MODULARED SEQUENCE SPACES
By |
Sadayuki YAMAMURO_»

A collection R of sequences of real numbers is called a modulared
sequence spaces, if a modular is defined on R so that R becomes a modu-
lared semi-ordered linear space.” . :

The case, when the modular is of unique spectra, was considered
by W. Orricz,® H. Nakano® and I. Harrerin—-H. Nakaxo.® The purpose
of this paper is to generalize some of their results.

§1. A modulared sequence space is generated by a sequence of non-
decreasing convex functions of a real variable:

I, Soy coeees
which satisfies the following properties :
L fL@®=0:
(2) lim £,@)=7,@;
(8) lmF,© =+ ; .
(4) there exists a real number a>0 (depending on each
fv) such that f,(a)< + oo,

for every v=1,2,---. Namely, f, (v=1,2, ---) are modulars on the space
of real numbers.
For this sequence : .

fl: f-z, """ ’

the set of such sequences of real .n‘umbers (¢,) that
i‘Ify (a8,) < +oo
-

for some a>0 is a modulared sequence space, putting its modular

. 1) H. NAKANO: Modulared semi-ordered linear spaces, Tokyo Mathematical Book
Sevies, Vol. 1 (1950).
2) W. OsLicz: Ueber konjugierten Exponentenfolgen, Studia Math, III (200-211).
3) H. NAKANO: Modulared sequence spaces, Proc. Japan Acad., 27 (1951), 508-512.
4) I HALPERIN and H. NAKANO: Generalized [? spaces and the Schur property,
Journal Math. Soc. Japan, 5 (1953), 50-58. v :
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‘m (x) as
7n(w):§1fu(§u) » fOI‘ w’_( u)

This modular is monotone complete. Hence, this space is a BANACH
space by the norms induced by the modular. This modulared sequence
space is denoted by I(f,) in this paper. ‘

‘When the modular is of unique spectra, namely when

f, @6 = ¢grv : (u—-l 2, 550)

for a sequence of real numbers p,=21 (v= 1,2, ---), thlS Iﬁodulered
sequence space was denoted by I(p;, p,,---) and considered by the

authors mentioned above. In ‘this case it is obvious tha'q
| | lCl(Z)npz"")'Cm,

where ! is a space of summable sequences and m is of bounded
sequences, namely, ! is a modulared sequence space with

G | v=1,2,---, £€>0),
and m is also a modulared sequence space with, for instance,

f (@) = (¢+=1,2,-,6>0).
But, in general cases, this fact is not always true ‘

(1.1) If Icl(f,) and I(f)) is finite (that is, m(x)<+oo Sor every
x€ l(f,), then there exists a real number a>0 such that sup fu(@@) < + o,

Conversely, if sup fo(@)< +oo, then we have L I(f)).
If sup £ (a) = + oo for every a>0, then we can select a subsequence
v (= 1 2 --) for which we have

fy}h<_zg>>1 (=1,2,").
Then, such a sequence (a,) that
_ , )
. — o7 | for v=v,,
0 fOI' 'V'—)F U‘u,' P

satisfies

§ fu(ay): +ec and v(aV)El"‘
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contradicting the assumption. ,
Conversely, if there exists a>0 such that supf,(2) < 4o, then
’ , vzt

we have » .
Frae)=18,] (@  for almost all »
for every (£,)€l, so that (¢,)€l(f.). ‘

S1m11arly, ‘we .can prove:

(1. 2) If I(f,)cm, then there exzsts a real number a>0 such that
inf f,(a)> 0. Conversely, if inff,(:)>0 for some a >0, then we have
vzl vz1 ' ‘

l(fy) Tm.
- Now, putting

£ (E)—mff (5+5> fu(E)

€>0

we have

£e={rede,

and there exist non-decreasing functlons gy (7) (v*=1,2, ---), which satisfy
the following properties:

9, (— 0)<$<g,(77+0) if 5=s,@),
FLE—0=9=f,E+0) if £=9,(.
Then the functions: , |
. i ’ .
Fo={e.md =12
are also modular’s‘on the real line and we have
g =f,O+F. () for every &,7>0,
and ' |
af = fu(@+Fv@B)
if ' ‘ o

L (a-0=<B=f,(x+0),
9, B-0=a=g,(B+0).

In the sequel, we will denote 9, by F,(v=1,2,..).
Next, we will investigate the relation between I(f,) and I(£f)).
The fact is already known by the general theory of modulared semi-
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~ordered linear spaces. Here, we will use only the calculation of
sequences.

(1.3) The modula{r conjugate space of I(f,) is I(Ff,) and m is the con-
Jugate modular of m, provided that inf f,(a)> 0 for some a>0 and f, f,
, vzl v » .

are continuous.
Lemmas (1.3.1)—«1.3. 3) constitute the proof.

(1.8.1)  For any element y=(y,)€ l(f,,), there exists a 'number 7 such
that o ,

oo

DEMLET

v=1

Sor every x—(e;,,)el(f,,) satisfying m@)=1.
If we can not find such 7, there ex1sts a sequence of sequences

(&) (1 =1,2, )

such that the following properties are satisfied :

- fu(g('u))<1 (1“:1’2»”.')!

’U

;“: &Py, > 2%u (x=1,2,--).

1

This sequence is bounded with respect to p. Because, if there exists
a term &, such that

& >1,
then we have
[é*“’lfy(a)<fu(a5 V) = <1,

Therefore, a sequence :
Ty — ﬁ; _5'}/}1’) - ) (U: 1[2’ ...)
is obtained, and

o0 oo 1 . 1 oo ‘ .
V‘ Ty = ML/ P = 771/5?)@ =¢ .
y- y=1' p=1 2 2% v=1

On the other hand we ha_vve

S0)=E50 (8 ) sEE Hrenst,

contradicting the assumption.
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(1.3.2) For a sequence (y,), if we have

oo

21 §,7, < + o0

Y =

Jor every element ‘(E W) ELS), then (3,)EL(F,). (A generalization of LANDAU’s

theorem.”)
For the number 7:>0 in the previous lemma, when we put
9, =@+1%, and F,(G)=6&, v=1,2-),
we have '

£ = W Fv@) EvFLE)=7,F"7) .

Therefore we have ‘
(*) SafiE)=2n5a)  (w=12-).
We will prove that '
DENACHES I
If, on the contrary, we have
EICHES
then there exists a number g, such that

p= 36, fLE)>1.

ya=1

Since

3505 g% Uxﬁ:,ff.,@u) <1,

considering the fo]loWing sequence : -
(Ely 527 "'IE;.LOI Oy )E l(fu)’
we have
p‘o rpo ,
Sép=er=1 6,16
v=1 ‘ v=1

by the previous lemma, and hence

S Mg B . T
E EUVU —>—~W”‘

S, £, (€,)
gen s Ly e,

5) E. LANDAU: Ueber einen Konvergenzensatz, Gottingen Nachr., (1907), 265-217.
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On the other hand, as £,7,=7%,7,(,), we have

V?::’?uf (7711): .;,_*_ 5:15 f (Su\

which contradicts the relation (*).
Therefore we have
S 6, @)1, that is, D AFLG) <+,

and since %f (Vy)>f (’h)
we have

i‘ fu(%)<+oo, that is, % I (—-.,_T,_Arj,,),('.;.oo . )
v=1 N v=1 A7+1

which means that o
| IEUF) . |

As this proof is dual about I(f,) and I(f,), we proved that the conjugate
space of U(f,) is U(F,) and the converse. - ‘

(1.3.3) We have the following relatiqn :
7 () = sup |y, ®)—m @] ,
z€ (5 .
where
(y’x) :,AEJEV”V ’ (x:(su) s y:(771/>) .

Because, we have

sup ’(y,ﬂ)*M(x)] = sup. {Z U’?u"‘g‘.;fu(sy)}

z€iSy) mCl fy)

= sup {H (éwv ';_f-u(.su))}

z€2(fy)d

(Here we need only consider such element z€l(f,) that m(x)<+:>o)
Now, we will prove that

sup Z(éym fy(s,,))> Sup(fvu-- u(E))

2 fy)v=1
For any number a>0 such that
5 sup 61—, @)= s

since sup(sy,—f,(¢)=0, there exists p, for which,
e SUbTy T ) ©X ar ,
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we have
;‘3 sup (&7, —fu (@)= a .
Hence there exist numbers «,(»=1,2, .-, 4) such that
L smEn—f @)@, atabeta,=a.
Therefore, we can find &,(v=1,2,---,11) such that
G >,
Since the sequence : v
' " Gy Ear oy Epyy 0, -7)
belongs to I(f,), we have

2, G —FEN= X G —FEN >,

and hence

csup S Gy —fuEN) > a,

) zCI(Sy) v=1
so that the above inequality is obtained.
Slnce the converse relation : )
7 (y) = (y, ) — m (%)
is obvious, the relation:
7 (y) = sup |, x)—m @)
z€US Y
is obtained. S»imil'arlly, we can prove
m(x) = sup J(90,?/) m(?/)f ,
y€:fy)

so that this lemma is completely proved.

§2. In this section we consider two modulared sequence spaces
I(f,) and I(g,), and suppose that the functions g,(»=1,2,---) are strictly
increasing in order that the inverse functions g¢g;' are uniquely de-
termined. | |

(2.1) If the functions f,g;'(€) are convex with respect to & and
su?f,,g;’(a)< +oo for some a>0, th;m we have I(f,)>1(g,).

Let z=(¢,)€l(g,). Then there exists 3>0 such that
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=]

2 9,(B8) < oo
Since Icl(f,9;)”, there exists 7>0 such that

S 0500, (BE)) < +oo .
As we may supposz that T‘glh, we have

“fy(BTEy) —qugu ql/(;BT&/) S fug '(rg, (B%,)) < +oo

that is, z€I(f,).

(2. 2) If the functions fv9y' are convex and I(f,) ts finite, in order
that '

l(fu)'c l(gu) ’
it is necessary and sujfficient that
Z 197 ‘(a) < +oo

for some a>0.
Sufficiency. Let x= (, ,)El(f,,) Then there exists >0 such that

BB < oo

Snce we have
|

ag,(B&,) <fugy gu(ﬂw+f,,g (a)
by the assumption we have

L?"]g” (B¢,)< +o0, mnamely, xz€l(g),).

Necessity. 1) In order that I(f,) c“l it is mecessary and sufficient
‘that : ’ B

| 3 Fu (@) < + oo
for some a>0. \ .
Taking a sequence (1,1,---), for any sequence (£,) such that

élfu(éy)<+°° ’

6) The symbol [(fyqy—1) is used here for convenience sake. In faect, it not always
becomes a modulared sequence space, but the proposition (1.1) is valid for it.
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we have

'ﬁj'su[<+°°'-
Therefore, from (1.3) we obtain -

1,1,--)el(f.,),
namely, there exists a>0_ such that

Ef (a)<—}<>o.

Y=t

2 . If Uf.z)Cl , then UF)clg,). |
Let z=(¢,)€l(f,), then there exists a>0 such that

;ffy (a”i”/) < +too.

Hence, since

oo

= fognia(ag ,)<+<><> ;
by the assumption we have
fjgu (a,) < +oco, mnamely, z€l(g,).
v= C- g

3 If USf)CUg,), then U(f,g;)C. -
Let x=(¢ ,,)El(f,,g "), then there exists a>0 such that

Elf W97 (2€,) < + oo,
V=
so that
2 g,,g,’(a ,)< +oo, mnamely, z€l.

4) If I(f)cl@)), from 8) we have

_ ! (fygf)cl
Hence there exists a>0 such that

2 fyg; ()< +oo .

§3. SCHUR’s lemma® in sequence spaces ! was generalized by

7) J. SCHUR Ueber lineare Transformation in der Theorie der unendhchen Reihen,
Jour. fiir reine und angew. Math., 151 (1921), 79-111.
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H. Naganxo® and I. Harrerin-H. Nagano® to the modulared sequence
spaces l(p,,pz,- ), hmp,,—l In this section, we will establish the
generalization in the general modulared sequence spaces. For this
purpose, we use the notion of the exponents of modulars considered in

the previous paper.”
The upper (lower) exponent of modular f, is the greatest lower (least

upper) bound of such number p=1 such that the function of £>0:

/e

is non-increasing (non-decreasing) and denoted by 27 (¥;,).
Then the followmg relations are obtained : ‘
L, FLOZEFHO=L £, E>0),
1 1 1 ;1 : :
= +——=1.
X' + e, X, X
(3.1) If, in the modulared sequence space L(f,), hm Yv=1 and every

£, s strictly increasing, ‘then the weak convergence cmd strong convergence
coincide in 1(f),). \
Let a sequence of elements:

T, = (ﬁ(m g L Nellf,) (F =1,2, )
be weak convergent to 0, then we‘have o A
lim £ = 0 L v=1,2,:),
® o0 “

sup [|zpl] < +oo .
nzi ‘

Hence, we can suppose that
le.l| <1, namely, m,)=<1.
If there exists a positivé number >0 for Which
m(:vp) >e, |

then we can find a partial secjuence ve(rp=1,2,---) such that N

J/PJ*I lf (E(P-))> e ,
V'U;L . . )
1 <1+ ;”, that is, %5, <1+2°(=v,).

, . 8) . S. YAMAMURO: Exponets of the modulared seml-ordered hneat' spaces, Jout‘ Fac
Sclence, Hokkaidé University, XII (1953), 211-253.
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Putting
7, =0 for v < vy
and ' - ‘
. 7, =F,(E) for py=Sv<p®t?,
we have
' ’/uf (77u) = 5 nf,;(‘“’) (v“ v< V1),
and hence ' ‘
Vpt,-t .__ Y4 —1 1 —, Vpr—
AN < s .= , DS a9 ) y A
uf_yp}b fy(riy)——— Vﬂ[/}b 2}1, vU-fb(vU) ‘__;, 2”, +1§ f (
_ U}LY‘]“I——];‘ & E(}J-)fy (»(M>< 2‘ (E‘\P-)><li .
= v = s
U-U}),, » 2 +1 y;-yp“ 2
so that we have
| S fm)=1.
On the other hand we obtain
Vs -1 ' .V;L«n Vidg—l »
S" E/ vu/ t\ E(}/”)vy: E E(M)f ((H)>> E f)/ "(P'))>8 ,
e l/"‘b"u, ‘ Y=Yy, V=V

which is impossible, because z,.(u=1,2, ---) is weakly convergent to 0.
3.2) If a modulared sequence space l(f,) satisfies the f ollowing
conditions : |
1) The wealk convergence omd the strong convergence coincide ;
2) 0<1£1\f1f,,(1)§31'/1£)1f,,(1)<+oo ;
3 fu, f_’,, are strictly increasing,
then, for any number €>0 we have

X, <1l+4e
for almost all v .
Suppose that :
X, >1+e (»=1,2, ).
for some ¢>0. Then, it is obvious that
Yy < ];:8, (V“—“l,Z, )

rfor the modular conjugate space I(f,). (See (1. 3)).
Now, take such elements e, = (»{")(«=1,2, ---) that
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{1 for v=1p,

ey —

. Uv‘—lo for vaxpu,
then, for any «=(¢£,)€Il(f,), we have .
. - (x,'e“) — E}J- . (‘u:l, 2,...).
Since the sequence is bounded, putting & =sup|&,|, we obtain
o - . ’ vzi
7 (S \>( &V 72 > (S \E 7 1
()R noz (G e,

and

.limfp(5“>= 0.

fveo &o
Hence it follows that

imé, =0,

Koo

so that ths sequence of elements e,(#x=1,2,---) is convergent weakly

to 0. : 4
On the other hand, we see easily that

m(e.) = fu(1>_2_i,jllffu(l>>0

for every p=1,2,.--, which contradicts the assumption.



