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By Hiroshi Yasupa

§ 1. Introduction. In the previous paper [6]”, on making use of the
methods in the classical theories and the method due to M. Kurita [3],
we have studied a Finsler space V, with the following fundamental function :
F=J g,y +a’. Especially we have shown that the connection of E.
Cartan can give rise to the affine connections on the p-manifold N of V,
in the theory of M. Kurita and that the space V, and its geometry
are realizable in the N.

The principal purpose of the present paper is to show that the above
two facts hold good also in a general Finsler space with the fundamental
metric function of class C*. As a consequence we have that this leads to
the theory of A. Deicke [1], and suggests a new method to study Finsler
spaces.

§ 2. Contact structure. Let M be an n-dimensional paracompact differ-
entiable manifold and z° be local coordinates in a neighborhood U of any
point z€M. In the tangent space 7, and the dual tangent one T* at z,
we take a natural frame (¢;) and its dual one (¢), and denote by y* and p,
the components of any vectors y and p in T,, T, respectively. Further
we consider the tangent bundle 7M and the dual tangent one 7*M over
M. We assume that M is endowed with a metric function F(z, y) satisfying
the following conditions;

(1) F(x,y) is of class C* and is positively homogeneous of degree
1 in the #°.

(2.1) (2) Fl(x,y) is positive if not all y* vanish simultaneously.
(3) g9i5(x, ¥)Z°Z7 is positive definite,

where g¢,;(x, y)—L TF .
2 ox'ox?
Now we consider a mapping ¢ :TM—T*M defined by (z, y)—(z, p) with
(2.2) p=E (i=1,2, 7).

0y

1) Numbers in brackets refer to the references at the end of the paper.
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- Then if we put N=¢(TM), N is a (2n—1)-dimensional submanifold of 7*M,
which is called a p-manifold of M. Since the mapping ¢ is globally defined,
N may be also cansidered as the figuratrix bundle over M. .
If we denote the Hamiltonian function of M by H(x, p) and put
1 o*H?

g% (x, p) = — ———, the following relation holds:
P 2 3p.0p;

9" (x, p)g s, y) = 0%, provided p,=gyy’.
A local equation of N is given by-

(2. 3) G=H(z,p)—1=0 or g¢“(,p)pp; —1=0.
On N we have from (2.3)
oG T oG
2. 4 == l't = s = -—Toi ,
&4 ops Flz,y)’ dz*

where 7%,=7 ;9" are the Christoffel symbols and 75,=7%l%p,.
Next, we consider a 1-form on N

(2 5) P =P¢dx‘ ,

which defines a contact structure on N except for the point (x,p) corre-
sponding to (x,y) such that F(x,y)=0 [3]. We can assume 9dG/dp,>0,
namely /"0, without loss of generality. Then we can take 27z—1 linearly
independent 1-forms @, #* and ©, on N which are defined by (2.5) and

e e 3Glopy gm 0GJozt ;.
0 = dei— Gl gun o _gp drr (1=1,2,-,n—1).
T G, PG, n=1)

By virtue of (2.4), the above forms are rewritten in

(2. 6) 6 = dx’—%dx” o= —dp+ l—lnrgjdxn .

In this case, it is easily verified that
(2. 7) d0)=02Apz-,
For, in partieular, dp,, we have from (2.3) and (2. 4)

1 oG oG 1 A
2-8 d n — — d 2 d’i =—"_‘_—"'T0d t+lld ) .
(2.8) dp aG/ap,,(apz i+ 20 :r) L (~midz+Ldp)

A set (#, o, #,) of the above-mentioned 1-forms is called an adapted
coframe on N.

§3. Adapted orthogonal coframe. We introduce the following quan-
tities :
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B1)  A=di—lpy, V=dimai, V=Y (1=12n=1).
Then it turns out that for A%, d; and b
(3 2) h-iflj= 3?,- _ 0 blli bwp =0.

On making use of (3 ‘1) and (3.2), we solve (2.5), (2.6) and (2.8) for
dz® and dp; in termsof ¢, o, £, and get

(3. 3) dxi = liw -+ hfﬁz , dp,; = rg,,;w'—b;pg (TMP;— 6¢ 7; )02
from which it follows that
(3. 4) dlz = —rgow - b”p; + {Tgopl - T(i),‘ - (gijrg'z - gin '7;—§:‘> } 01 ’

where 7h=1,0l*, 15,=1%1? and 1%,=7%p,

Now, we consider a matrifc (&) of rank 7 such that
(3.5) g =2 865, G=ps, CU'=0 (@=1,2,---,n—1).

Then if ‘we denote the mverse of ‘the matrlx (Ci) by (%), it follows from
(3. ) that ' | -

(3.6) "g?f:ch.cz\,., Cf;“=.,lf,.f”'f,,ﬁpz;o,, T4 = g Cs.

Hereafter Latin indices run from 1 to n; Greek 1nd1ces from 1 to n—1.
If we put

3.7) h =F_ %7 PN =iy~ Pibs >

(3.8) A=thy, Sr=ts,

it is verified that h;;g?*=h; and the matrices (¢;) and (s§) are inversive mu-
tually, i.e. det ({)=0. Since we have: from (3.5) and (3.7)

(3. 7)’ e ;C?Cz = gly _'PIP;:‘ = hi,u ’
it follows from (3.8) that .
(3.9) det (h) %0,  hylit; =0,.

Further we put

, 0
610 ,ra,ﬂ:"(QZT‘};-‘-EL’%’)tﬁﬁAﬁJé"oCﬁCi, L
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agzj
where A =FCyy = —F -
Yy

By means of (3.8) and (3.10) we transform the coframe (¢', w, p) to a
new adapted coframe (0%, 0", w,):

(3.11) O*=510", O0"=w, 0,=0+71r,0".

As is shown later, this coframe is in fact a so-called “adapted orthogonal
coframe” and further the following holds good:

(3.12) DI =—%lo, or w,=—g.,tiDI=—{DE,

where DI is the covariant differential of the unit vector 7 with respect to
the connection of E. Cartan.
First, we deduce (3.12). Since we have

(3.12) DI = dlI* + I'}ldx* = dlI + (15, — Al dx*
on use of (3.1)~(3.5), (3.8) and (3.10) we get

—g.,LIDI = tip,+ (Az,,croo +70,— 5115 )cw

= t1101+7‘a5$p01 == (!)

Next, we shall show that the coframe (0”, 0", ®,) is an adapted orthogonal
coframe. Since we have by virtue of (3.8) and (3. 10)

TapSe Sy = Tgp + Azmzroo

which is symmetric in 2 and g, it follows from (2.7) and (3.11) that

(3.13) o*No, =0N\P, =do = do™.
We can put
(3.14) dw® = —;—kf;,wﬂ/\wr-i-.l‘;w"/\wﬁ +mPos Ao+ h¥o, Ao™

(3.15) dw,= -—é— Ul A0, + V20" N 0; + W 0" \ o + y5,0" A w,+ ——;— gy @ /\'ﬂw’ ,

where ;= —kf;, il = —u and z.,= —z.,. In this case, the following rela-
tions hold: |
(3.16) Ky =yn—vyp, li=—vi, mF—m=u*,

haﬁ = hﬂa s wap =’wpa y zapr + zﬁra +zraﬁ = 0 .

In view of (2.5), (2.6), (3.5) and (3.11), we have
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(3.17) o*={dxt, o°={dx (@=1,2,-,n),
from which it follows that
(3.18) At = Lo = Lot + 1™ .
From (3.12), (3.12)" and (3.18) we have
(3.19) dlf = —Tyw" — (15— Ajl§) L™ — Lo, .

Since {{(x,y) are homogeneous of degree 0 in y’, the differentials d{; are
expressible in ' o

dCé‘ = Cg,jdxj'l‘ anjdlj ’

where (¢ ,=0(f/0x? and (§;=Fali/ay’. In the sequel the symbols “ 7
and “);” are used in such ways.

On use of (3.18) and (3.19) we obtain

(3.20)  dLi = (L 01— b+ {cg,k_cgllj(rgk_Aikm>} i’ — ;C?;:ﬂﬁ“’ﬁ-
Because of the homogeneity of {f, from (3.5) we have

(3.21) Gd'=0, I'C,=—C.

If we benote by {j; the first covariant derivatives of {; with respect to
the connection of E. Cartan, it follows that

(3~ 22) Cgulj = sz",jlj—CZWT&—C?(T&—A/{J&) .

Calculating dw* on use of (3.18), (3.20) and applying (3.21), (3.22) to
the resulting expression, by the comparison with the corresponding coefficients
in (3.14) we obtain

(3. 23) het = 5o

(3. 24) I =Cad'Ch, m?=—05C000, ke =(C—Cua)CiC; -
In particular,

(3.25)  I5=gulh T =T 4T = — T 0 = — L.

Thus the coframe (0% ", ,) satisfies the conditions (3.13), (3.23) and
(3.25), which characterize an adapted orthogonal coframe.
Noting (3.12) and

I*ad? = Al *enalllF =0,

on use of (3.12), (3.18) and (3.20) we calculate dw, and in view of (3.15) get
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{ = ChCi—Te), =l ==k,
vl = — (Lo — Abu LEYTLE,

W, = — RAPITL = Resua VTS,
U 2w = REPETL = Ryl TG,

where R =g""R,., being components of the curvature tensor of E. Cartan.
In this case, it is verified that (3,24) and (3.26) satisfy (3. 16).

(3. 26) J

§4. Equations of structure and connections. We know that with
- respect to an adapted orthogonal coframe z=(w% ", ®,) the equations of
_ structure can be uniquely represent as follows [4]:

f do” = 0 Nw,, do"=o’A\oj+oAp*+o,Ao",

(4.1) M S TS
l d(l’a_—"'(!) Avﬁa'—'w,g/\(oﬁ_wd ﬂ/\a) +¢a’

where

(4.2) - _;_ 5 (ks + o+ K)o — 0+ _;_ 5wl + =+ ),
,a“‘g——-% (mef +ml* + '+ uf®) o

(4. 3) ’

a ’ 1 o
Vag = 7 ;( 7ﬂ+k¢a + yrrﬂ_*_ yza)wr ’ Qa = __2__2:“570)15/\(07 -

From (3.24) we have 1/2 (kj+ &}, +k,)=—C:,0%2. On the other hand, if
we denote by {;|; the second covariant derivativesof & with respect to the
connection of E. Cartan, since A%, are symmetric in j and %, by (3.26) we
have

(4. 4) wy =L, (CI =8

from which it follows that 1/2 (s + wf* +u}*)={2| {37, Hence (4.2) is ex-
pressible in ‘

(4. 5) wij =I'o" + 50"+ 1o, ,
where |
(4. 6) Iy =—-0080, Th=—6=-0,01, I'i=C86.
Similarly by virtue of (3.24), (3.26) and (4. 4), (4. 3) is reducible to
pf =—Aulilliie’, = — A%l e, ,

4.7
( ) ¢a = %RuuliCZCﬁCﬁ‘wﬁ/\w’ .
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A coframe transformation between any two adapted orthogonal coframes
w and 7z’ is given as follows:
1 "

o o
a;n mln' (’l’; 0 O
(4.8) == , o= , |, 7r—¢77:, o)== 0 1 0|,
ah . W A ;| N
; ] (AB 1,2,--,2n—1) 20 0 ¥
(] i w;z—l

where the matrix (¢§) is orthogonal. i'Under‘ the_: _t'fanéfo‘fina’t’ion ‘¢, the fol-
lowing relations are satisfied [4] '

4.9) 0 =¢%f, o, -—Z</Jﬁw,;, w'"l——w",
(4.10) wx=;¢ww—§4mw=<>@w+dwwwL
(4. 11) { =@ (N, we= i,
aﬁ_¢r¢'ﬁ”76’ @ _(pQﬂ’_ '
where o5, p'* .. are the forms with respect to z’ correspondlng to w;, ;z“",

with respect to . From (4.10) and (4.11) it is seen that u*, w,; v,, and
@, are tensorial forms with respect to adapted orthogonal coframes, while
w; are connection-like. The latter fact enables us to define some connections
on N. First, put ‘ - ’

o; 0 0\

(a.12)°  I=@#=[0 0 0
| | A0 0 o

Then under the transformation ¢,

0

w'g=(¢ )ch,, ( ‘)%gbc (ABCD 1,2, 2n—1)

and hence F deﬁnes a connectlon on N ev1dently We shall call this con-
nection the Kj-connection in the sequel. The torsion and curvature forms
for the K,-connection are given by

0
° —dw —w‘g,\wﬁ—-w‘;,\/x +w, 0", "=do"=o0"\0,,

(4. 13) .

Tt = da) A;wp,\wﬂ = 0’ \Vpe— Wos0 0" + D, ,
o
B 00 .
. o .
(4. 14) = 0 0 0 |, 25 = dos— w0t

0

0 0 2
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On making use of (3.26) and (4.7), we can express (4.13) as follows:

0 0

8= — Ze:AﬁkC‘;Cnga)ﬁ,\w’+wa,\w" , Tt =— 26:5570)5,\0)’ ,
0
" = - RGP 0 — RO o
(4.15) J |
+ ;Aﬁkhl‘rcfécgc;‘wp/\w’
= Rl GG 0+ DA T Ty
Next, if we put
w; o, 0 l'z‘i’» .
(4. 16) _ I'=(s)=| o} 0 0O ), 0 =—w0,=0,,
| 0 0 wj

we can verify by (4.9) and (4.10) that I" defines another connection on N.
InJthe sequel, this connection will be called the K-connection. The torsion
and curvature forms for the K-connection are given by

(4.17) =, =0, " =0 — w0 0"+ D, ,
025 27 0
(4. 18) o= 22 0 0 |, 2= Qﬁ+wmwa, = do,— 0 \o,,
0 0 Qa . Q:‘l = _d(oa+ §Wp/\wlg .

From (4.13), (4.15) and (4.17) we have

0

(4. 19) = — ZA’,CC‘;C,%waﬁAwT =0, "=t

Now we shall calculate the curvature forms exactly and express in more
concrete forms. For this purpose it needs to regulate to some extent the
results obtained hitherto. First, since dp,=I"}p,dx?+ g,;DI?, it follows from
(3.12) and (3.18) that ~

(4. 20) : Codpy= (roj'i'chroo)Cjw —Czwp ,

which is obtained directly also from (3.3). Then we can express (3.20) and
(4.20) in a single form

(4. 21) dgi = (Ciu"‘r Ch) G’ _chmcﬁ‘_”ﬁ .
Since (dCi)C’ + (dC’) 0, from (4 21) we dbtain
(4. 22) s = — (Gl + TH) itk + DO liios,
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which is valid for every value of a. In fact, if we put a=n, then (4.22)
implies (3.19). Next, if we let Greek indices in (3.24), (3.26) and (4.7) be
suitably equal to n, we have

ngkg}:k;nzyﬂ":yna:zanan, ' m?ﬁ-:_a?’

—_ — —_ — 4,8 — —_
m;ﬂ - aaﬁ ’ k;ﬁ - —kgn - lg ’ yﬁn = VYa, zanr - _zam - war .

{4. 23) {

In particular, for w;‘ in (4.5) with (4.6)
I [':c_‘l'"nr__ ’ m='—['ﬁr__5ﬁr,

a)—O Ot =—0i=0,, 0f=-—0).

(4. 24)

In consequece of (4.23) and (4.24), the equations of structure and con-
nection forms are expressible in the following simpler forms:

(4. 25) do® = -;— 7% N0° + MPW;A0° = O° A0+ W a1
(4. 26) dw, = —;—uﬁ’wp A®, + Yo A0+ —;—zabcw" AQF°
= @ \Vao t+ ;prwg + %zabcw” A,

f oy =Ts0°+I'Yw,,

(4. 27)
| I'g, = —co 008,  Ier=ge|,088.
Now, put
(4. 28) dry, =T +T'yw,, dIe =i+,

and calculate dI'¢,, dI's* on use of (3.18), (3.19), (4.22) and (4.27). Then
by the comparison with the corresponding coefficients in (4.28) we have

(4.29) [ = (= G+ G s+ Conlu L LGS

: | g = (€810 — G180 — Caals L0 TECILE,

(4. 30) {1’ 5 = (€8] — CA1,L0aLe — 2L TRICE,
I3 = (=88] e+ Cal 800188 + 821285180 C3CECH -

Further we. put
Qg( =dwi— wEAw‘Z)

(4. 31) 1

1 ' ,

- Rg cdwc/\wd - ZPbacaw“ch - Z Sbaaﬁwa/\wﬁ ’
2 d 2 ap

Where Izgc(l= _Rgdc’ Sg ap™— —Sgﬁa'

Calculating £2¢ by means of (4.25)~(4.28) and comparing with coeffici-
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ents in the right hand in (4.31), we get
gcd:'_' _(Z_’ge cd+Fb zﬂcd+rgc F“dpgc_l_rgdc__rgcd) 3A
(4' 32) Pb ca = (Fbemc —ngyﬁc +P:a[‘ I‘ea[":r aca gac) ’
S = I§ug— [T+ T+ T — T

Finally, if we substitute (3.24), (3.26), (3.27), (3.29) and (4.30) in the
right hands in (4.32) and apply the Ricci’s formulas to the results, we
have

(4. 33) {Ré'ca=Rjzkc:CfchU P, = PR Logiongt

bed thlccgcjc ao

where R}, P}, and S},, are the components of the curvature tensors of
E. Cartan.

' 0
Thus we have seen that the forms 23 for the Kj-connection are given by

0
(4.34) 25=— —;—Rgcdwc,\wd— 3P, o + % T (— S50+ 0205 — 8285) 0,0,
7

Ty
and for the K-connection
2 0
(4. 35) 0= o |, 99 (4.31) with (4.33).
0 2
§ 5. Finsler space M as a distribution on N. By means of the
matrices ({%) and ({7) we transform ‘the frame (¢ and the coframe (¢’) in
§2 to (e,) and (¢%): |
(5. 1) ea=Ce;, e =(ie=

If we denote by o} the connection forms of E. Cartan with respect to
(¢"), they are given by

(5.2) o} = AL DI* + ['sid*
which are, under (5.1), transformable to

(5- 3) ")b = C 5C1: +deC“

If we substitute (5.2) in the right hand of (5.3) and calculate on use
of (3.12), (3 18) and (4 22), it follows from (4. 27) that -

= “"CﬁijCjw + ZC@ 1.7Cbcjwﬁ

Hence we can state
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THEOREM 1. The forms o} are the connection forms of E. Cartan,
which give rise to the K-connection and Ky-connection on N.

Now we consider quadratic differential forms on N
A=Y %", A=7Y e,
which are independent of the choice of adapted orthogonal coframes and

are also quadratic differential forms on M. In this case, it follows from
(3.5), (3.7), (3.9) and (3.17) that

5. 4 A = §,0°0° = 0,08 dxidx? = g,,dx*dx? , :
) A= 0,50°0° = h, titj0* 0’ = h, 00" = h, dx'dx’ .

In addition to A and A, we can take the invariant forms on N
B= Za]wawa , do"=0"\0,,
which are expressible in
B= ;C‘;Cle‘Dlj = h,;DI'DIl? = ¢,,DI*'Dl? ,
do™ = — ;C‘;C‘;dxi,\Dl’ = —hy;dz* \Dl! = —g,;dx* DI’ .

(5. 5)

Then it is easily verfied that the tensors on N corresponding to the above
four forms are all parallel with respect to the K-connection.

In particular, the tensor corresponding to the A has the following com-
ponents: ' B

g9:; Wwith respect to (e,)

1 on M,
(5. 6) 0. with respect to (e,)
Bab 0 .
0 0 with respect to == (0", w,) on N..

Since Dé = —wi—w5=0, a tensor d,z on N is parallel with respect
to the K-connection. Accordingly we can adopt this tensor as the funda-
mental metric tensor and consider the N as a (2n—1)-dimensional Riemannian
manifold, which has the torsion as is shown later.

As the coframe 7=(0% ,) is a base of the dual tangent space T,

at a point (x, p)€ N, there will exist the base dual to z in the tangent space
T,py. If we denote this base by (e,, e*), which will be called an adapted
orthogonal frame on N, the following relations hold:

(5.7 {eq, @) =085, {e,, w,) =<e*, 0"y =0, (é",'w,,> =05 .
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(5. 8) {eq, €0 =0ar, Keu, €>=0, <e*, & =0d%, (o o) =05,
0%, 0, =0, {w,, ;) =04, ({,Y; inner product).

A. Deicke showed that it was, in general, impossible to imbed an -
dimensional Finsler space in a (27z2—1)-dimensional Riemannian madifold R,,_,
without torsion, while it was possible to do so in R,,_; with the metric and
torsion chosen suitably [1], [2] |

Now we shall show that it is possible to realize the M as a distribution
on N in the similar way as A. Deicke.

We consider a system of differential equations

(5. 9) w,=—8DI'=0,

which is equivalent to |

(5.9) DIt =dl'+ I';idx* = 0.

Then we obtain as the complete integrability condition for (5.9)
(5. 10) Riu=0  (or Ri,=0),

which implies that M is a space with the absolute parallelism of E. Cartan.
Therefore the system (5.9) is, in general, not completely integrable, that is,
it does not define a family of submanifolds of N, but defines an zn-dimensional
distribution MM on N. In this case, a local base for the distribution M is
given by (e,) (@=1,2, -, n), which is also a local base for M. And further
it follows from (4.16), (5.6) and the that the metric and con-
nection on M induced from those on N identify with the metric and con-
nection on M. 4

The metric do® on N depends on ‘only the local length and angular
metric on M. In fact, if ds is the distance between the centres of two
neighboring line-elements in M and d¢ is the angle between the directions,
it follows from (5.4), (5.5) and (5. 8) that

do* = {we,+w,e", W’e,+ we’) = Y00+ 1,0,
= g,,dx'dx? + ¢, leiDlj =ds’+d¢* .

The autoparallel curves in N with respect to the K-connection do not
coincide with the geodesics. In fact, if we put

(5' 11) = ’;_TngBAwC, Tl‘;C+ TC"AB =0 (wn-i-a:wa; A,B,C=‘1, 2, T 272"“1),

from (4.15) and (4.19) we have
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4 .
Tbac‘ = Tn+ﬁ ntyr = 0 fn-{-ﬁ = Tna+ﬁ c= §kC§' fs k
7 a r¥a
ihlcl Cjc c ::ﬁ,c = - r'n:z-:ﬁ ?Ic}'r'l CngCf )
from which it follows that all of 7% are not skew-symmetric in all indices

A, B and C, that is, the above assertion is true.
Now we shall introduce a new connection on N, which is in fact due

to A. Deicke [2].
If we define a matrix (¢3) by (¢ﬁ ) (¢5) being orthogonal, the coframe

(5. 12)

transformation in (4.8) is expressible in ¢=(¢8)= ¢’a Then we have
0 ¢35/

’

¢ ’ €4 = (‘/’—l)gelﬂ' ( Crta = en) ’

5.13
G-I gu e gl (S ). S Wa; = g0 (S Wio),

where S%,, W's. and S, W3, are the components of any two tensors on M
with respect to (e;) and (e,) respectively.

If we put
6.14) T=G@f—|" E);‘ﬁﬂ) @3 = =G
(63“‘“ of | =(AL+REICC e — DAL LU o,
T

as it is seen because of (5.13) that the forms &@;™* are tensorial, the T
defines a connection on N surely. In the sequel, this connection will be
called the D-connection.

For the D-connection, we obtain the components of the torsion tensor
in the similar way as in (5.11):

+ —_— — Z hpk
Tbc = n+ﬁn+r ;zl+;,c - 0 ’ :+ﬁ,c - Tc nm+p T th/cl CgcaCc ’

(5' 15)‘ "+" = ""T'n+a ¢ = _Rﬁhkljczcg'{f .

Then it follows from (5.15) that the autoparallel curves in N with respect
to the D-connection coincide with the geodesics.
If we put

(0‘; 0 &7,‘14.5
(5.16) T,=(af)=| 00 ,

~n+a a

Wy Wp

~nta _ ~b
@y = —Wynta

= A% L0 — ;A’}HOC;C{Cf @

T, defines a connection on N, too, which will be called the Dy-connection.
Thus we have

CoROLLARY 1.1. The connection forms w3, the torsion tensor A%, and
the curvature tensor R;%, of E. Cartan give rise to the D-connection and
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D,-connection on N. ,
On use of the tensors Sy and W in (5.13), we can define a general
connection on N:

5 T A I([)g a:+ﬁ n+a a ' c ‘ a
( 17) b = ((' B)= —nta ’ LWy = —a n+a Sbcw + Z Wbra’r .
({'b (ap - 7 ‘
" In this case, the autoparallel curves in N with respect to the above
connection I' coincide with the geodesics if and only if the I' becomes the

D-connection. In fact, the torsion forms for I' are given by
- .
b ~n+a

2(1 — Ta+ ZwaAa‘)Z+ﬂ, - %n-}-a — Tn. —w ,\CU
P .

which are, by virtue of (4.15), (4.19) and (5.17), expressible in
(7%= (— A+ S5 w0’ + 2 W, ,
B 8,1

(5.18) %n+'a='_§—( e — O+ S5) WP\ + Zﬁ;(Agb,,,+ W:ﬁ)wa”,'

A = ARLICICE, Ri,.=R] MCWCQ”Q‘ s Appin= A% T,
from which it follows that |
Tie=Tmr =0, Thypo=—T0.=—A3+Sk,
(5.19) T5isnir=Woh—Wiy, Tir“=R:,,—S5+Ss,
. Zi; b Tb nm+g A;bln7+ Wbc,; .
Let T4 be skew-symmetric in all indices A, B and C. Thén,, since
o and Aj,, are symmetric in all indices a, & and ¢, from (5.19) we have
Spe = Aje+ R5po = (AR + R)5:4) 50 CE
| Wi = — Agy, = — Al I GLCE,
and hence @?**=a7**, that is, the connection I becomes the D-connection.

For the connection I', the following facts are still valid:

The fundamental tensor d,; on N is parallel and the induced connectlor\'
on M identifies with the connection of E. Cartan.
Thus, making summary of the results obtained, we can state.

THEOREM 2. An n-dimensional Finsler space M- endowed with the
connection of E. Cartan is realzzable as an n-dimensional distribution WE
on its p-manifold N as follows

(1) “The N is a (2n=1)-dimensional Riemannian mamfold with the
metric whose. components._are given by 0,5 with respect to an adapted or-
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thogonal coframe. | ' s
(2) The N is endowed wzth a connection I’ deﬁned by (5 17) whzch
is metric but not symmetric. :
< (3) Any transformation between adapted orthogonal .coframes is con-
fined to such as in (4.8) (or 5.13). A set of such transformations forms
an orthogonal group, which is the fundamental group of N.
(4) The metric on N depends on only the local length and angular
metric on M. S
(5) The metric and connection on I induced from those on N identify
with the metric and connection on M. ‘ : S
(6) The autoparallel curves in N coincide wzth the geodesics if and
only if the connection I' becomes the D-connection.
Corresponding to the connection T', we have a connection I', on N:

w; 0

T P 0)n+,5 ~nta -—‘b a, ¢ a
(5 20) . PO = (((')> = O ) N Wy =0 = ,bcwl + Z Wb]’wf .
N s . N : N ;‘

—n-l-a a

(1’ Wy

Though the choice of connections on N is highly arbitrary, it is enough
for the practical use to take the K-connection or the D-connection. The
curvature tensor for the former is considerably simple, while the conclusion
of (6) in the holds only for the latter.

Let M be an n-dimensional Finsler space with the absolute parallelism
of E. Cartan. Then sinee (5.9)" is completely integrable, there exists a solu-
tion [=1[(x) satifying the following condition: 1) g¢;,//?=1 along the solution,
2) I'=I¢ when z'=xi (I, xi; constants). Corresponding to such a solution,
we have an 7n-dimensional submanifold of N through a point (,, ;) '(j;;:
g.,/{). Consequently M is realizable as a family of such submanifolds. In
other words, the distribution 9 is involutive. In this case, it follows from
(5.10), (5.15) and (5.19) that the D-connection is Riemannian. Hence we
~ have

CoROLLARY 2.1. An n-dimensional Finsler space M with the absolute
parallelism of E. Cartan is realizable as an n-dimensional involutive dis-
tribution M on its p-manifold N (or as a famzly of n-dimensional sub-
manzfofds of N) as follows: '

(a) The matters (1), (3), (4) and (5 5) in the Theorem 2 are valid.
(b) 'The N is endowed with a connection T’ deﬁned by (5.17). The
connection F is Rzemannzan if and only if it becomes the D-eonnectzon

- §6. Contact tensor calculus on N. We have seen that any trans-
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formation between adapted orthogonal coframes is given by (4:8). Under
such a transformation, the form w"=p,dx’ is invariant, that is, the contact
structure on N is invariant. We may therefore consider the transformation
as a homogeneous contact transformation. In order to study a Finsler space
M, it needs to have a tensor calculus on the p- mamfold N which is
appropriate to homogeneous contact transformations.

Let N be in general endowed with the I'-connection. For the sake of
breVIty, we consider only a proper tensor of type (1,1) on N whose com-
ponents with respect to (e,) are T#(x, p). A proper tensor means that the
components are homogeneous of degree zero in p,. Since p,=g.,l, T#(x, )
are expressible in 7#(x, ) (or T4(x, y)), being homogeneous of degree zero
in I’ (or y%. :

The covariantvdifferentials of T# are given by
(6.1) DTy =dT#+ w) T”—wBT“ VpTh o,
where F,T# are covariant derivatives and the components of a tensor of
type (1 2) on N. If we put. ' '

auTA: B @ aaTA= Aq}ﬁz) Vd:Vn a

(6. 2) = o Tli=Tank Do
o ep= e T e,
from (3.18), (3.19) (or (4.22)), (6.1) and (6.2) we have
I V TB a(aTB TBHz ey Cj"’_[,fmTB FB(;
l pe* 4 _aaTA+FAaTH FDaTA

Now we cons1der a mapping @: a tensor space on M—>a linear space
on N defined as follows:
By ¢ a proper tensor T“(a: y) with an element of support Y at any point
xeM corresponds to an object T4 at. (x, p)eN whose components are given by

on [TE0

(6:.. 3)

where Tb" are expressed in terms of (x° p;) by means of l'=g"p,.

Then, under the homogeneous contact transformations, the object T‘
becomes a tensor on N. Given, conversely, a tensor T as (6.4) at any
point (z, p)EN an element of support y° can be determmed uniquely and
a tensor T“(x y) at xEM follows Lonsequently the mapping @ is an iso-
morphism of a tensor space on M into a tensor space on N.

.In the sequel we shall call a tensor. on N corresponding to a tensor
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on M by @ an M-tensor on N and denote simply by T3 .
- For any M-tensor T, since T7="T¢] (T are considered with respect
to (e;)), it follows from (4.27), (6.2) and (6. 3) that

VoTI? = T;]kC?Cngs T ie= V Tb CijC/c ’

6.5
( ) VaT: = _T;Ikchng ) T.ilk = - ZV«T:. acgc}:

Next we shall get the curvature tensor. ‘The curvature form 2% is
given by ’

(6. 6) ' 04 = dop—wiN\ot

Then, put - '

(6. 7) 04 = ——;—R‘gcdwc,\w"—— ;P‘]}crwma)“ + ——;— ﬁzrg‘é By WBAD,
where Rgcdz —R‘lgdc ’ §g3r= _ggrﬁ .

On making use of (4.4), (4.7), (4.25), 4.26), (4.27) and (6. 2) we calculate
the right side in (6.6) and by the comparison with the coefficients in the
right hand in (6.7) we have

Rg (a(l Be ™ Bclli jc :d+['gc f)d)_cld_PgaRnacd’
Pi, =0T4,—o0 8§ +T#¥, 0jC’+I’*‘ (Far+ AZ)
—I4 i+ ALy — T8 04+ I'5T4
S4,=0ls—I§l+I3ry—rle,

where ¢|d and 7|e indicate the terms written down with ¢, d and with 7, ¢
interchanged respectively. For the practical use of (6.8), we choose the K-
connection or the D-connection and have to calculate further.

In this paper we have combined the theory of M. Kurita with that of

A. Deicke and suggested only a new method to study Finsler spaces. We
shall leave the practical applications of this method in later papers.

(6. 8)
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