## MODULARED SEQUENCE SPACES

 $\mathbf{B}\mathbf{y}$ 

## Sadayuki YAMAMURO

A collection R of sequences of real numbers is called a modulared sequence spaces, if a modular is defined on R so that R becomes a modulared semi-ordered linear space. 1)

The case, when the modular is of unique spectra, was considered by W. Orlicz, H. Nakano and I. Halperin-H. Nakano. The purpose of this paper is to generalize some of their results.

§ 1. A modulared sequence space is generated by a sequence of nondecreasing convex functions of a real variable:

$$f_1, f_2, \ldots$$

which satisfies the following properties:

- $\begin{array}{ll} (1) & f_{\nu}(0) = 0 \ ; \\ (2) & \lim_{\xi \to \alpha \to 0} f_{\nu}(\xi) = f_{\nu}(\alpha) \ ; \\ (3) & \lim_{\xi \to \alpha} f_{\nu}(\xi) = +\infty \ ; \end{array}$
- (4) there exists a real number  $\alpha>0$  (depending on each  $f_{\nu}$ ) such that  $f_{\nu}(\alpha) < +\infty$ ,

for every  $\nu=1,2,\cdots$ . Namely,  $f_{\nu}$  ( $\nu=1,2,\cdots$ ) are modulars on the space of real numbers.

For this sequence:

$$f_1$$
,  $f_2$ , .....,

the set of such sequences of real numbers  $(\xi_{\nu})$  that

$$\sum_{\nu=1}^{\infty} f_{\nu}\left(\alpha \xi_{\nu}\right) < +\infty$$

for some  $\alpha > 0$  is a modulared sequence space, putting its modular

<sup>1)</sup> H. NAKANO: Modulared semi-ordered linear spaces, Tokyo Mathematical Book Series, Vol. 1 (1950).

<sup>2)</sup> W. OSLICZ: Ueber konjugierten Exponentenfolgen, Studia Math, III (200-211).

<sup>3)</sup> H. NAKANO: Modulared sequence spaces, Proc. Japan Acad., 27 (1951), 508-512.

<sup>4)</sup> I. HALPERIN and H. NAKANO: Generalized  $l^p$  spaces and the Schur property, Journal Math. Soc. Japan, 5 (1953), 50-58.

m(x) as

$$m(x) = \sum_{\nu=1}^{\infty} f_{\nu}(\xi_{\nu})$$
 for  $x = (\xi_{\nu})$ .

This modular is monotone complete. Hence, this space is a Banach space by the norms induced by the modular. This modulared sequence space is denoted by  $l(f_{\nu})$  in this paper.

When the modular is of unique spectra, namely when

$$f_{\nu}(\xi) = \xi^{p_{\nu}}$$
  $(\nu = 1, 2, \dots, \xi > 0)$ 

for a sequence of real numbers  $p_{\nu} \ge 1$  ( $\nu = 1, 2, \cdots$ ), this modulared sequence space was denoted by  $l(p_1, p_2, \cdots)$  and considered by the authors mentioned above. In this case it is obvious that

$$l \subset l\left(p_{\scriptscriptstyle 1},\ p_{\scriptscriptstyle 2},\ \cdots
ight) \subset m$$
 ,

where l is a space of summable sequences and m is of bounded sequences, namely, l is a modulared sequence space with

$$f_{\nu}\left(\xi\right)=\xi$$
  $\left(\nu\!=\!1,2,\cdots,\;\xi\!>\!0\right)$  ,

and m is also a modulared sequence space with, for instance,

$$f_{\nu}(\xi) = \xi^{\nu}$$
  $(\nu = 1, 2, \dots, \xi > 0)$ .

But, in general cases, this fact is not always true,

(1.1) If  $l \subset l(f_{\nu})$  and  $l(f_{\nu})$  is finite (that is,  $m(x) < +\infty$  for every  $x \in l(f_{\nu})$ ), then there exists a real number  $\alpha > 0$  such that  $\sup_{\nu \geq 1} f_{\nu}(\alpha) < +\infty$ . Conversely, if  $\sup_{\nu \geq 1} f_{\nu}(\alpha) < +\infty$ , then we have  $l \subset l(f_{\nu})$ .

If  $\sup_{\nu \geq 1} f_{\nu}(\alpha) = +\infty$  for every  $\alpha > 0$ , then we can select a subsequence  $\nu_{\mu}$   $(\mu = 1, 2, \cdots)$  for which we have

$$f_{
u_{\mu}}\!\left(rac{1}{2^{\mu}}
ight)>\!1 \qquad \qquad (\mu=1,2,\cdots)$$
 .

Then, such a sequence  $(\alpha_{\nu})$  that

$$lpha_
u = \left\{ egin{array}{ll} rac{1}{2^\mu} & ext{for} & 
u = 
u_\mu \ , \ 0 & ext{for} & 
u \neq 
u_\mu \ , \end{array} 
ight.$$

satisfies

$$\sum_{\nu=1}^{\infty} f_{\nu}(\alpha_{\nu}) = +\infty$$
 and  $(\alpha_{\nu}) \in l$ ,

contradicting the assumption.

Conversely, if there exists  $\alpha\!>\!0$  such that  $\sup_{\nu\,\geq\,1}f_{\,\nu}({\bf x})<+\,\infty$  , then we have

$$f_{\nu}(\alpha \xi_{\nu}) \leq |\xi_{\nu}| \cdot f_{\nu}(\alpha)$$
 for almost all  $\nu$ 

for every  $(\xi_{\nu}) \in l$ , so that  $(\xi_{\nu}) \in l(f_{\nu})$ .

Similarly, we can prove:

(1.2) If  $l(f_{\nu}) \subset m$ , then there exists a real number  $\alpha > 0$  such that  $\inf_{\substack{\nu \geq 1 \\ l(f_{\nu}) \subset m}} f_{\nu}(\alpha) > 0$ . Conversely, if  $\inf_{\substack{\nu \geq 1 \\ \nu \geq 1}} f_{\nu}(\alpha) > 0$  for some  $\alpha > 0$ , then we have  $l(f_{\nu}) \subset m$ .

Now, putting

$$f_{\; \; \; \; \; \; }^{\prime}(\xi) = \inf_{ \epsilon > 0} rac{f_{\; \; \; \; \; \; }(\xi + \epsilon) - f_{\; \; \; \; \; \; }(\xi)}{\epsilon} \; \; ,$$

we have

$$f_{\,
u}(\xi) = \int_{_0}^{\,\xi} f^{\,\prime}_{\,
u}(\xi)\,d\xi$$
 ,

and there exist non-decreasing functions  $g_{\nu}(\eta)(\nu=1,2,\cdots)$ , which satisfy the following properties:

$$g_{\,
u}(\eta\!-\!0)\!\leq\!\xi\!\leq\! g_{\,
u}(\eta\!+\!0) \qquad \qquad ext{if} \quad \eta\!=\!f_{\,\,
u}^{\,\,
u}(\xi)\,,$$

$$f'_{\nu}(\xi-0) \leq \eta \leq f'_{\nu}(\xi+0)$$
 if  $\xi = g_{\nu}(\eta)$ .

Then the functions:

$$\overline{f}_{\nu}(\eta) = \int_{0}^{\eta} g_{\nu}(\eta) d\eta \qquad (\nu = 1, 2, \cdots)$$

are also modulars on the real line and we have

$$\xi \eta \leq f_{\nu}(\xi) + \overline{f}_{\nu}(\eta)$$
 for every  $\xi, \eta > 0$ ,

and

$$\alpha\beta = f_{\nu}(\alpha) + \overline{f}_{\nu}(\beta)$$

if

$$f_{\,\,
u}^{\,\prime}(lpha-0)\!\leqq\!eta\!\leqq\!f_{\,\,
u}^{\,\prime}(lpha+0)$$
 ,  $g_{\,
u}(eta\!-\!0)\!\leqq\!lpha\!\leqq\!g_{\,
u}(eta\!+\!0)$  .

In the sequel, we will denote  $g_{\nu}$  by  $\overline{f}'_{\nu}(\nu=1,2,\cdots)$ .

Next, we will investigate the relation between  $l(f_{\nu})$  and  $l(\overline{f}_{\nu})$ . The fact is already known by the general theory of modulared semi-

ordered linear spaces. Here, we will use only the calculation of sequences.

(1.3) The modular conjugate space of  $l(f_{\nu})$  is  $l(\bar{f}_{\nu})$  and  $\bar{m}$  is the conjugate modular of m, provided that  $\inf_{\nu \geq 1} f_{\nu}(\alpha) > 0$  for some  $\alpha > 0$  and  $f'_{\nu}$ ,  $\bar{f}'_{\nu}$  are continuous.

Lemmas (1.3.1)-(1.3.3) constitute the proof.

(1.3.1) For any element  $y=(\eta_{\nu})\in l(\overline{f}_{\nu})$ , there exists a number  $\Upsilon$  such that

$$\sum_{\nu=1}^{\infty} \xi_{\nu} \eta_{\nu} \leq r$$

for every  $x = (\xi_{\nu}) \in l(f_{\nu})$  satisfying  $m(x) \leq 1$ .

If we can not find such  $\gamma$ , there exists a sequence of sequences:

$$(\boldsymbol{\xi}_{\nu}^{(\mu)})$$
  $(\mu = 1, 2, \cdots)$ 

such that the following properties are satisfied:

$$\sum_{
u=1}^{\infty} f_{
u}(\xi_{
u}^{(\mu)}) \leqq 1 \qquad \qquad (\mu=1,2,\cdots),$$
  $\sum_{
u=1}^{\infty} \xi_{
u}^{(\mu)} \eta_{
u} > 2^{\mu} u \qquad \qquad (\mu=1,2,\cdots).$ 

This sequence is bounded with respect to  $\mu$ . Because, if there exists a term  $\xi_{\nu}^{(\mu)}$  such that

$$|\xi_{
u}^{(\mu)}|>1$$
 ,

then we have

$$|\xi_{
u}^{(\mu)}|f_{
u}(\alpha) \leq f_{
u}(\alpha\xi_{
u}^{(\mu)}) \leq 1$$
 .

Therefore, a sequence:

$$r_{\nu} = \sum_{\mu=1}^{\infty} \frac{1}{2^{\mu}} \xi_{\nu}^{(\mu)}$$
  $(\nu = 1, 2, \cdots)$ 

is obtained, and

$$\sum_{\nu=1}^{\infty} \gamma_{\nu} \eta_{\nu} = \sum_{\nu=1}^{\infty} \eta_{\nu} \sum_{\mu=1}^{\infty} \frac{1}{2^{\mu}} \xi_{\nu}^{(\mu)} \geq \frac{1}{2^{\mu}} \sum_{\nu=1}^{\infty} \eta_{\nu} \xi_{\nu}^{(\mu)} \geq \mu.$$

On the other hand we have

$$\textstyle \sum_{\nu=1}^{\infty} f_{\,\nu}(\gamma_{\,\nu}) = \sum_{\nu=1}^{\infty} f_{\,\nu}\left(\sum_{\mu=1}^{\infty} \frac{1}{2^{\mu}} \, \xi_{\,\nu}^{\,(\mu)}\right) \leqq \sum_{\nu=1}^{\infty} \sum_{\mu=1}^{\infty} \frac{1}{2^{\mu}} f_{\,\nu}\left(\xi_{\,\nu}^{\,(\mu)}\right) \leqq 1 \; , \label{eq:final_problem}$$

contradicting the assumption.

(1.3.2) For a sequence  $(\eta_{\nu})$ , if we have

$$\sum_{\nu=1}^{\infty} \xi_{\nu} \eta_{\nu} < + \infty$$

for every element  $(\xi_{\nu}) \in l(f_{\nu})$ , then  $(\eta_{\nu}) \in l(\overline{f}_{\nu})$ . (A generalization of LANDAU's theorem.<sup>5)</sup>)

For the number  $\gamma > 0$  in the previous lemma, when we put

$$\eta_{\nu} = (r+1)\overline{\eta}_{\nu} \quad \text{and} \quad \overline{f}'_{\nu}(\overline{\eta}_{\nu}) = \xi_{\nu} \qquad (\nu = 1, 2, \cdots)$$

we have

$$\xi_
uar{\eta}_
u=ar{\eta}_
uar{f}_
u'(ar{\eta}_
u), \quad \xi_
uf_
u'(\xi_
u)=ar{\eta}_
uar{f}_
u'(ar{\eta}_
u).$$

Therefore we have

(\*) 
$$\sum_{\nu=1}^{\mu} \xi_{\nu} f'_{\nu}(\xi_{\nu}) = \sum_{\nu=1}^{\mu} \bar{\eta}_{\nu} \bar{f}'_{\nu}(\bar{\eta}_{\nu}) \qquad (\mu = 1, 2, \cdots).$$

We will prove that

$$\sum_{\nu=1}^{\infty} \xi_{\nu} f'_{\nu}(\xi_{\nu}) \leq 1.$$

If, on the contrary, we have

$$\sum_{
u=1}^{\infty} \xi_{
u} f'_{
u}(\xi_{
u}) > 1$$
 ,

then there exists a number  $\mu_0$  such that

$$\rho \equiv \sum_{\nu=1}^{\mu_0} \xi_{\nu} f'_{\nu}(\xi_{\nu}) > 1$$

Since

$$\sum_{
u=1}^{\mu_0} f_
u \left( rac{\xi_
u}{
ho} 
ight) \leq rac{1}{
ho} \sum_{
u=1}^{\mu_0} f_
u(\xi_
u) \leq 1$$
 ,

considering the following sequence:

$$(\xi_1, \xi_2, \dots, \xi_{\mu_0}, 0, \dots) \in l(f_{\nu})$$
,

we have

$$\sum_{\nu=1}^{\mu_0} \xi_{\nu} \eta_{\nu} \leq \rho \gamma = \gamma \sum_{\nu=1}^{\mu_0} \xi_{\nu} f'_{\nu} (\xi_{\nu})$$

by the previous lemma, and hence

$$\sum_{\nu=1}^{\mu_0} \xi_{\nu} \bar{\eta}_{\nu} \equiv \frac{\gamma}{\gamma+1} \sum_{\nu=1}^{\mu_0} \xi_{\nu} f'_{\nu}(\xi_{\nu}).$$

<sup>5)</sup> E. LANDAU: Ueber einen Konvergenzensatz, Göttingen Nachr., (1907), 25-27.

On the other hand, as  $\xi_{\nu}\bar{\eta}_{\nu} = \bar{\eta}_{\nu}\bar{f}'_{\nu}(\bar{\eta}_{\nu})$ , we have

$$\sum_{\nu=1}^{\mu_0} \bar{\gamma}_{\nu} \bar{f}'_{\nu}(\bar{\gamma}_{\nu}) \leq \frac{\gamma}{\gamma+1} \sum_{\nu=1}^{\mu_0} \xi_{\nu} f'_{\nu}(\xi_{\nu})$$
.

which contradicts the relation (\*).

Therefore we have

$$\sum_{\nu=1}^{\infty} \xi_{\nu} f'_{\nu}(\xi_{\nu}) \leq 1$$
, that is,  $\sum_{\nu=1}^{\infty} \bar{\eta}_{\nu} \bar{f}'_{\nu}(\bar{\eta}_{\nu}) < +\infty$ ,

and, since  $\bar{\eta}_{\nu}\bar{f}'_{\nu}(\bar{\eta}_{\nu}) \geq \bar{f}_{\nu}(\bar{\eta}_{\nu})$ , we have

$$\sum_{\nu=1}^{\infty} \bar{f}_{\nu}(\bar{\gamma}_{\nu}) < +\infty$$
, that is,  $\sum_{\nu=1}^{\infty} \bar{f}_{\nu} \left( \frac{\gamma}{\gamma+1} \, \gamma_{\nu} \right) < +\infty$ ,

which means that

$$(\eta_{\nu}) \in l(\overline{f}_{\nu})$$
.

As this proof is dual about  $l(f_{\nu})$  and  $l(\overline{f}_{\nu})$ , we proved that the conjugate space of  $l(f_{\nu})$  is  $l(\overline{f}_{\nu})$  and the converse.

(1.3.3) We have the following relation:

$$\overline{m}(y) = \sup_{x \in \iota(f_{\nu})} \{(y, x) - m(x)\}$$
,

where

$$(y,x) = \sum_{\nu=1}^{\infty} \xi_{\nu} \eta_{\nu}$$
  $(x=(\xi_{\nu}), y=(\eta_{\nu})).$ 

Because, we have

$$\sup_{x \in I(f_{\mathcal{V}})} \left\{ (y, x) - m(x) \right\} = \sup_{x \in I(f_{\mathcal{V}})} \left\{ \sum_{\nu=1}^{\infty} \xi_{\nu} \eta_{\nu} - \sum_{\nu=1}^{\infty} f_{\nu}(\xi_{\nu}) \right\}$$
$$= \sup_{x \in I(f_{\mathcal{V}})} \left\{ \sum_{\nu=1}^{\infty} (\xi_{\nu} \eta_{\nu} - f_{\nu}(\xi_{\nu})) \right\}.$$

(Here we need only consider such element  $x \in l(f_{\nu})$  that  $m(x) < +\infty$ ). Now, we will prove that

$$\sup_{\boldsymbol{x}\in l(\boldsymbol{f}_{\boldsymbol{\mathcal{Y}}})} \sum_{\nu=1}^{\infty} (\boldsymbol{\xi}_{\,\boldsymbol{\mathcal{V}}} \boldsymbol{\eta}_{\,\boldsymbol{\mathcal{V}}} - \boldsymbol{f}_{\,\boldsymbol{\mathcal{V}}}(\boldsymbol{\xi}_{\,\boldsymbol{\mathcal{V}}})) \! \geq \! \sum_{\nu=1}^{\infty} \sup_{\boldsymbol{\xi} \, > 0} \left( \boldsymbol{\xi} \boldsymbol{\eta}_{\,\boldsymbol{\mathcal{V}}} - \boldsymbol{f}_{\,\boldsymbol{\mathcal{V}}}(\boldsymbol{\xi}) \right) \, .$$

For any number  $\alpha > 0$  such that

$$\sum_{
u=1}^{\infty}\sup_{\xi>0}\left(\xi\eta_{
u}-f_{
u}(\xi)
ight)>lpha$$
 ,

since  $\sup_{\xi>0}\left(\xi\eta_{\,
u}-f_{\,
u}(\xi)\right)\geqq0$  , there exists  $\mu_{0}$  for which,

we have

$$\sum_{\nu=1}^{\mu_o} \sup_{\xi>0} \left( \xi \eta_{\nu} - f_{\nu\nu}(\xi) \right) > \alpha .$$

Hence there exist numbers  $\alpha_{\nu}$  ( $\nu = 1, 2, \dots, \mu_0$ ) such that

$$\sup_{\xi>0} \left(\xi \eta_{\nu} - f_{\nu}(\xi)\right) > \alpha_{\nu} , \quad \alpha_{1} + \alpha_{2} + \cdots + \alpha_{\mu_{0}} = \alpha .$$

Therefore, we can find  $\xi_{\nu}$  ( $\nu = 1, 2, \dots, \mu_0$ ) such that

$$\xi_{\,
u}\eta_{\,
u} - f_{\,
u}(\xi_{\,
u}) > \alpha_{\,
u}$$
 .

Since the sequence:

$$(\xi_1, \xi_2, \dots, \xi_{\mu_0}, 0, \dots)$$

belongs to  $l(f_{\nu})$ , we have

$$\sum_{\nu=1}^{\infty} (\xi_{\nu} \eta_{\nu} - f_{\nu}(\xi_{\nu})) = \sum_{\nu=1}^{\mu_{0}} (\xi_{\nu} \eta_{\nu} - f_{\nu}(\xi_{\nu})) > \alpha ,$$

and hence

$$\sup_{x\in I(f_{\mathcal{V}})}\sum_{
u=1}^{\infty}(\xi_{
u}\eta_{
u}-f_{
u}(\xi_{
u}))>lpha$$
 ,

so that the above inequality is obtained.

Since the converse relation:

$$\overline{m}\left(y\right) \geqq \left(y, x\right) - m\left(x\right)$$

is obvious, the relation:

$$\overline{m}\left(y\right) = \sup_{x \in I(f_{y})} \left\{ \left(y, x\right) - m\left(x\right) \right\}$$

is obtained. Similarly, we can prove

$$m(x) = \sup_{y \in I(f_{\mathcal{V}})} \left\{ (x,y) - \overline{m}(y) \right\} ,$$

so that this lemma is completely proved.

- § 2. In this section we consider two modulared sequence spaces  $l(f_{\nu})$  and  $l(g_{\nu})$ , and suppose that the functions  $g_{\nu}(\nu=1,2,\cdots)$  are strictly increasing in order that the inverse functions  $g_{\nu}^{-1}$  are uniquely determined.
- (2.1) If the functions  $f_{\nu}g_{\nu}^{-1}(\xi)$  are convex with respect to  $\xi$  and  $\sup_{\nu\geq 1}f_{\nu}g_{\nu}^{-1}(\alpha)<+\infty$  for some  $\alpha>0$ , then we have  $l(f_{\nu})\supset l(g_{\nu})$ .

Let  $x=(\xi_{\nu})\in l(g_{\nu})$ . Then there exists  $\beta>0$  such that

$$\sum_{\nu=1}^{\infty} g_{\nu}(\beta \hat{\epsilon}_{\nu}) < + \infty$$
 .

Since  $l \subset l(f_{\nu}g_{\nu}^{-1})^{6}$ , there exists  $\gamma > 0$  such that

$$\sum_{\nu=1}^{\infty} f_{\nu} g_{\nu}^{-1}( \Upsilon g_{\nu}(\beta \hat{\xi}_{\nu})) < +\infty$$
 .

As we may suppose that  $r \leq 1$ , we have

$$\sum_{\nu=1}^{\infty} \! f_{\,\nu}(\beta \varUpsilon \xi_{\,\nu}) = \sum_{\nu=1}^{\infty} \! f_{\,\nu} g_{\,\nu}^{-1} g_{\,\nu}(\beta \varUpsilon \xi_{\,\nu}) \leqq \sum_{\nu=1}^{\infty} \! f_{\,\nu} g_{\,\nu}^{-1}(\varUpsilon g_{\,\nu}(\beta \xi_{\,\nu})) < + \infty \ ,$$

that is,  $x \in l(f_{\nu})$ .

(2.2) If the functions  $f_{\nu}g_{\nu}^{\scriptscriptstyle{-1}}$  are convex and  $l(f_{\nu})$  is finite, in order that

$$l(f_{
u}) \subset l(g_{
u})$$
 ,

it is necessary and sufficient that

$$\sum_{\nu=1}^{\infty} \overline{f_{\nu} g_{\nu}^{-1}}(\alpha) < +\infty$$

for some  $\alpha > 0$ .

Sufficiency. Let  $x=(\xi_{\nu})\in l(f_{\nu})$ . Then there exists  $\beta>0$  such that

$$\sum_{\nu=1}^{\infty} f_{\nu}(\beta \xi_{\nu}) < +\infty$$
 .

Snce we have

$$\alpha g_{\nu}(\beta \hat{\xi}_{\nu}) \leqq f_{\nu} g_{\nu}^{-\mathrm{I}} g_{\nu}(\beta \hat{\xi}_{\nu} + \overline{f_{\nu} g_{\nu}^{-\mathrm{I}}}(\alpha)$$
 ,

by the assumption we have

$$\sum_{\nu=1}^{\infty} g_{\nu}(\beta \hat{\xi}_{\nu}) < +\infty$$
 , namely,  $x \in l(g_{\nu})$  .

Necessity. 1) In order that  $l(f_{\nu}) \subset l$  it is necessary and sufficient that

$$\sum_{\nu=1}^{\infty} \overline{f}_{\nu}(\alpha) < +\infty$$

for some  $\alpha > 0$ .

Taking a sequence  $(1,1,\cdots)$ , for any sequence  $(\xi_{\nu})$  such that

$$\sum_{
u=1}^{\infty} f_{
u}(\xi_{
u}) < +\infty$$
 ,

<sup>6)</sup> The symbol  $l(f_{\nu}q_{\nu}^{-1})$  is used here for convenience sake. In fact, it not always becomes a modulared sequence space, but the proposition (1.1) is valid for it.

we have

$$\sum_{\nu=1}^{\infty} |\xi_{
u}| < +\infty$$
.

Therefore, from (1.3) we obtain

$$(1, 1, \cdots) \in l(\overline{f}_{\nu})$$
,

namely, there exists  $\alpha > 0$  such that

$$\sum_{\nu=1}^{\infty} \overline{f}_{\nu}(\alpha) < +\infty .$$

2) If  $l(f_{\nu}g_{\nu}^{-}) \subset l$ , then  $l(f_{\nu}) \subset l(g_{\nu})$ . Let  $x = (\xi_{\nu}) \in l(f_{\nu})$ , then there exists  $\alpha > 0$  such that

$$\sum_{\nu=1}^{\infty} f_{\nu}(\alpha \xi_{\nu}) < +\infty .$$

Hence, since

$$\sum_{
u=1}^{\infty} f_{
u} g_{
u}^{-1} g_{
u}(\alpha \xi_{
u}) < + \infty$$
 ,

by the assumption we have

$$\sum_{
u=1}^{\infty} g_{\,
u}(lpha \xi_{\,
u}) < + \, \infty$$
 , namely,  $x \in l(g_{\,
u})$  .

3) If  $l(f_{\nu}) \subset l(g_{\nu})$ , then  $l(f_{\nu}g_{\nu}^{-1}) \subset l$ . Let  $x = (\xi_{\nu}) \in l(f_{\nu}g_{\nu}^{-1})$ , then there exists  $\alpha > 0$  such that

$$\sum_{
u=1}^{\infty} f_{
u} g_{
u}^{-1}(\alpha \xi_{
u}) < +\infty$$
 ,

so that

$$\sum_{\nu=1}^{\infty} g_{\nu} g_{\nu}^{-1}(\alpha \xi_{\nu}) < +\infty$$
, namely,  $x \in l$ .

4) If  $l(f_{\nu})\subset l(g_{\nu})$ , from 3) we have

$$l(f_{\,
u}g_{\,
u}^{\scriptscriptstyle -1})\!\subset\! l$$
 .

Hence there exists  $\alpha > 0$  such that

$$\sum_{\nu=1}^{\infty} \overline{f_{\nu} g_{\nu}^{-1}}(\alpha) < +\infty .$$

§ 3. SCHUR's lemma" in sequence spaces l was generalized by

<sup>7)</sup> J. Schur: Ueber lineare Transformation in der Theorie der unendlichen Reihen, Jour. für reine und angew. Math., 151 (1921), 79-111.

H. Nakano<sup>3)</sup> and I. Halperin-H. Nakano<sup>4)</sup> to the modulared sequence spaces  $l(p_1, p_2, \cdots)$ ,  $\lim_{\nu \to \infty} p_{\nu} = 1$ . In this section, we will establish the generalization in the general modulared sequence spaces. For this purpose, we use the notion of the exponents of modulars considered in the previous paper.<sup>8)</sup>

The upper (lower) exponent of modular  $f_{\nu}$  is the greatest lower (least upper) bound of such number  $p \ge 1$  such that the function of  $\xi > 0$ :

$$f_{
u}(\xi)/\xi^p$$

is non-increasing (non-decreasing) and denoted by  $\chi^{f_{\nu}}(\chi_{f_{\nu}})$ .

Then the following relations are obtained:

$$\begin{split} &\chi_{f_{\nu}} \cdot f_{\nu}(\xi) \leqq \xi f'_{\nu}(\xi) \leqq \chi^{f_{\nu}} \cdot f_{\nu}(\xi) \\ &\frac{1}{\chi^{f_{\nu}}} + \frac{1}{\chi_{f_{\nu}}} = \frac{1}{\chi_{f_{\nu}}} + \frac{1}{\chi^{f_{\nu}}} = 1 \; . \end{split}$$

(3.1) If, in the modulared sequence space  $l(f_{\nu})$ ,  $\lim_{\nu \to \infty} \chi^{f_{\nu}} = 1$  and every  $f'_{\nu}$  is strictly increasing, then the weak convergence and strong convergence coincide in  $l(f_{\nu})$ .

Let a sequence of elements:

$$oldsymbol{x}_{\mu} = (\xi_1^{(\mu)}, \; \xi_2^{(\mu)}, \cdots) \in l(f_{
u}) \qquad \qquad (\mu = 1, 2, \cdots)$$

be weak convergent to 0, then we have

$$egin{aligned} \lim_{\mu o \infty} \xi_{
u}^{(\mu)} &= 0 \ \sup_{\mu \geq 1} \|x_{\mu}\| < + \infty \end{aligned} ,$$

Hence, we can suppose that

$$||x_{\mu}|| \leq 1$$
, namely,  $m(x_{\mu}) \leq 1$ .

If there exists a positive number  $\epsilon > 0$  for which

$$m(x_{\mu}) > \varepsilon$$
 ,

then we can find a partial sequence  $\nu_{\mu}(\mu=1,2,\cdots)$  such that

$$\sum_{
u=
u_{\mu}}^{
u_{\mu+1}-1} f_{
u}(\xi_{
u}^{(\mu)}) > \varepsilon$$
,  $\chi_{f_{
u}} \leq 1 + \frac{1}{2^{\mu}}$ , that is,  $\chi_{\bar{f}_{
u}} \leq 1 + 2^{\mu}(\nu \geq \nu_{\mu})$ .

<sup>8)</sup> S. YAMAMURO: Exponets of the modulared semi-ordered linear spaces, Jour. Fac. Science, Hokkaidô University, XII (1953), 211-253.

Putting

$$\eta_{\nu} = 0 \quad \text{for} \quad \nu < \nu_{1}$$

and

$$\eta_{
u} = f_{
u}'(\hat{\tau}_{
u}^{(u)})$$
 for  $u_{\mu} \leq 
u < 
u^{\mu+1}$ ,

we have

$$\eta_{
u}ar{f}_{
u}'(\eta_{
u}) = \xi_{
u}^{(\mu)}f_{
u}'(\xi_{
u}^{(\mu)}) \qquad (
u_{\mu} \leq 
u < 
u_{\mu+1}),$$

and hence

$$\begin{split} \sum_{\nu=\nu_{\,\mu}}^{\nu_{\,\mu+\,1}-1} \bar{f}_{\,\nu}(\gamma_{\,\nu}) & \leq \sum_{\nu=\nu_{\,\mu}}^{\nu_{\,\mu+\,1}-1} \frac{1}{2^{\mu}+1} \gamma_{\,\nu} \bar{f}_{\,\nu}'(\gamma_{\,\nu}) = \sum_{\nu=\nu_{\,\mu}}^{\nu_{\,\mu+\,1}-1} \frac{1}{2^{\mu}+1} \xi_{\,\nu}^{(\mu)} f_{\,\nu}'(\xi_{\,\nu}^{(\mu)}) \\ & = \sum_{\nu=\nu_{\,\mu}}^{\nu_{\,\mu+\,1}-1} \frac{1}{2^{\mu}} \cdot \frac{2^{\mu}}{2^{\mu}+1} \xi_{\,\nu}^{(\mu)} f_{\,\nu}'(\xi_{\,\nu}^{(\mu)}) \leq \sum_{\nu=\nu_{\,\mu}}^{\nu_{\,\mu+\,1}-1} \frac{1}{2^{\mu}} f_{\,\nu}(\xi_{\,\nu}^{(\mu)}) \leq \frac{1}{2^{\mu}} \,, \end{split}$$

so that we have

$$\sum_{\nu=1}^{\infty} \overline{f}_{\nu}(\eta_{\nu}) \leq 1$$
 .

On the other hand we obtain

$$\sum_{\nu=1}^{\infty} \xi_{\nu}^{(\mu)} \eta_{\nu} \ge \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \xi_{\nu}^{(\mu)} \eta_{\nu} = \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} \xi_{\nu}^{(\mu)} f_{\nu}'(\hat{\xi}_{\nu}^{(\mu)}) \ge \sum_{\nu=\nu_{\mu}}^{\nu_{\mu+1}-1} f_{\nu}(\hat{\xi}_{\nu}^{(\mu)}) > \varepsilon ,$$

which is impossible, because  $x_{\mu}(\mu=1,2,\cdots)$  is weakly convergent to 0.

- (3.2) If a modulared sequence space  $l(f_{\nu})$  satisfies the following conditions:
  - 1) The weak convergence and the strong convergence coincide;
  - 2)  $0 < \inf_{\nu \ge 1} f_{\nu}(1) \le \sup_{\nu \ge 1} f_{\nu}(1) < +\infty$ ;
  - 3)  $f'_{\nu}$ ,  $\overline{f}'_{\nu}$  are strictly increasing,

then, for any number  $\varepsilon > 0$  we have

$$\chi_{r_{\nu}} < 1 + \varepsilon$$

for almost all  $\nu$ .

Suppose that

$$\chi_{f_{\nu}} > 1 + \varepsilon$$
  $(\nu = 1, 2, \cdots)$ .

for some  $\varepsilon > 0$ . Then, it is obvious that

$$\chi_{ar{f}_{
u}} < rac{1+arepsilon}{arepsilon} \qquad (
u = 1, 2, \cdots)$$

for the modular conjugate space  $l(f_{\nu})$ . (See (1.3)). Now, take such elements  $e_{\mu} = (\eta_{\nu}^{(\mu)})(u=1,2,\cdots)$  that

$$\eta_{
u}^{(\mu)} = \left\{ egin{array}{ll} 1 & ext{for} & 
u = \mu \ , \ 0 & ext{for} & 
u star \mu \ , \end{array} 
ight.$$

then, for any  $x = (\xi_{\nu}) \in l(\overline{f}_{\nu})$ , we have

$$(x,e_{\mu})=\xi_{\mu}$$
  $(\mu=1,2,\cdots)$ .

Since the sequence is bounded, putting  $\xi_0 = \sup_{\nu > 1} |\xi_{\nu}|$ , we obtain

and

$$\lim_{\mu o \infty} ar{f}_{\mu} \left( rac{m{\xi}_{\mu}}{m{\xi}_{0}} 
ight) = 0$$
 .

Hence it follows that

$$\lim_{\mu o\infty} {f x}_\mu\,=\,0$$
 ,

so that the sequence of elements  $e_{\mu}(\mu=1,2,\cdots)$  is convergent weakly to 0.

On the other hand, we see easily that

$$m\left(e_{\mu}
ight)=f_{\mu}\left(1
ight)\!\geqq\!\inf_{\mu\geq1}f_{\mu}\left(1
ight)\!>\!0$$

for every  $\mu = 1, 2, \dots$ , which contradicts the assumption.