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Introduction. Let X be a finite CW complex. We denote by K(X)
the Grothendieck group of the classes of complex vector bundles over X.
We further write Z, B, for the integers with the discrete topology, the
classifying space of the infinite unitary group respectively. Then the K-
theoretic version of the homotopy classification theorem is given by the
statement of the existence of a natural bijection:

K(X)z[X, By xZ]

where [X, B, xZ] denotes the set of homotopy classes of maps of X into
B, xZ.

The objective of this paper is to present an algebro-geometric analogue
to the above-mentioned theorem. We consider a non-singular reduced
affine k-scheme for an algebraically closed field k, instead of a finite CW
complex. Let X be a k-scheme of this kind. We write K(X) for the
Grothendieck group of the classes of coherent OyModules. Let G, , be
the Grassmannian k-scheme of #z-planes in affine 2zn-space 4, where »
ranges over the positive integers. Then there are natural closed immersions:
Gpn—>Gy, for I>n. We denote by B, the direct limit of G,, in the
category of geometrical k-spaces. Consider morphisms f,g: X—— B, xZ.
We define f~g if and only if f is connected with ¢ by a finite chain of
rational homotopies. A class by the equivalence relation ~ will be called
a rational homotopy class. We write [X, B, xZ],,, for the set of rational
homotopy classes of k-morphisms: X—— B, xZ. With these notations we
have

Main Theorem. There is a natural bijection
K(X) =2 [Xs Bk XZ]rat .

Let X be an irreducible algebraic prescheme over an algebraically closed
field .. Let ¥ be the universal scheme vector bundle over G, ,, i.e. the
Grassmannian k-scheme of n-planes in affine (m—n)-space. We denote by
p the natural projection: 1,——G, ,,. We now state two theorems below
which are used for the proof of the Main Theorem, because of their own
Interest.
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THEOREM A. Let E be a quasi-coherent Oy-Module which is a direct
summand of a free OxModule of finite rank and m a sufficiently large
integer. Then we can find a morphism G: X——G,, ,, such that there is
a pull-back diagram:

b
v G
X E— Gn,m

in other words
VE)=Xxg4 T2

THEOREM B. Suppose two morphisms having the pull-back diagram
in Theorem A. Then they are rationally homotopic in G, . for sufficiently
large m'.

1. Grassmannian schemes and universal scheme vector bundles.
First we define the Grassmannian k-schemes for an arbitrary field 2 Let 4 be
the set of subsets 2 of {1,---,m} with card.i=7 where m and n are fixed
positive integers. Let U, be m!/(n! x (m—n)!) copies of affine 7(m—n)-space
A, " which are indexed by 4. For convenience we introduce variables
X;;” where 7 (resp. j) runs through 1,---,n (resp. 1,:--,m—n). We write
R, for the polynomial ring 2[X,,;*] in n(m—n) variables X, and consider
U, as Spec R,. We wish to glue together U, (1€4) and construct a k-scheme.
Let us explain how U, and U, are glued for A, #eA. For that it suffices
to take the example of A={1,---,n} and p={1,---,n—1,n+1}. Let:

Xu®

M, = ( 1n—1
L 0 - X,

where 1,_, denotes the unit matrix of order n—1. We note that the coefh-
cients of M ™' (resp. M'™") belong to the ring (R)seis (resp. (R, )acsar) Be-
tween the variables X;,%, X, we introduce the relation:

X(/l) — M—lX(l)

where



138 T. Maebashi

/’ an Xi,m-n(x) \
X(i) — ln .................. ’
X, e Xn,m_n(z)
/ Xn(/l) 0 Xlz(#) 1,m~n('u)
X — 1, .
\ 0 --- 0 an(/') 1 an(/x) Xn,m—n(#)/

From this it results that X,.,® (/'=1,---,n; j/=1,.--,m—n) are rational
functions of X;,¥. We denote these rational functions by 7. Then
705 € (R)ernr- We clearly have M'=M"". Hence det M'=(det M)™". There-
fore if we substitute 7y, for X, in (P€(R )etn), We have an element Q
of (R)aersr- We define T, : (R,)aesr— (Ri)aersr by setting T3, (P)=Q. This
is an isomorphism and induces a scheme isomorphism *7,: Spec (R,)secsr——
Spec (R)etsrr- These isomorphisms satisfy the cocycle condition.'v Hence
we can define a prescheme which is locally isomorphic to A/*™ ™. We
denote it by G,.... Let i, be the natural inclusion: 2GR,. Then i,
induces a morphism “,: U,——Spec .. We can glue %, into a morphism
i: Gum-n—>Spec k. i is separated as easily seen. Hence G, ,-, can be
considered as a k-scheme. We call this the Grassmannian k-scheme of  n-
planes in affine space A;™. '

Next we construct the universal scheme vector bundle over G, ., ..
Let R, be the polynomial rings which are obtained by adjunction of n new
variables X,?® (h=1,---,n) to R,. Then for each 1€4 there is a natural
injection : R,GR,. Tt induces a k-morphism: Spec R,——Spec R,. We
denote it by p,. Between the variables let us introduce the relation:

(Xl(ﬂ)y Tt Xn(l‘)) = (Xl(2)7 T Xn(l))M°

Then X, (h'=1,---,n) turn out to be rational functions of X, which we
denote by 7,... Since 7,.€(R,), we can assign to each Be(R,)sern an element
Q€(R))seesr which is obtained by the substitution of 7, r, for X,
X, ™. The isomorphism T',,: P|— ") induces an isomorphism “T’,,: Spec
(R)aerse— Spec (R )gersr- Since °T,, satisfy the cocycle condition, we get
a prescheme 17 by gluing Spec R, (1€4). It is actually a k-scheme. Be-
sides the k-morphisms p, (1€4) can be glued into a k-morphism p: 77—
Gnm-n- This can be easily seen from the commutative diagrams:
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~ aTl# A
Spec (R2>detM —— Spec (R;;)detM'

y22 _ P
7 \L “ A \L
Spec (Rx)detM — Spec (R, )seur
We call the G, ,_,-prescheme Y™ the wuniversal scheme vector bundle be-
cause we have the following proposition. o
Let E be the sheaf of germs of section of 7. Then E can be viewed
as a Module over the structure sheaf of G, _,.

ProrosiTION 1. E is a quasi-coherent Module and the G, ,-scheme
I is isomorphic to the scheme vector bundle V(E) associated to E.

Proor. Let us consider R, as a R,-algebra by the natural 1n3ect10n
R,GR,. Then there are natural isomorphisms: '

( 1 ) (Ula E) HomA1g<RN R ) HomMod(Rln’ RX)

where R, denotes the direct sum of » copies of R, For feR, we also
have a natural isomorphism: I'(U));, E)2Homy.a((R,)" (R)),). Hence we
see I'(U,, E)y=I(U),E). This shows that E|U, is the sheaf associated
to the R-module I'(U, E). Hence E is quasi-coherent. From (1) we have

I'U,, E) = Homy(I'(U,,E), R) = R;* .

Therefore we obtain a natural isomorphism of the symmetric algebra of
I'(U,, E) onto the polynomial ring R,. This gives rise to a natural isomor-
phism 7: Spec R,—— Spec I'(U,, S(E)), where S(E) is the symmetric Al-
gebra of Module E. Let ¢/, be the restriction of 7, on Spec (‘~ Jtetss- Then
;7% is equal to °T,,. Hence we see that the isomorphism 1z, (A€A) can
be glued into a global isomorphism of 7" onto V(E ). This completes the
proof. ’

PropositioN 2. G, ,, is isomorphic to G, _,.,..

Proor. For 1€4 we set 2={1,--,m} —1 Then G,,_,,. is covered by
the affine open sets U; which can be identified with Spec R, where R;=
k[X;®] (i=1,--,n;j=1,--,m—n). We first construct an isomorphism :
Spec R,—— Spec R; for each 1€/ and then show that they can be glued
together. We again take the example of 1= {1,---,n} and g={1,---,n—1,
n+1} for the convenience of writing. Let us denote by Y the (m—n)-by-m
matrix with unknowns Y, as the (j, k)-element respectively where j=
1,---,m—n and k=1, ---,m. Consider the matrix equation with the unknown

Y:
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X®Y =0.
It has a unique solution Y if we impose the condition:
Yjn- g0 =055 (j,j'=1,+,m—n)
on Y. Actually we have Y,;;= —X,;. Let PeR;. Substitutig —X,;"(=Yy)
for X, in P, we get a polynomial in R,. This gives rise to an isomor-
phism of R; onto R,. It induces an isomorphism: Spec R,— Spec R;
which will be denoted by 7;. We write
_X,® 0 .. 0\
M = ]-'n—l
\ _X'n m—nu)
Consider now the equation X®*Y=0 and solve it on the condition:
Yln= 1, an:O, Yj’,n+j=5j'j
j=2,-m—m, j=1,m—n.

We denote the solution by Y*. As for g, we have a natural isomorphism
7,: Spec R,—-—>Spec R;. Since the solution is unique, Y*=M"'Y® up
to T,,. Hence 7,=17,in U;,NU,. We can therefore glue these isomorphisms

and obtain a natural isomorphism

[ Gn,m—-n E— Gm~'n,n .
This completes the proof.

. 2. Construction of the classifying morphism. Let £ be an arbitrary
field. Let X be a k-prescheme. Then a k-valued point of X is a k-morphism
f: Spec k—— X. Spec k consists of a single point. We write x for the
image of Spec k by f. f gives rise to a k-homomorphism of Oy, into .
We denote it by the same letter £ Let U be an affine open set in X which
contains x. Let 7, be the restriction: I'(U, Oy)—— Ox,. The kernel of
fory: I'(U, O)——k is denoted by I. We use the letter A for I'(U, Oy)

from now on. Then we have a k-vector space isomorphism
Az kPI.

Now let E be a quasi-coherent Oy-Module. Suppose there is an exact
sequence :

(2 = O—E—O0p— Of/E—O

which splits locally, provided that m is some positive integer. We write
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I'(U,E) as M and I'(U, Os*/E) as N. Let U be so small that the exact

sequence (2) splits on U. Then we have an A-module isomorphism
gp: MOPN= A™.
gy induces an isomorphism: I-M@I-N=I*. We therefore have an isomor-
phism:
| MII-M@®N|I-N=(A]I™.

By restricting the coefficient ring to %, we get a k-vector space isomorphism.
which gives rise to an injection

j: MII-MGkE™.

We denote by M, the subspéce J(MII-M) of k™.

LEmMmA 1. For sufficiently small U, My, does not depend on the choice
of U, but is determined uniquely by the k-valued point f.

Proor. Let U’ be an affine open set such that U'CU and xelU'. Let

r (resp. 7) be the restriction homomorphism of A (resp. M) on A’=I'(U", Oy)
(resp. M'=I'(U'", E)). Then the diagrams:

r Jo
A — A M — A~
o
\\ o Ty 7 r™
AN \L i Ju J«

\\O_l’,a MI — Alm
are commutative where »”: A™—— A’ is defined by
r" (al "% am) = <r(a1), HREY r(am)) .

The first diagram implies that r sends I in I'=Ker for,.. Hence we obtain
the commutative diagram:

MU — km

| |
M7 — Em

la

from the second diagram where the horizontal arrows are the inclusions.
We therefore have My G My.. This inclusion can be replaced by the equality
if U is sufficiently small. This completes the proof.

Let us denote by X(k&) the set of k-valued points of k-prescheme X.
By the injection: f|——>z, we can identify X (k) with a subset of X. Hence
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we can induce a topology on X(k) from that of X. From now on we
consider X (k) as a topological space equipped with this induced topology.

Let ¢, be the projection of M@N on the first factor M. We define
geEnd, A™ by g=gr°quegs™’. With respect to the canonical base of A™
there corresponds a matrix a to q. We set

An: *° Aum

Let f, be the natural projection of A on A/, i.e., fory. Then the vectors

(fel@w), -+ fo(@md))s s (fo(@m), *++» fu(@nn)) span the vector subspace M, in k™.
Suppose U is sufficiently small. Then this subspace is uniquely determined

by f, which is guaranteed by Lemma 1. We use the symbol G(f) instead
of My,. dim G4f) equals the maximum order of square submatrix 8 of a
such that fy(det 8)#0, or equivalently det 8¢ 1. We write b for det 8. For
fixed B the set of ge UNX (k) with ¢,(b)#0 is just Spec A,N X(k). Hence
the set of geX (k) such that

dim Gx(f) =< dim Gx(g)

contains an open neighborhood of x in X(k). Similarly the set of ¢'€X(k)
such that

m—dim Gx(f) < dim N/Ker g5,-N
contains an open neighborhood of z in X(%). Since.
dim M/Ker g,- M+dim N/Ker g,-N=m

holds at any point ge UN X(k), we can conclude from the above facts that
dim Gx(f) is locally constant in X(&).

Suppose now X is an irreducible algebraic k-prescheme with % algebrai-
cally closed. Then X(k) coincides with the set of closed points of X. It
is a connected and dense subset of X. Hence dim Gx(f) is a constant on
X. We denote it by #. Then Gy: f |—Gx(f) can be viewed as a map
of X(%) into G, . . since there corresponds a closed point in G,m-n tO
each n-plane in %™ naturally. Let 8 be an n—by—n submatrix of a with
b=det B R(A) where R(A) is the radical of A. Then we have Spec A=
USpecA, where the union ranges over the submatrices of the above
nature; for USpec 4, is an open subset containing all the closed points of
Spec A.- For brevity’s sake we assume f=(ay);o=1,..n- WE define c¢;;€A,
(i=1,--,n;j=1,---,m—n) by
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\ A,y e Ao, ‘ Cpz ****** C, P

Recall thaf G.m-» 1s covered by the affine open sets U, (léA) each of
which is identifiable with affine space Spec kX Plio1, e mig=1,-m-n-  For Q€
k[X,;*] we define

H(Q) = Qleiy) -

Then H is a homomorphism of £[X,,”] into A,. H induces a morphism
“H: Spec A,—— Spec k[X,,*]=U,. We want to show that we can glue
“H and get a morphism of X into G,,_,. For that it suffices to prove

(3) Gx(f)="H(f)
for any k-valued point fe U,=Spec A,. We write fv, as f,. Then we have

“H(f)=H"(Ker f,)={Qek[X,]|Q(c,) € Ker £}
={Qe[X,11Q(fi(c) = 0} = GxlS).

Hence we get (3).

The morphism obtained in this way is nothing but the extension of
Gy to X (by continuity) We use the same symbol G, for it. We say
that Gy is the classifying morphism of E (corresponding to the exact se-
quence (2)).

3. Construction of the isomorphism in Theorem A. Let X be
an irreducible algebraic prescheme over an algebraically closed field % and
E a quasi-coherent Ox-Module. Suppose there is an exact sequence (2)
which splits locally. Then we can construct the classifying morphism Gy:
X—G, -, for E as shown in §2. Let & be the sheaf of germs of
G m-n-sections of 7. & actually is a Module over G.m-»- The inverse
image of Module € by Gy is defined by

G* (d) = OxX G7(O, )GX_1(8> .

n,m—-—mn

We first construct an isomorphism:
(4) G (&)= E.

We follow the notations in the preceding sections, provided that the symbols
relative to U, are replaced by the corresponding ones relative to U with
a prime. For example, we write U, A’, M’ for U,, A,, M, and so on. In
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addition, a,; in this section, strictly speaking, should be written as 7(ay;)
with the restriction homomorphism 7: A——A’. The isomorphism (4) is
a collection of isomorphisms: I'(U', G¢*(€))—— M. We construct the iso-
morphism (4) on U’ in the following, assuming f=(a;);e-1,..,n for the con-
venience of notations. The rest are treated in exactly the same manner.
Let ¢’eM’'. Then ¢ is a linear combination of the line vectors a; (=1, :--, n)
with coefficients in A’, where a;=(a;, -, a:m). Let B;=(0,---,0,1,0,:--,0,
City***sCim-n) Where i=1,---,n. Then a, with 1=<{<n can be written as
linear combinations of B;;. We further have

LEMMA 2. For k=n+1,--,m also, a, are linear combinations of ;.

Proor. Let M, be the submodule of M’ generated by ay,--,a,. For
any k-valued point f we have

S ee) = flaw) f™ (B)+ -+ + f(ar) f™ (Bn)

Where f™ is defined as ™ in §2. Hence
ar—pfi— — AP, € R(A')™ .

Since M’ is a direct summand of A™, R(A'Y"N M’ equals R(A")M’'. Hence
we have

M@RAYM'=M'".

We therefore obtain M'=M, from the lemma of Nakayama. This com-
pletes the proof.
Let us now define R-homomorphisms e,?: R,—— R, by

eh(z)'(Xk(z)) =0 .

For each h=1,:--,n e,” corresponds to an element of I'(U,, T ), denoted
by e, again, by means of the isomorphism (1). Then &®,-.-, e, con-
stitute an R,-base for I'(U,T™). It may be called the “canonical” base.
We take 1= {1, ---,n}, which is actually decided by the way of choosing B.
Then Gx(U)cU,. We write &% for ¢,”G|U’ where GxU’ is the re-
striction of Gy onU’. Then &,Yel'(U', Gy{€)). Using Lemma 2, we can
find d,,---,d,€A’ such that

g = d1ﬁ1+ +den .
We define
Jorld) =d@e?+ - +d,8e, .

Then we have ju.(¢')el'(U’, Gs*(&)).
Let us go back to U and define jy(0) for € M by gluing jy.(7'(s)) where
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v’ is the restriction homomorphism M——M’. To do so, take f=
(@s41)s=1,m30 =1, m-1,ms1, SinCe the rest are treated in the same way. Suppose
b=det B& R(A). We write p= {1, -,m—1,n+1} as before. Let r,(resp. r,)
be the restriction homomorphism: I'(U,, 17) (resp. I'(U,, 1) —I'(U,NU,,
). Let &? (resp, &) be the image of ¢, (resp.e,*) by r, (resp. 7).
Then we have

(5) (&, ) 6,@) = (6, +o-, &, W) M.
We write v
C1,n+1
N=| 1., :
Q- Conir

Let U”"=U'NSpec A; and é,,“)=eh“)c;GX|U”, & =¢,"G4U"”. Then it
follows from (5) that
( 6) (gl(l), Y énu)) = (él(“)3 *tt En(p))tN'
Let oM. Let ¢’ be the restriction of ¢ on U’ and ¢” that on Spec A;.
We denote by §; the line vectors of the matrix §7(@s;)i_1...nsj-1....m. Define
d; by

0’, = C216\1-'_ e +dAn18An .

Then up to the restriction homomorphism, we have

(7) (durrda) = (dsy o, N
From (6), (7) we obtain
(8 ) d, Q&Y + - +d,R8,9 262\1®51(”) + e +¢2n®§n(”) .

Note that &, =&, |U"” for :=2,p. Then it follows from (8) that we can
get an element of I'(U, G¢*(€)) by gluing the pieces together. We write
it as jy(6¢). Then
(9) Joi M—I'(U, Gx*(€))
is an A-module isomorphism.
By the same reasoning as above we have the following lemma.
LEMMA 3. j, does not depend on the choice of a splitting.

LEMMA 4. These isomorphisms j, satisfy the condition of compatibility
with the restriction homomorphisms.

Proor. Let U’ be any open subset of U. We write A’, M’ for
I'(U’, Oy), I'(U’ E) respectively. A local splitting of (2) over U gives rise
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to isomorphisms
gov: MAEN=A™,
gor: M'@N' =A™,
We can deﬁne b', B: for gy in the same way as b, B, for g, respectively.
Let 7 be the restriction homomorphism: I'(U,, Oy)——I'(U, , O,). Then
B;=r"(B;). Hence d,=r(d,) where d, are defined for ¢, as d, for g,.
We can therefore conclude that j; (¢’) is the image by the restriction homo-
morphism of j,(¢) where ¢’ is that of o.
Thus j: U——>j, is the required sheaf isomorphism.
In conclusion we can state the

THEOREM. Let X be an irreducible algebraic prescheme over an alge-
braically closed field k. Let E be a quasi-coherent Oy-Module having an
exact sequence (2) which splits locally. Then there are a morphism Gy:
X——Gpm-n and an isomorphism: Gyi*(E)2ZE for some positive integer n
where & is the sheaf of germs of G, .,_.-sections of 17 .

(Hence E turns out to be locally free.)

Now let us prove Theorem A. It is the same in essence as the theorem
stated just above. There is only need of giving attention to some facts.
First we note that

G (€) =G (&),

since & is locally free and of finite rank. The isomorphism: G:*(&)=E
induces the one: V( N2 V(Gy (6’)) Secondly we have

V(GHE)=V(E)xq, X.

Hence we can obtain Theorem A.

4. Rational homotopy. We make the definition of rational homotopy
in the first half of this section and construct the rational homotopy in
Theorem B in the second one.

Let X, Y be k-preschemes where £ is an arbitrary field. Let k(T]
be the polynomial algebra over £ in one variable 7" and ¢ a k-valued point
of the k-scheme Spec %2[T']. Then ¢ induces an algebra homomorphism
t*: k[T]——>k. On the other hand % is included in I'(X, Oy) in the natural
way. The product of #* with this inclusion is a homomorphism: k[7]—
I'(X, Ox). This homomorphism induces a morphism #: X—— Spec k[T]
in the natural way. Now we write

) Z =X X gpeczSpec k[T].
Then there is a unique morphism #: X-—Z such that the diagram
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Spec k[T
SN
£ .
AN
Y | N
X ———— Z — Spec &
Y e
N X /

is commutative. Let ¢ (resp. # be the k-valued point of Spec 2[7T"] which
corresponds to the natural projection :

E[T] — k[TI/(T)=k
(resp. k[T —— k[T1/(1—T)=k).

As stated above, these k-valued points give rise to morphisms ¢, ¢t: X—Z
respectively. We can now define the rational homotopy as follows. Let us
consider morphisms f,, f;;: X——Y. Then a rational homotopy from f, to
f2 is by definition a morphism h: Z——Y such that f;=hot, for i=1,2.
We also say that f; is rationally homotopic to f,.

Let us turn to the problem of constructing the rational homotopy in
Theorem B. Let E be a quasi-coherent Oy-Module. E is supposed to be
a direct summand of a free Oy-Module of finite rank. Hence for some
positive integer 7 there are a quasi-coherent Ox;-Module E, and an iso-
morphism

(10) 0.0 E®E,=0;".
Let us consider another decomposition
(11) gs: E@EZEOXMI

where E, is an Ox-Module. Suppose X is an irreducible algebraic prescheme
with % algebraically closed. From the decompositions (10), (11) we obtain
the corresponding classifying morphisms G,, G,: X-—Gpm_n for some
integer 7. Let gx be the projection of Z=X x Spec £[7"] on the first factor
X. We set E,=q,*(E). Let U be an affine open set in X. We write
A, M, W tor I'(U, Oy), I'(U,E), ¢x*(U) respectively. Then W can be
identified with Spec (A®%[T]) and, moreover, gx|W corresponds to the
inclusion: ACA®#[T] given by a |——a®1 for acA. Hence there is
a natural isomorphism :

g: <E>|W(=<§X|W>*(E>) =(k[TI®M)
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where (E[T]® M)~ is the Op-Module associated to A ® k[7]-module
E[TI®M. We write the module ([T |QM by M, below. The decomposi-
tions give rise to those of the A-module A™:

(12) M@®N;=z A™ (1=1,2)
respectively. We further have the A®#%[7]-module decompositions
(13 M,OIHTIONZARKTI  (i=1,2)

from gives the inclusions : M,G (AQK[T]™. We denote them
by ¢.(W), g.,(W) respectively. We define (1—7)g,(W), (T)g,(W) by
1-T)g:(W)e=(1Q1—=T))g:(W)(a), (T)g:(W)(0)=(1&(T))g:(W)(0) for o€
M,. We set:

(14) gw =(1=T)g:.(W)D(T)g,(W).

gw induces a morphism “g,: E,|]W——0O,/". Since the affine ope nsets
W cover Z, we finally obtain a morphism ¢*: E,——O,/™. The image of
gw is a direct summand of (AQE[T'])*", as easily seen. Hence we can con-
struct a classifying morphism G,: Z—G,,;,_, by means of ¢*

Let U, be an affine open set defined in §1. Hence U, is.

We denote by R, R’ polynomial rings 2[X,;]i=1 .mjet,m-n> BLY ie)iz1,ms
4—1..2m—n Tespectively. Consider the epimorphisms s;, s;: R’--~—R that are

defined by
$:(Ye)=Xs if 1ks<m—n, otherwise (Yy,;)=0
$Yi) =X pom I m+1Zk<2m—n, otherwise s,(Yy)=0.

Let 2 be a subset with card. z=n of {1,---,m}. Add m to each element
of 2 Then we have a subset of {1,:--,2m}. We write it as 2+m. The
meaning of s, 5,¥ is evident. These epimorphisms induce morphisms:
U—U,, U—>U’,,., respectively where U,, U, are the affine open sets
in Gy-n> Griomn defined in §1 respectively. Gluing these morphisms, we
obtain two closed immersions G, . »GGrin-rn- We denote them by s, s,
again.
LEMMA 5. s, s, are rationally homotopic to each other.

ProOOF. Beginning with the epimorphism s: R'—— R®*Zk[T] that is
defined by s(Y,,)=X, QT if 1<ksm—n, s(Y)=X; 1 n®A-=T) if m+
1<k<2m—n, we can construct a morphism: X X gpecxOpec k[T]—Y
exactly as above. This morphism is the required rational homotopy.

LEMMA 6. The diagram:
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/Gn,m—n

G, /,// \ !

AN

N
T G,

4 Ny
X =>XxSpec k[T] — G,om-n_
A /

has the commutative upper and lower triangles.

Proor. Let f be a k-valued point of X. Then ¢;of are k-valued points
of Z where i=1,2. We write x, 2, for the closed points corresponding to
f, tiof respectively. We follow the notations in the earlier part of this
section. Suppose xeU. Then z,eW. To ¢f there correspond %-homo-
morphisms: A®E[T]—— %, which are denoted by f, respectively. Take
arbitrary ¢€ M and Pek[T]. Then from we obtain

Fim (gwlo @ P(T) = (£ (0:(W)(@)(P(0), -+-,0)
Fi (gwlo@P(T)) = (0, -, £ (g:(W)(a)) P(1))

where f, is fory in §2. We therefore have
(15) Groti(x) = 5;0Gy(x)

with x ranging over the closed points of X. Since the set of closed points
is dense, holds for any point x of X. This completes the proof.
It is seen from the above two lemmas that s,°G, and s,°G, are rationally

homotopic. Hence we get B.

5. B, and B:;. In this section we construct the direct limit of Gras-
smannian k-schemes G, , (n=1,2,---) in the category of k-schemes and then
define the classifying %-space B;,. We shall further prove a proposition.

Consider the polynomial ring £[X, -+, X,] in n variables. We use the
notation A, for it. Substituting the zero for X,,;, we get a homomorphism
lnntr: Appy—A,. It induces a closed immersion j,,.;: Spec A,—
Spec A, We further put i, m=tm 1m* " ‘Inin-1> Jum=Jm-1,m* """ Jnm-1 1OT
integers m with n<m. Thus we get an inverse system (A4,,7,,) of rings
and a direct system (Spec A,,j..) of affine schemes. The direct limit of
the latter in the category of schemes is equal to Spec lim inv. A,.

Consider the Grassmannian k-scheme G, ,. Take arbitrary 1€/ and
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set U,=U,. We write 4, for 4 from now on. We define an element
ped, by p=iU{2n+1,---,2m—1}. Instead of U, we write U,. Then
I'U,, G,..) can be viewed as A,*. Hence the system U, with the natural
immersions can be identified with a cofinal subsystem of (Spec A,, jum)-
We denote the direct limit by V,,. Then we have the natural closed im-
mersions j,: U,— V,,. We want to glue V,, where n ranges over
the positive integers and 2 over 4,. Let 4, ped,. We put d=det M and
d'=det M (see §1 for M and M'). If we begin with U,, then we have
another direct system: U/ —— U, — U, —---. It is readily checked
that U, NU,,=(U,)e=Ul.)e and that lim dir. (U,)e=(V, e lim dir. (Uy)a
=(V,. Jo. The morphism of the direct systems:

(Ve ——— (U
o

—>

| |
(U)o ——— (U)o

gives rise to an isomorphism: (V,,)s——(V, Jo. These isomorphisms
satisfy the condition of compatibility. Thus we can obtain a k-prescheme
V.. In addition V, is contained in V, as an open sub-prescheme for

m>n. We define B,= U V Then B, can be viewed as a k-scheme.

We can further consider G,,n as a sub- scheme of B’ in the natural way,
so that we have a sequence of ‘sub-schemes: - CGLnCG,qnC - CB.
We define B, to be the union of G,, (n=1,2,---). Then there is a natural
injection #: B,—— B?,. Using =, we introduce the structure of a geo-
metrical k-space into B,. In other words the structure sheaf of B, is
defined to be the inverse image by = of that of B’,. =z turns out to be a
morphism,

ProPOSITION 3. B, is isomorphic to the direct limit of G, in the
category of geometrical k-spaces.

Proor. We denote by B the direct limit of G,,. Then there is a
morphism 7: B——B,. Let z€B,. Then z€G,, for some n. To x there
corresponds a prime ideal I, in A,.. We write I for the inverse image of
I, by the natural morphism: lim inv. A,——A,.. Then the proposition
follows from the fact: O, . is isomorphic to (lim inv. A,),=lim inv. Og_, ..

PropoSITION 4. Let X be a quasi-compact reduced k-prescheme and
Gy a k-morphism: X——B,. .Then Gy decomposes into X——G, .G B,
for some n. ’
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Proor. It suffices to prove G(X(k)CG, , for some n. (See I, 5.2.2,
[I]). Suppose the contrary. Then there are closed points z, (n=1,2,--)
of X such that 20€Griini1—Gnn, where z.=Gylx,). We set S={z.|n=
1,2,---}. Since x, are closed in B, they are so in B, too. Let S be any
subset of S. Then $'NG,,» are closed in G,,,, for any m. Hence S is a
closed discrete subset in a quasi-compact set G¢(X). Therefore it is finite.
This contradiction proves the proposition.

6. Proof of the main theorem. Let X be an irreducible noetherian
scheme over an algebraically closed field £ A coherent OxModule will be
called projective if it is a direct summand of a free O,-Module of finite
rank. Hence a projective OxModule is locally free (see §3). Let KP(X)
be the Grothendieck group of classes of projective Oy-Modules. Then each
€€ KP(X) can be written in the form: [E]—/ where [E] is the class of a
projective Ox-Module E and [ a positive integer. For E there is a coherent
Ox-Module F such that EQF=0," for some positive integer m. Hence
we can construct a classifying morphism G;: X——G, ... by the use of
this direct sum decomposition, where n is the rank of E. We restrict
ourselves to the case where 22=m from now on. We view Gy as a mor-
phism: X——G,, ,x({—n), and further as one: X—— B,x({—n). We
define ¢(&) to be the rational homotopy class €[X, B, x Z],., containing Gy.

LemMA 7. ¢(&) is uniquely determined by é.

Proor. First we replace E, F, m by E®OL, F®O*, m+2k respec-
tively. Hence [ must be replaced by I+% In this case we easily see that
Gy does not change as a morphism: X——B,. Consequently ¢(&) also
does so. '

Secondly suppose we have E@F’= Oy also for some coherent F.
Using this decomposition, we construct a classifying morphism G,. Then
Gy is rationally homotopic to Gy by means of Theorem B. Hence ¢(&)
does not change. "

Finally let [E']—/" be any other form of expressing £&. Then EQO =
E'®@05" for some positive integers k, k. Suppose E'@F' =0Oy"" for some
coherent F’ and some positive integer m'. Let G, be the classifying mor-
phism obtained from this decomposition. By the above first and second
steps we see that G, is rationally homotopic to Gy. Hence ¢(£) does not
change, even though we start by é=[E’]—. This completes the proof of
Lemma 7. -

LEMMA 8. ¢: KP(X)——[X, B, X Z),a, is surjective.
ProoF. Let [f] be the rational homotopy class €[X, B, X Z].,; containing
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a morphism f: X—— B, x[ where leZ. Then f{X)CG,,, for some positive
integer 7.

¢ sends f*(E)—(—n) to [f]. This completes the proof of the subjec-
tivity of ¢.

From now on suppose further X is non-singular quasi-projective. Then
we have the following lemma.

LEMMA 9. Let Y be a k-scheme of the same kind as X. Let f, g be mor-
phisms: X——Y which are rationally homotopic. Then f',q': K(Y)—
K(X) coincide.

Proor. Let h: XxSpec 2[T]——Y be a rational homotopy from f to
g. Then we have f=hot; and g=hot; (for #, ¢; see §4). Let p be the
projection: X Spec k[T]——X. Then peot{, pot; are the identity. On the
other hand p': K(X)—— K(XxSpec k[T]) is also an isomorphism. For
this fact see [2] Hence (£)=(#). We therefore have

f/ —_ (t{)lohl — (té)'o}l' =gq'.

This completes the proof.

Let [f]€[X, By x Z].s: be an arbitrary class with AAX)CG, ,x![ for some
n, . Let E be the universal bundle over G, ,. Then it is easily seen from
the above lemma that

f1(T2(E)) = (l—n)

is uniquely determined by the class [f]. We write ¢([f]) for it. Then ¢
can be viewed as a map of [X, B,xZ] into K(X).

Let ¢ be the natural homomorphism: KP(X)— K(X), i.e. the one
sending [E] to 7x(E) for a projective Oy-Module E. Then we have the
commutative triangle:

@
KP(X) — [X, By XZ]wu

!
Kx)¥
as will be easily checked. Hence we have obtained the main theorem.
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