The maximal large sieve

Dedicated to Professor Yoshie Katsurada on the occasion
of her sixtieth anniversary

By Sabur6é UcniyAmA

Let M and N be integers with N>0 and let ay.,, ,ay+y be any real
or complex numbers. Define

St = X a.ent

MInIM+N

with the abbreviation é(t)zezm and set
L= a.)?.

MInsSM+N

Let x;,+-,x; (R=1) be any fixed real numbers which satisfy the con-

dition v
|z, —2,|| =0 when u+#wv,

where ||z| denotes the absolute distance between x and the nearest integer
to it, and 0<6<1/2. |

In a recent paper E. Bombieri and H. Davenport proved that
( Nz 5~1/2)2 7

(1) 5 IS (@) <
7=l 2max (N, 6 1Z

and essentially the best possible results of the type (1) have also been obtained
by them in [2]. On the other hand, P. X. Gallagher has given a very

simple and ingenious proof of the inequality
R .

(2) 2 S ) =(aN+d)Z,
r=1

which is slightly weaker than, but as powerful as, (1)..
Now, our principal objective in this paper is to replace in these inequali-
ties the sum S(#) by the ‘maximal function’ S*(¢) defined by

S*@)=sup | X a.elmt)].

1SnEN M<m<M+n

Indeed, we can show thaf for Nng

(3) % (S*(x,.))ng(N log N+3 log® N)Z,

r=1
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where, and throughout in What follows, B denotes an unspecified, positive
absolute constant. ‘

‘However, we should like to present our main result in a form slightly
more general than (3).

1. Notations.

For the sake of simplicity we shall adopt vector notations of dimension
s, s being a fixed positive integer. Thus, if

a=(a, ,a,

is an s-dimensional integral vector, i.e. a vector with integer components
a; (1=<j<s), we set

2% = (2613 RS 2%)9
and if b=(b,,--+,b,) is another s-dimensional integral vector, we define

ab = (a;bl s "%y aaba):;

also, we write

when

a;<b; for j=1,.-,s,
and write

a<b or b>a
when

a;<b; for j=1,--s
We shall often identify a scalar a with the vector (q, --+, a); in particular,
O=(Os"'70)3 1=(1:"'11)'

Now, let M and N be s-dimensional integral vectors with N>0. Let
the ay., (1£7n<N) be any real or complex numbers and define

SH= X ae(<nt>),

MInsM+N

where <n, t> denotes the inner product of the integral vector n=(n,, -+, n,)
and the vector t=(¢, -+, ¢,) with real components #; (1<j<s), namely

{n, t)y = mty+ -+ ngt, .

We set as before
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Z= % lal.
MInsM+N
Let
Z, =1, x,,)  (r=1,-+,R)

be any fixed R vectors with real components z,; (1=j=s) such that
2w ;—20 5l 20;  when w#v (1=j=5),
where 0<9,<1/2 (1<5<s); we put
- - 8= (8, -, 0,)
and write

5-1 = (5;19 "ty 5;1) .

2. A theorem of E. Hlawka.

For any two s-dimensional vectors

$=(El>""53) and 0=(01,"‘,773)

with real components, we set

C.(6, )= jIle &5+ - |
In his very interesting paper E. Hlawka proved substantially the
following result.

THEOREM 1. Under the notations and conditions described above we
have

% 1S(@)PEC.l=N, 67)Z.

This is just an s-dimensional version of the inequality (2) of Gallagher’s;
we note that similar generalizations have also been given by several writers.

3. The main theorem.

We are now going to replace the sum S(#) in by the

‘maximal function’ S*(¢) defined by

S*¥@)= sup | 2 a.e({m, 1)) .

1SnEN M<msM+n
We shall prove the following

THEOREM 2. Let N and L be s-dimensional integral vectors such that.
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Nz2 and 2F'<Ng2°.

Then we have

3 (5*@) S CUL 1 C, (2257, (L+1)57) Z.

r=1

It is clear that for s=1 our reduces to an inequality of the
from (3). | :

In order to prove we set , :
a, =0 for M+ N<mZM+2*

and put for s-dimensional integral vectors %, [ with 1=k<2%, ogI<L,
Si(t) = n ae({m,t)).

M+ (h-12E Lcmgmtr2l-t
If we write

S*(@) = sup [S:.(8),

1sks2’

then we easily find that
S*H=< 2 820,

0sIsL

. . i .
on taking account of the dyadic development of each component of an in-
tegral vector n, 1<n<N. Therefore, Cauchy’s inequality gives

(s*@)'scLy ()

0sisL
and so
R 2 R
% (S*(@) = CIL 1) T T (SH()?,
pe=1 08IsL r=1
where
R
2 (@) £ 53 Sl
r=1 12452 =1
= C,(2%7%,07Y) hN ||
1sks2l M+E-025 Lemgarrat-?
=Cy(n257%,07Y) 2 |aa)?
M<msM+N

by [Theorem 1. Hence we obtain the result in on noticing that
> Cy(x25%, 67 = C, (x(251—1), (L+1)8™

0SIsL ) )

This completes ‘the proof of
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4. An application.

In this and the next sections we shall restrict ourselves to the simplest
case of s=1. Thus, as before, we define

SH= 3 aen)

MIng M+N

and set

Z= Z Ianlz’

MInsM+N

where M and N are integers with N>0 and the a, are any complex num-
bers ; also, we put

S*(#)= sup |S,(2)l

I1snsN
with |
S.(t)= 2 a,elms).

ML<msM+n

We shall assume throughout that N>2.
I

< <a,< {xR-= 1
are the Farey fractions of order Q, Q=1, then
R=-20*+0(Qlog 2Q)
T
and we may take
0 = min 1 , 1 .
2

It follows from (3) that

(4) ) (S*(i)) < B(Nlog N+ Q log* N)Z.
q=Q a=1 q
(¢,9)=1
If we write for integers 11§n§N, g=1 and _'h
(5) Z,(g,h)= X  aa.,
M<msEM+n
m=h(mod q)

then we have (cf. [5])

S(i>z 2
"\ g

gia( g

‘g
=th= 7

1
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where p(d) is the Mobius function.

.../ Ne define . o
h) = #d) (g 4
W(q )=sup |2, = (d

1snsN

The following theorem can be proved‘by the method employed in the previ-
ous section to establish though the result obtained is not a

direct consequence of the inequality (4).
THEOREM 3. We have '
a3 Wi, >> <B(NlogN+Q210g N)Z.
qsQ h=1
Let L be the positive 1nteger for'-: Wthh
2N KL 28,
Setting o
’ a,=0 - for M+N<msg +2%,
we define Z,(q, h) by (5) for integers 1=<n=<2% ¢=1 and h. Put, further,
for integers %,/ with 1<k<2% 0<I/<L, '
M+r2l—?

Zigh)= X% A 5

m=M+(x-1)2E 141
m=h (mod q)

and write

W.(q, h) = sup

15/:52’

RS )

Then we have

Wig, S 2 Wilg, h)

so that

~

=0

(Wig b))’ (L+1)% (Wilg h)*.
It follows from this that ' »
D) (Wi b §<L+1>i a3 (Wilah)',

=Q A=l T 1=0gqgx@

1D

1

where
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2! 2

Se% (Wigh)'s L Den|s 49 7, (4 h

q h k=1 q h |dlg d B d
2! g 2

= Z S/c,z(’g—)
k=1 q (a,g)=1 q
with
| M+r2l-l
S.(2) = 2 ane(mt).

m=M+E-1)2L- 111
Hence we obtain
Ml

§Q§<Wz(q, )) éé(ﬂzlﬁz‘i‘QZ) Z Iamlz" o

m=M+(k-12E" 141
= (25 4+ Q) Z
by (2), and so
% g 3 (Wig b)) S (L+1) (2 +(L+ Q) Z.

a4sQ k=1

This proves [Theorem 3, since

L+1<13 log N for N=2.

og?2
5. A Final remark.
Again, let M and N be integers with N>0 and let auu,, -+, aysn be

any complex numbers. Put for each residue character X (mod q), ¢=1,

SA)= X alXn

MInsM+N

and define
S*X)=sup | X a,i(m).

1snSN M<msM+n

Using the inequality (cf. [3; (5)])

Loy swps L
q

$(9) oo
where ¢(g) is the Euler totient function and };, indicates that the sum is

taken over primitive characters X only, we can deduce from (2) that with
a positive absolute constant B ‘ ' T

(6) > -9 ¥ (S*®)'sBNlog N+Q'log' N)Z,
ase ¢(q) r(modg
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provided N=2.
We write as usual

\”(JL’, q, a) = h) /1(72) >

nsx
nsa:('mod Q)

where A(n)=logp if n is a power of the prime p and =0 otherwise. An
immediate consequence of ( ) is that for all real x>1 and any fixed A>0
we have \

‘ 2

_ oy \ <B x

su g a)———| =S by———,
qu(lozg:w) 4 3’55 (“%1 1<¢(y 7 ) ¢(Q)) ! (log x)A~3

B,>0 being a constant depending at most on A. However, our method

used in the proof of (3), combined with the method of Gallagher [3], will

furnish a slightly stronger result than this inequality, namely
2

q 2
(7 > % sup(w(y,q,a)————?i—> <B,_ & __.
) gsz(logz)~ 4( Aoy VE é(q) ! (log x)4~*

This last inequality may have a consequénce on the magnitude in the
mean of the least prime number in an arithmetic progression of integers.
- Thus, if we denote by p(q, a) the least prime p=a (mod q), (a, ¢)=1, then
it follows from (7) that

&, [ min (p(g, a), x) \ xz’
8 <B,—%
&) IO s b e

(a.q)=1

for any A>0 and some B,>0. : '

Assume now that A>3. Let b be any fixed number satisfying 0<b<1
It then follows from (8) that the number of positive integers ¢=x(log x)™4
such that one has

plgazx

for more than b¢(q) incongruent valués of a (mod q) with (a,¢)=1, does
not exceed

B4 d = o( x > (x—00).

b (log x)p43 (log x)*
(The exponent 2A—3 of log « could be improved to 2A—1 in the denomi-
nator on the left side of this inequality, if use were made of [3; Theorem
3] .instead of (8); however, the present result will suffice for our purposes).
Hence, if we possibly remove all such integers g from the interval

(9) L O ..

(log x)*** (log x)*
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¢ being an arbitrary but fixed real number with 0<e<(A—3)/2, then the
number of remaining integers ¢ in (9) for ‘which
?(g, a) = ¢(q) (log ¢)*

holds for more than (1— b) cp(q) incongruent a’s (mod ¢) with (a, q) 1, where
¢ is any number satisfying 0<c<1, is not greater than

B, x ol —% — 00
(1=t)c (log 2f*-+* ((logxr*) )

by (8) again.
Therefore, for all but possibly o(z(log £)~4) positive integers ¢< z(log x)™
one must have

p(g, a)<4(q) (log g)*

for at least (1—5)(1—c)é(q) incongruent a’s (mod g) with (a, g)=1. Rewriting
¢ for (1—5)(1—c), we thus have proved the following

THEOREM 4. Let A be an arbitrary real number greater than 3 and

¢ be any number wztk 0<c<1. Then, for almost all positive integers q
we have

?(g, a)<g(q)(log g)*

Jor at least c$(q) incongruent values of a (mod q) with (a, q)=1.

Here, ‘almost all’ means ‘all but possibly a set of density zero’.

We note that a celebrated theorem due to Ju. V. Linnik states that
there exists an absolute constant C>0 such that

| ?(g,a)<q°
holds true for all ¢>1 and all ¢ with (a, g)=1 (cf. e.g. [6; Chap. X]).

NoTe. The results of the present paper have been announced partly in
the Seminar on Modern Methods in Number Theory, August 30-September
4, 1971, held at the Institute of Statistical Mathematics, Tokyo.

Department of Mathematics,
Okayama University
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