay’' = naaf, for a=2,.a€A,
. bz = Dby, for b=3,0,€8B,
where a,eMe,, b,eMf; for all €4 and a,=0, b,=0 for almost all 2€4.
Then, it follows that &z.f.7.60=2%;, namely, &%, fi:&=¢ and so *(1+
ez, fy.e—e)=0 for all 2€4. If ay’=0 for a= 3 ,ca:€ A, a,€ Me, (A€ /), then
ay'?' =Yt fy6,=0. Hence ax,fy.6,=0 for all 2€4. Therefore, since
a,€¥(1 + ez, fry.e:—e) for all 2€4, a=0. This yields that %’ is a monomor-
phism. Thus, we can find an endomorphism y€.S which is an extension
of ¢, since mM is pseudo-injective. Now, let ¥ be an endomorphism of
sS, by defining a¥’=agy for acS. Since ey=ex.f;, e¥=z,=¢&@ for all
1€, whence we obtain ¥=0 on ), @®..S¢,. Given a€, since ), PS8
is essential in 2,

B = (peS|Bac T DS

is an essential left ideal of S. And since Ba(¥—9)=0, we have a(¥ —9)c
Z(s8). However Z(sS)=0 since S is a regular ring. Consequently, we have
AT —@)=0; ¥ is an extension of @, as desired.

[OsorskY] If xM is quasi-injective, then S is injective.

The proof of this theorem has been given as a simplified form of that
of our [Theorem 3 Indeed, since we have only to extend any ‘“homomor-
phism” @ of ;A into &S, there is no need of referring to idempotents f; of S.

Finally, the author would like to express his direct gratitude to the
revisers Prof. T. Tsuzuku, Prof. T. Onodera and Prof. Y. Miyashita for
their genial advices and encouragements. '
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