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Let M and N be integers with N>0 and let a_{M+1} , \cdots,a_{M+N} be any real
or complex numbers. Define

S(t)= \sum_{M<n\leqq M+N}a_{n}e(nt)

with the abbreviation e(t)=e^{2\pi it} and set

Z= \sum_{M<n\leq M+N}|a_{n}|^{2} .

Let x_{1} , \cdots , x_{R}(R\geqq 1) be any fixed real numbers which satisfy the con-
dition

\downarrow|x_{u}-x_{v}||\geqq\delta when u\neq v ,

where ||x|| denotes the absolute distance between x and the nearest integer
to it, and 0<\delta\leqq 1/2 .

In a recent paper [1] E. Bombieri and H. Davenport proved that

(1 ) \sum_{r=1}^{R}|S(x,)|^{2}\leqq\{

(N^{1_{J}’2}+\delta^{-1./2})^{2}Z

2 max (N, \delta^{-1})Z

and essentially the best possible results of the type (1) have also been obtained
by them in [2]. On the other hand, P. X. Gallagher [3] has given a very
simple and ingenious proof of the inequality

(2) \sum_{r=1}^{R}|S(x_{l}.)|^{2}\leqq(\pi N+\delta^{-1})Z ,

which is slightly weaker than, but as powerful as, (1).
Now, our principal objective in this paper is to replace in these inequali-

ties the sum S(t) by the ‘maximal function’ S^{*}(t) defined by

S^{*}(t)= \sup_{1\leqq n\leqq N}|\sum_{M<m<M+n}a_{m}e(mt)| .

Indeed, we can show that for N\geqq 2

(3)
,
\sum_{=1}^{R}(S^{*}(x,))^{2}\leqq B(N log N+\delta^{-1}\log^{2}N)Z .
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where, and throughout in what follows, B denotes an unspecified, positive
absolute constant.

However, we should like to present our main result in a form slightly
more general than (3).

1. Notations.

For the sake of simplicity we shall adopt vector notations of dimension
s, s being a fixed positive integer. Thus, if

a=(a_{1}, \cdots, a_{s})

is an s-dimensional integral vector, i.e. a vector with integer components
a_{f}(1\leqq j\leqq s) , we set

2^{a}=(2^{a_{1 }},\cdots, 2^{a_{g}}) ,

and if b=(b_{1}, \cdots, b_{s}) is another s-dimensional integral vector, we define
ab=(a_{1}b_{1}, \cdots, a_{s}b_{s}) ;

also, we write
a\leqq b or b\geqq a

when
a_{f}\leqq b_{f} for j=1, \cdots , s ,

and write

a<b or b>a
when

a_{f}<b_{j} for j=1, \cdots , s .
We shall often identify a scalar a with the vector (a, \cdots, a) ; in particular,

0=(0, \cdots, 0) , 1=(1, \cdots, 1) .
Now, let M and N be s-dimensional integral vectors with N>0 . Let

the a_{M+n}(1\leqq n\leqq N) be any real or complex numbers and define

S(t)= \sum_{M<n\leqq M+N}a_{n}e(<n, t>),

where< n, t>denotes the inner product of the integral vector n=(n_{1}, \cdots, n,)

and the vector t=(t_{1}, \cdots, t_{s}) with real components t_{f}(1\leqq j\leqq s) , namely
\langle n, t\rangle=n_{1}t_{1}+\cdots n_{s}t_{s} .

We set as before
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Z= \sum_{M<n\leqq M+N}|a_{n}|^{2}

Let
x_{r}=(x_{r,1}, \cdots,x_{r,s}) (r=1, \cdots, R)

be any fixed R vectors with real components x_{r,f}(1\leqq j\leqq s) such that
||x_{u,f}-x_{v,f}||\geqq\delta_{f} when u\neq v(1\leqq j\leqq s) ,

where 0<\delta_{f}\leqq 1/2(1\leqq j\leqq s) ; we put

\delta=(\delta_{1}, \cdots, \delta_{s})

and write
\delta^{-1}=(\delta_{1}^{-1_{ }},\cdots, \delta_{s}^{-1}) .

2. A theorem of E. Hlawka.

For any two s-dimensional vectors

\xi=(\xi_{1}, \cdots,\xi_{s}) and \eta=(\eta_{1}, \cdots, \eta_{s})

with real components, we set

C_{s}(\xi, \eta)=\prod_{f=1}^{s}(\xi_{f}+\eta_{j})(

In his very interesting paper [4] E. Hlawka proved substantially the
following result.

THEOREM 1. Under the notations and conditions described above we
have

\sum_{r=1}^{R}|S(x_{r})|^{2}\leqq C_{s}(\pi N, \delta^{-1})Zt

This is just an s-dimensional version of the inequality (2) of Gallagher’s;
we note that similar generalizations have also been given by several writers.

3. The main theorem.
We are now going to replace the sum S(t) in Theorem 1 by the

‘maximal function’ S^{*}(t) defined by

S^{*}(t)= \sup_{1\leqq n\leqq N}|\sum_{M<m\leq M+n}a_{m}e(\langle m, t\rangle)|

We shall prove the following

THEOREM 2. Let N and L be s-dimensional integral vectors such that
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N\geqq 2 and 2^{L-1}<N\leqq 2^{L} .
Then we have

\sum_{r=1}^{R}(S^{*}(x_{r}))^{2}\leqq C_{s}(L, 1)C_{s}(\pi 2^{L+1}, (L+1)\delta^{-1})Z .

It is clear that for s=1 our Theorem 2 reduces to an inequality of the
from (3).

In order to prove Theorem 2 we set

a_{m}--0 for M+N<m\leqq M+2^{L}

and put for s-dimensional integral vectors k, l with 1\leqq k\leqq 2^{l} , 0\leqq l\leqq L ,

S_{k,l}(t)= \sum_{M+(k-1)2^{L-l}<m\leq M+k2^{L-l}}a_{m}e(\langle m, t\rangle)
.

If we write

S^{*}(t)= \sup_{1\leqq k\leq 2’}|S_{k,l}(t)| ,

then we easily find that

S^{*}(t) \leqq\sum_{0\leqq l\leqq L}S_{l}^{*}(t) ,

on taking account of the dyadic deve1’o^{j}pment of each component of an in-
tegral vector n, 1\leqq n\leqq N. Therefore, Cauchy’s inequality gives

(S^{*}(t))^{2} \leqq C_{s}(L, 1)\sum_{0\leq l\leqq L}(S_{l}^{*}(t))^{2}

and so

\sum_{r=1}^{R}(S^{*}(x,.))^{2}\leqq C_{s}(L, 1)\sum_{0\leq l\leqq L}\sum_{r=1}^{R}(S_{l}^{*}(x_{r}))^{2} ,

where

\sum_{rarrow 1}^{R}(S_{l}^{*}(x_{r}))^{2}\leqq\sum_{1\leqq k\leq 2}\sum_{r=1}^{R}|S_{k,l}(x_{r})|^{2}-l

\leqq\sum_{1\leq k\leq 2^{l}}C_{s}(\pi 2^{L-l}, \delta^{-1})\sum_{M+(k-1)2^{L-l}<m\leq M+k2^{\Gamma_{\ell}-l}}|a_{m}|^{2}

=C_{s}( \pi 2^{L-l}, \delta^{-1})\sum_{M<m\leqq M+N}|a_{m}|^{2}

by Theorem 1. Hence we obtain the result in Theorem 2, on noticing that

\sum_{0\leqq l\leqq L}C_{s}(\pi 2^{L-l}, \delta^{-1})=C_{s}(\pi(2^{L+1}-1) , (L+1)\delta^{-1})\downarrow

This completes the proof of Theorem 2.
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4. An application.

In this and the next sections we shall restrict ourselves to the simplest
case of s=1 . Thus, as before, we define

S(t)= \sum_{M<n\leq M+N}a_{n}e(nt)

and set

Z= \sum_{M<n\leq M+N}|a_{n}|^{2}

where M and N are integers with N>0 and the a_{n} are any complex num-
bers ; also, we put

S^{*}(t)= \sup_{1\leqq n\leqq N}|S_{n}(t)|

with

S_{n}(t)= \sum_{\lrcorner}a_{m}e(mt)M<m\leqq 1f+n .

We shall assume throughout that N\geqq 2 .
If

0<x_{1}<x_{2}<\cdots<x_{R}=1

are the Farey fractions of order Q, Q\geqq 1 , then

R= \frac{3}{\pi^{2}}Q^{2}+O (.Qlog2Q)

and we may take

\delta=\min ( \frac{1}{2} , \frac{1}{Q^{2}}).
It follows from (3) that

(4) \sum_{q\leqq Q} (a,q)=’ 1 \sum_{a=1}^{q}(S^{*}(\frac{a}{q}))^{2}\leqq B(N\log N+Q^{2}\log^{2}N)Z .

If we write for integers 1\leqq n\leqq N, q\geqq 1 and ,
h

(5) Z_{n}(q, h)= \sum_{M<m\leq M+n}a_{m} ,
m\equiv h(mod q)

then we have (cf. [5])

(a,q)=1 \sum_{a=1}^{q}|S_{n}(\frac{a}{q})|^{2}=q\sum_{h=1}^{q}|\sum_{d|q}\frac{\mu(d)}{d}Z_{n}(\frac{q}{d}.. , h)|^{2} ,
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where \mu(d) is the M\"obius function.
We define

W(q, h)= \sup_{1}|1\leqq n\leqq N\sum_{a|q}\frac{\mu(d)}{d}Z_{n}(\frac{q}{d}, h)| .

The following theorem can be proved by the method employed in the previ-
ous section to establish Theorem 2, though the result obtained is not a
direct consequence of the inequality (4).

THEOREM 3. We have

\sum_{q\leqq Q}q\sum_{h=1}^{q}(W(q, h))^{2}\leqq B(N\log N+Q^{2} \log 2 N)Z .

Let L be the positive integer for which
2^{L-1}<N\leqq 2^{L}

Setting

a_{m}=0 for M+N<m\leqq+2^{L} ,

we define Z_{n}(q, h) by (5) for integers 1\leqq n\leqq 2^{L}, q\geqq 1 and h. Put, further,
for integers k, l with 1\leqq k\leqq 2^{l} , 0\leqq l\leqq L ,

Z_{k,l}(q, h)= \sum a_{m}m=M+(\begin{array}{l}k-1( )\end{array})2^{L-l}+1m\equiv hM+k2^{L-l}’.

and write

W_{l}(q, h)= \sup_{1\leqq k\leqq 2^{l}}|\sum_{\iota l|q}\frac{\mu(d)}{d}Z_{k,l}(\frac{q}{d}, h)| .

Then we have

W(q, h) \leqq\sum_{l=0}^{L}W_{l}(q, h)

so that

(W(q, h))^{2} \leqq(L+1)\sum_{l=0}^{L}(W_{l}(q, h))^{2}

It follows from this that

\sum_{q\leqq Q}q\sum_{h=1}^{q}(W(q, h))^{2}\leqq(L+1)\sum_{l=0}^{L}\sum_{q\leqq Q}q\sum_{h=1}^{q}(W_{l}(q, h))^{2} ,

where
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\sum_{q}q\sum_{h}(W_{l}(q, h))^{2}\leqq\sum_{k=1}^{2^{l}}\sum_{q}q\sum_{h}|\sum_{\prime l|q}\frac{\mu(d)}{d}Z_{k,l}(\frac{q}{d}, h)|^{2}

= \sum_{k=1}^{2^{l}}\sum_{q}\sum_{(a,q)=1}|S_{k,l}(\frac{a}{q})|^{2}

with

S_{k,l}(t)= \sum_{m=M+(k-1)2^{L-l_{+1}}}^{M+k2^{L-l}}a_{m}e(mt) .

Hence we obtain

\sum_{q}q\sum_{h}(W_{l}(q, h))^{2}\leqq\sum_{k=1}^{2^{l}}(\pi 2^{L-l}+Q^{2})\sum_{m=M+(k-1)2^{L-l_{+1}}}^{M+k2^{L-l}}|a_{m}|^{2}

=(\pi 2^{L-l}+Q^{2})Z

by (2), and so

\sum_{q\leqq Q}q\sum_{h=1}^{q}(W(q, h))^{2}\leqq(L+1)(\pi 2^{L+1}+(L+1)Q^{2})Z

This proves Theorem 3, since

L+1< \frac{3}{1og2log}N for N\geqq 2 .

5. A Final remark.

Again, let M and N be integers with N>0 and let a_{M^{1}+1} , \cdots , a_{M+N} be
any complex numbers. Put for each residue character \chi (mod q), q\geqq 1 ,

S( \chi)=\sum_{M<n\leqq M+N}a_{n}\chi(n)

and define

S^{*}(X)= \sup_{1\leqq n\leqq N}|\sum_{M<m\leqq M+n}a_{m}\chi(m)| .

Using the inequality (cf. [3 ; (5)])

\frac{1}{\phi(q)}.\sum_{\chi(mod q)}|S(\chi)|^{2}\leqq\frac{1}{q} \sum_{a=1 (a,q)=1}^{q}|S(\frac{a}{q})|^{2}

where \phi(q) is the Euler totient function and \sum_{\chi} indicates that the sum is
taken over primitive characters \chi only, we can deduce from (2) that with
a positive absolute constant B

(6) \sum_{q\leqq Q}\frac{q}{\phi(q)}\sum_{\chi(mod q)}(S^{*}(\chi))^{2}\leqq B (NlogN+Q^{2}\log^{2}N) Z ,
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provided N\geqq 2 .
We write as usual

\psi(x, q, a)=
\sum_{n\equiv a^{n\leqq x}(mod q)},\Lambda(n)

,

where \Lambda(n)=\log p if n is a power of the prime p and =0 otherwise. An
immediate consequence of J(6) is that for all real x>1 and any fixed A>0
we have

\backslash \backslash

\sum_{q\leqq x(1ogx)^{-}}\sup_{y\leqq x}\sum_{-}^{q}(Aa--1\frac{y}{\phi(q)}\psi(y, q, a)-)^{2}\leqq B_{A}\frac{x^{2}}{(\log x)^{A-3}}(a,q)-1 ,

B_{A}>0 being a constant depending at most on A. However, our method
used in the proof of (3), combined with the method of Gallagher [3], will
furnish a slightly stronger result than this inequality, namely

(7)
\sum_{q\leqq x(1ogx)^{-A}} (a,q)= \sum_{a=1}^{q}, \sup_{y\leqq x,1}(\psi(y, q, a)-\frac{y}{\phi(q)})^{2}\leqq B_{A^{\frac{x^{2}}{(\log x)^{A-3}}}\tau}

This last inequality may have a consequence on the magnitude in the
mean of the least prime number in an arithmetic progression of. integers.
Thus, if we denote by p(q, a) the least prime p\equiv a (mod q), (a, q)=1 , then
it follows from.(7) that

(8) \sum_{q\leqq x(1ogx)^{-A}} (’ \iota.q)=’ 1\sum_{a=1}^{q}(\frac{\min(p(q,a),x)}{\phi(q)})^{2}\leqq B_{A}\frac{x^{2}}{(\log x)^{A-3}}

for any A>0 and some B_{A}>0 .
Assume now that A>3 . Let b be any fixed number satisfying 0<b<1 .

It then follows from (8) that the number of positive integers q\leqq x(\log x)^{-A}

such that one has
p(q, a)\geqq x

for more than b\phi(q) incongruent values of a (mod q) with (a, q)=1 , does
not exceed

\frac{B_{A}}{b}\frac{x}{(\log x)^{2A-3}}=o(\frac{x}{(\log x)^{A}}) (xarrow\infty) .

(The exponent 2A-3 of log x could be improved to 2A-1 in the denomi-
nator on the left side of this inequality, if use were made of [3; Theorem
3] instead of (8); however, the present result will suffice for our purposes).
Hence, if we possibly remove all such integers q from the interval

(9) \frac{x}{(\log x)^{A+}*}<q\leqq\frac{x}{(\log x)^{A}} ,
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\epsilon being an arbitrary but fixed real number with 0<\epsilon<(A-3)/2 , then the
number of remaining integers q in (9) for which

p(q, a)\geqq\phi(q) (logq)^{A}

holds for more than (1– b) c\phi(q) incongruent a’s (mod q) with (a,.q)=1, where
c is any number satisfying 0<c<1 , is not greater than

\frac{B_{A}}{(1-b)c}\frac{x}{(\log x)^{2A-3-2\epsilon}}=o(\frac{x}{(\log x)^{A}}) (xarrow\infty)

by (8) again.
Therefore, for all but possibly o(x(\log x)^{-A}) positive integers q\leqq x(\log x)^{-A}

one must have

p(q, a)<\phi(q) (logq)^{A}

for at least (1-b)(1-c)\phi(q) incongruent a’ s (modq) with (a, q)=1 . Rewriting
c for (1-b)(1-c), we thus have proved the following

THEOREM 4. Let A be an arbitrary real number greater than 3 and
c be any number with 0<c<1 . Then, for almost all positive integers q
we have

p(q, a)<\phi(q)(\log q)^{A}

for at least c\phi(q) incongruent values of a (mod q) with (a, q)=1 .
Here, ‘almost all’ means ‘all but possibly a set of density zero’.
We note that a celebrated theorem due to Ju. V. \cdot Linnik states that

there exists an absolute constant C>0 such that
p(q, a)<q^{c}

holds true for all q>1 and all a with (a, q)=1 (cf. e.g. [6; Chap. X]).
NOTE. The results of the present paper have been announced partly in

the Seminar on Modern Methods in Number Theory, August 30-September
4, 1971, held at the Institute of Statistical Mathematics, Tokyo.

Department of Mathematics,
Okayama University
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