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The extended zero-divisor graph of a commutative ring I
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Abstract. Let R be a commutative ring with identity, and let Z(R) be the set of

zero-divisors of R. The extended zero-divisor graph of R is the undirected (simple)

graph Γ′(R) with the vertex set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and

y are adjacent if and only if either Rx∩Ann(y) 6= (0) or Ry∩Ann(x) 6= (0). It follows

that the zero-divisor graph Γ(R) is a subgraph of Γ′(R). It is proved that Γ′(R) is

connected with diameter at most two and with girth at most four, if Γ′(R) contains

a cycle. Moreover, we characterize all rings whose extended zero-divisor graphs are

complete or star. Furthermore, we study the affinity between extended zero-divisor

graph and zero-divisor graph associated with a commutative ring. For instance, for a

non-reduced ring R, it is proved that the extended zero-divisor graph and the zero-

divisor graph of R are identical to the join of a complete graph and a null graph if and

only if annR(Z(R)) is a prime ideal.

Key words: Extended zero-divisor graph, Zero-divisor graph, Complete graph.

1. Introduction

One of the interesting and active area in the last decade is using graph
theoretical tools to study the algebraic structures. There are several papers
devoted to the study of rings in this approach (see [1], [4], [8], [13], [2],
and [16]). For most recent study of a graph that is a generalization of the
classical zero-divisor graph see [9]. For a very useful survey article on the
classical zero-divisor graph see [3].

Throughout this paper, R denotes a unitary commutative ring which is
not an integral domain. We denote by Min(R), Z(R), Nil(R) and U(R), the
set of all minimal prime ideals of R, the set of all zero-divisor elements of R,
the set of all nilpotent elements of R and the set of all invertible elements
of R, respectively. An element r ∈ R is called regular if r 6∈ Z(R). We say
that depth(R) = 0, whenever every non-unit element of R is a zero-divisor.
The ring R is said to be reduced if it has no non-zero nilpotent element. For
every subset A of R, we denote the annihilator of A by Ann(A). Moreover,
for the subset A of R we let A∗ = A \ {0}. For any undefined notation or

2010 Mathematics Subject Classification : 13A15, 13B99, 05C99.



382 M. Bakhtyiari, M. J. Nikmehr, and R. Nikandish

terminology in ring theory, we refer the reader to [7], [10].
Let G = (V, E) be a graph, where V = V (G) is the set of vertices

and E = E(G) is the set of edges. By G, we mean the complement graph
of G. The diameter and the girth of a graph G are denoted by diam(G)
and girth(G), respectively. We write u − v, to denote an edge with ends
u, v. A graph H = (V0, E0) is called a subgraph of G if V0 ⊆ V and
E0 ⊆ E. Moreover, H is called an induced subgraph by V0, denoted by
G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E | u, v ∈ V0}. Let G1 and G2

be two disjoint graphs. The join of G1 and G2, denoted by G1 ∨ G2, is
a graph with the vertex set V (G1 ∨ G2) = V (G1) ∪ V (G2) and edge set
E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}. Also G is
called a null graph if it has no edge. A complete bipartite graph of part
sizes m,n is denoted by Km,n. If m = 1, then the complete bipartite graph
is called a star graph. Also, a complete graph of n vertices is denoted by
Kn. For any undefined notation or terminology in graph theory, we refer
the reader to [17].

In this paper, we introduce and study the notion of extended zero-divisor
graph associated with a commutative ring. The extended zero-divisor graph
of a commutative ring R is the undirected (simple) graph Γ′(R) with the
vertex set Z(R)∗ = Z(R)\{0}, and two distinct vertices x and y are adjacent
if and only if either Rx∩Ann(y) 6= (0) or Ry∩Ann(x) 6= (0). We investigate
the interplay between the graph-theoretic properties of Γ′(R) and the ring-
theoretic properties of R. We study the connectedness, diameter and girth
of Γ′(R). Also we completely characterize all rings R for which Γ′(R) is a
star graph or has a vertex adjacent to every other vertex. The zero- divisor
graph of a ring R, denoted by Γ(R), is a graph with the vertex set Z(R)∗

and two distinct vertices x and y are adjacent if and only if xy = 0. In the
last section of this paper, we study some relations between two graphs Γ(R)
and Γ′(R).

2. Basic Properties of Extended Zero-Divisor Graphs

In this section, we study fundamental properties of Γ′(R). It is shown
that Γ′(R) is always a connected graph and diam(Γ′(R)) ≤ 2. Moreover,
we prove that if Γ′(R) contains a cycle, then girth(Γ′(R)) ≤ 4. Finally, it is
shown that if Γ′(R) contains a cycle, then girth(Γ′(R)) = 4 if and only if R

is reduced with |Min(R)| = 2.
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The following lemma has a straightforward proof that is omitted.

Lemma 2.1 Let R be a reduced ring, and let x ∈ Z(R)∗. Then
(1) Ann(x) = Ann(xn) for each positive integer n ≥ 2.
(2) Rx ∩Ann(x) = (0).

The following lemma has a key role in this paper.

Lemma 2.2 Let R be a ring.

(1) If x − y is an edge of Γ(R) for some distinct x, y ∈ Z(R)∗, then x − y

is an edge of Γ′(R).
(2) If x − y is not an edge of Γ′(R) for some distinct x, y ∈ Z(R)∗, then

Ann(x) = Ann(y). If R is a reduced ring, then the converse is also true.
(3) If Ann(x) * Ann(y) or Ann(y) * Ann(x) for some distinct x, y ∈

Z(R)∗, then x− y is an edge of Γ′(R).
(4) If Rx ∩ Ann(x) 6= (0) for some x ∈ Z(R)∗, then x is adjacent to all

other vertices in Γ′(R). In particular, if x ∈ Nil(R)∗, then x is adjacent
to all other vertices.

(5) Γ′(R)[Nil(R)∗] is a complete subgraph of Γ′(R).

Proof. (1) Suppose that x− y is an edge of Γ(R) for some distinct x, y ∈
Z(R)∗. Thus xy = 0 and clearly x ∈ Rx ∩ Ann(y). Hence x− y is an edge
of Γ′(R).

(2) Suppose that x− y is not an edge of Γ′(R) for some distinct x, y ∈
Z(R)∗. Then Rx∩Ann(y) = (0) and Ry∩Ann(x) = (0) and so RxAnn(y) =
(0) and RyAnn(x) = (0). Hence Ann(x) = Ann(y). If R is a reduced ring,
then by Part (2) of Lemma 2.1, Rx ∩ Ann(x) = (0), for every x ∈ Z(R)∗.
This fact together with Ann(x) = Ann(y) imply that x − y is not an edge
of Γ′(R).

(3) It is clear by Part (2).
(4) Assume that Rx ∩ Ann(x) 6= (0) for some x ∈ Z(R)∗, and let y

be another vertex of Γ′(R). If x is not adjacent to y, then by Part (2),
Ann(x) = Ann(y) and hence Rx ∩Ann(y) 6= (0), a contradiction.

(5) By Part (4), it is trivial. ¤

By [5, Theorem 2.3], for every ring R, the zero-divisor graph Γ(R) is a
connected graph and diam(Γ(R)) ≤ 3. Moreover, if Γ(R) contains a cycle,
then girth(Γ(R)) ≤ 4 (see [15]). By using Theses facts and Lemma 2.2, we
have the following result.
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Theorem 2.3 Let R be a ring. Then Γ′(R) is connected and
diam(Γ′(R)) ≤ 2. Moreover, if Γ′(R) contains a cycle, then girth(Γ′(R)) ≤
4.

Proof. By Lemma 2.2 (1), Γ(R) is a subgraph of Γ′(R) such that
V (Γ′(R)) = V (Γ(R)). So Γ′(R) is connected and girth(Γ′(R)) ≤ 4.

Now, we show that diam(Γ′(R)) ≤ 2. If Nil(R) 6= (0), then by Lemma
2.2 (4), diam(Γ′(R)) ≤ 2. If Nil(R) = (0) and d(x, y) 6= 1, for some distinct
x, y ∈ Z(R)∗, then Ann(x) = Ann(y), by Lemma 2.2 (2). Since Nil(R) =
(0), Lemma 2.1 implies that Ry ∩ Ann(y) = (0). Therefore, for every 0 6=
z ∈ Ann(y), both of x and y are adjacent to z and hence d(x, y) = 2. This
completes the proof. ¤

The next theorem shows that girth(Γ′(R)) = 4 may occur.

Theorem 2.4 Let R be a ring and Γ′(R) contains a cycle. Then
girth(Γ′(R)) = 4 if and only if R is reduced with |Min(R)| = 2.

Proof. First suppose that girth(Γ′(R)) = 4. If Nil(R) 6= (0), then by
Lemma 2.2 (4), girth(Γ′(R)) = 3, a contradiction. Thus Nil(R) = (0). Now,
let x ∈ Z(R)∗. We show that Ann(x) is a prime ideal of R. To see this,
assume that ab ∈ Ann(x) such that a 6∈ Ann(x) and b 6∈ Ann(x). This
implies that ax 6= 0 and bx 6= 0 but axbx = 0. So for every 0 6= c ∈ Ann(x),
it is easy to see that c − ax − bx − c is a triangle, a contradiction. Hence
Ann(x) is a prime ideal. Since R is reduced, Lemma 2.1 (2) together with [12,
Corollary 2.2] imply that Ann(x) is a minimal prime ideal. By using a similar
argument, Ann(y) is a minimal prime ideal, for every 0 6= y ∈ Ann(x).
Now, we prove that Min(R) = {Ann(x),Ann(y)}. It is enough to show that
Ann(x)∩Ann(y) = (0). Assume to the contrary, 0 6= a ∈ Ann(x)∩Ann(y).
Thus a−x−y−a is a triangle (as xy = 0), a contradiction. Hence Min(R) =
{Ann(x),Ann(y)}.

Conversely, suppose that R is reduced and |Min(R)| = 2. Let p1, p2 be
the minimal prime ideals of R. Since R is reduced, we have Z(R) = p1 ∪ p2

and p1 ∩ p2 = (0), by [12, Corollary 2.4]. It is not hard to see that Γ′(R) =
K|p∗1 |,|p∗2 |. As Γ′(R) contains a cycle, girth(Γ′(R)) = 4. ¤
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3. Star or Complete Extended Zero-Divisor Graphs

In this section, we classify all rings with complete or star extended
zero-divisor graphs. First, we characterize all rings R for which the graph
Γ′(R) has a vertex adjacent to every other vertex. Indeed, the first result in
this section is applied to characterize all rings whose extended zero-divisor
graphs are star or complete.

Theorem 3.1 Let R be a ring. Then there is a vertex of Γ′(R) which is
adjacent to every other vertex if and only if one of the following statements
holds.

(1) R ∼= R1 × R2, where R1 and R2 are rings such that |U(Ri)| = 1 and
depth(Ri) = 0, for some 1 ≤ i ≤ 2.

(2) Nil(R) 6= (0)

Proof. Suppose that a ∈ Z(R)∗ is adjacent to every other vertex and
Nil(R) = (0). If a 6= a2, then either Ra ∩Ann(a2) 6= (0) or Ra2 ∩Ann(a) 6=
(0), which contradicts Lemma 2.1. Thus a = a2 and so by Brauer

,

s Lemma
(see[14, 10.22]), R ∼= Ra × R(1 − a). We may assume that R ∼= R1 × R2

with (1, 0) adjacent to every other vertex. Now, for any 1 6= u ∈ U(R1),
it is easy to see that (1, 0) is not adjacent to (u, 0), a contradiction unless
1 = u. Hence, |U(R1)| = 1. Also, if depth(R1) 6= 0 and r ∈ R1 is regular,
then (1, 0) is not adjacent to (r, 0), a contradiction.

Conversely, assume that one of the (1) or (2) is satisfied. Condition
(2) implies that every element of Nil(R)∗ is adjacent to every other vertex,
by Lemma 2.2 (4). If (1) holds, then, with no loss of generality, one may
assume that |U(R1)| = 1 and depth(R1) = 0. It is easily seen that (1, 0) is
adjacent to every other vertex. ¤

It is known that if R is a ring such that depth(R) 6= 0, then R is infinite.
Also, Ganesan ([11]) proved that if R is infinite and Z(R) 6= (0), then Z(R)
must be infinite (in fact |R| ≤ |Z(R)|2 when 2 ≤ |Z(R)| < ∞). We are now
in a position to characterize all rings whose extended zero-divisor graph is
star.

Theorem 3.2 Let R be a ring. Then Γ′(R) is a star graph if and only if
one of the following statements holds:
(1) R ∼= Z2 ×D, where D is an integral domain.
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(2) |Z(R)| = 3.
(3) Nil(R) is a prime ideal of R and |Nil(R)| = 2.

Proof. First suppose that Γ′(R) is a star graph. By Lemma 2.2 (5),
|Nil(R)| ≤ 3. We consider the following cases.

Case 1. |Nil(R)| = 1 (i.e, R is reduced). Since Γ′(R) is a star graph,
there exists a vertex of Γ′(R) which is adjacent to every other vertex. By
Theorem 3.1 (and its proof), one may assume that R ∼= R1 × R2 with
(1, 0) adjacent to every other vertex, |U(R1)| = 1 and depth(R1) = 0. If
x ∈ Z(R1)∗, it is easily seen that the induced subgraph on the vertices (1, 0),
(x, 0) and (0, 1) forms a triangle in Γ′(R), a contradiction. So Z(R1) = (0).
Similarly, Z(R2) = (0). Therefore, R ∼= Z2 × D, where D is an integral
domain.

Case 2. |Nil(R)| = 2. This implies that Z(R) 6= Nil(R) (since Γ′(R)
is star). Let a ∈ Nil(R)∗. By lemma 2.2 (4), a is adjacent to all vertices
contained in Z(R) \ {0, a}. If xy = 0 for some x, y ∈ Z(R) \ {0, a}, then x

is adjacent to y, a contradiction. So Ann(x) = {0, a}, for every x ∈ Z(R)∗.
Now, we show that Nil(R) is a prime ideal of R. Assume to the contrary,
xy ∈ Nil(R) such that x 6∈ Nil(R), y 6∈ Nil(R). It is easy to check that
x 6= y, x, y ∈ Z(R), xy 6= 0 and xy ∈ Rx∩Ann(y). Thus x is adjacent to y,
a contradiction.

Case 3. |Nil(R)| = 3. By Lemma 2.2 (4), Γ′(R) = K2 and |Z(R)| =
|Nil(R)| = 3.

Conversely, assume that one of the conditions (1), (2) or (3) holds. If one
of (1) and (2) holds, then the proof is obvious. If (3) holds, then there exists
exactly one element a ∈ Nil(R)∗. By Lemma 2.2 (4), a is adjacent to all
other vertices in Γ′(R). Since Nil(R) is a prime ideal of R, Ann(x) = {0, a},
for every x ∈ Z(R)∗. To complete the proof, we have only to show that
Ry∩Ra = (0), for every y ∈ Z(R)\{0, a}. Suppose to the contrary, a ∈ Ry.
Then a = ry, for some 1 6= r ∈ R. Thus ry2 = 0 and so y2 = 0 or y2 = a

or r = a. Since Nil(R) = {0, a} and a = ry, each case of the mentioned
situations leads to a contradiction. ¤

Theorem 3.3 Let R be a non-reduced ring. Suppose that Γ′(R) is a star
graph. Then the following hold :
(1) R is indecomposable.
(2) Either |Z(R)| = 3 or |Z(R)| = ∞.
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Proof. (1) Let R ∼= R1 × R2, where Ri is a ring, for 1 ≤ i ≤ 2. Then for
every a ∈ Nil(R)∗, the vertices of the set {a, (1, 0), (0, 1)} forms a triangle,
a contradiction.

(2) Let |Z(R)| < ∞. Then R is an Artinian (finite) ring (since |R| ≤
|Z(R)|2). Now, by Part (1), Z(R) = Nil(R) and since Γ′(R) is a star graph,
we deduce from Part (5) of Lemma 2.2 |Z(R)| = 3. ¤

The next theorem studies a complete extended zero-divisor graph asso-
ciated with a reduced ring.

Theorem 3.4 Let R be a reduced ring. Then Γ′(R) is a complete graph
if and only if a2 = a for every a ∈ Z(R), |U(R)| = 1 and depth(R) = 0.

Proof. First suppose that Γ′(R) is a complete graph and let a ∈ Z(R)∗.
Let a2 6= a. By by Lemma 2.1 (1), Ann(a2) = Ann(a). Lemma 2.2 (2)
implies that a − a2 is not an edge of Γ′(R), which is impossible. Thus
a2 = a, for every a ∈ Z(R) and so R ∼= Ra×R(1− a), for every a ∈ Z(R)∗.
A similar argument to that of Theorem 3.1 completes the proof.

To prove the converse, if x is an arbitrary element of Z(R)∗, then it is
shown that x is adjacent to every other vertex. The equality |U(R)| = 1
implies that R ∼= Rx×R(1− x) and so we may assume that R ∼= R1 ×R2.
Since |U(R)| = 1 and depth(R) = 0, it is easy to see that R1×(0)∩Ann(a) 6=
(0), where a ∈ Z(R)∗ \{(1, 0)}. Thus (1, 0) is adjacent to every other vertex
and so x is also adjacent to every other vertex, as desired. ¤

Example 3.5 Let R be a reduced ring and let R ∼= ∏
i∈Λ Ri, where Ri is

an indecomposable ring, for every i ∈ Λ. If Γ′(R) is a complete graph, then
Theorem 3.4 implies that Z(Ri) = {0} and |U(Ri)| = 1 and so Ri

∼= Z2, for
every i ∈ Λ.

The prove Theorem 3.7, the following lemma is needed.

Lemma 3.6 Let R be a ring such that Γ′(R) be complete. Then R is
decomposable if and only if R is reduced.

Proof. Suppose that R is decomposable and let R ∼= R1 ×R2. Assume in
contrary, and with no loss of generality, |Nil(R1)| ≥ 2. Thus 2 ≤ |Nil(R1)| ≤
|J(R1)| ≤ |U(R1)| and so |U(R1)| ≥ 2. By a similar proof to that of Theorem
3.1, Γ′(R) is not a complete graph, a contradiction. The other side, follows
from Theorem 3.4. ¤
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Let R be a ring and x, y ∈ R. We say that x is an Ry-regular element
if x /∈ Z(Ry) and RxRy 6= Ry.

Theorem 3.7 Let R be a non-reduced ring. Then Γ′(R) is complete if
and only if R is indecomposable and either x is not Ry-regular or y is not
Rx-regular, for every distinct x, y ∈ Z(R)∗.

Proof. If Γ′(R) is a complete graph, then by Lemma 3.6, R is indecompos-
able. Moreover, it is obvious, for every two distinct elements x, y ∈ Z(R)∗

either x is not an Ry-regular element or y is not an Rx-regular element.
To prove the other side, let x, y be two distinct vertices of V (Γ′(R)).

Without loss of generality, assume that x is not an Ry-regular element. If
x ∈ Z(Ry), then there is nothing to prove. If x /∈ Z(Ry), then RxRy = Ry,
and so, by [7, Corollary 2.5], there exists an element a ∈ Rx such that
(1 − a)Ry = 0. Thus 1 − a ∈ Ann(y), and hence Rx + Ann(y) = R. Now,
the indecomposability of R implies that Rx ∩Ann(y) 6= (0). Hence x− y is
an edge of Γ′(R), as desired. ¤

4. When Extended Zero-Divisor Graphs and Zero-Divisor
Graphs Are Identical?

As we have seen in the previous section, the extended zero-divisor graphs
and zero-divisor graphs are close to each other. So, it may be interesting
to characterize rings whose extended zero-divisor graphs are identical to
zero-divisor graphs. We first study the case when R is reduced.

Theorem 4.1 Let R be a reduced ring with |Min(R)| = n ≥ 2. Then
n = 2 if and only if Γ′(R) = Γ(R).

Proof. First suppose that Γ′(R) = Γ(R). We show that n = 2. Suppose
to the contrary, p1, p2 and p3 are three distinct minimal primes. Let a ∈
p1 \ p2 ∪ p3. Thus p2 ∪ p3 * Ann(a) (as Ann(a) ⊆ p2 ∩ p3). So one may
assume that ab 6= 0, for some b ∈ p2 ∪ p3 \ p1. With no loss of generality,
assume that b ∈ p2 \ p1. Obviously, Ann(b) ⊆ p1. Also, it follows from
[12, Corollary 2.2], there exists an element x ∈ Ann(a) such that x /∈ p1.
Therefore, Ann(a) 6= Ann(b), and so by Lemma 2.2 (2), a− b is an edge of
Γ′(R), a contradiction.

Conversely, suppose that p1 and p2 are two distinct minimal prime ideals
of R. It is not hard to check that Γ(R) = Γ′(R) = K|p∗1 |,|p∗2 |. ¤
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The following corollaries follow from Theorem 4.1.

Corollary 4.2 Let R be a reduced ring that is not an integral domain.
Then the following statements are equivalent :

(1) girth(Γ′(R)) = ∞.
(2) Γ′(R) = Γ(R) and girth(Γ(R)) = ∞.
(3) girth(Γ(R)) = ∞.
(4) |Min(R)| = 2 and at least one minimal prime ideal of R has exactly two

distinct elements.
(5) Γ(R) = K1,n for some n ≥ 1.
(6) Γ′(R) = K1,n for some n ≥ 1.

Proof. (1) ⇒ (2) By proof of Theorem 4.1, |Min(R)| = 2 and so Γ′(R) =
Γ(R), girth(Γ(R)) = ∞. (2) ⇒ (3) is clear. (3) ⇔ (4) ⇔ (5) follow from [6,
Theorem 2.4]. (5) ⇒ (6) By [6, Theorem 2.4], we have |Min(R)| = 2. Now,
Theorem 4.1 implies that Γ′(R) = Γ(R). (6) ⇒ (1) is clear. ¤

Corollary 4.3 Let R be a reduced ring that is not an integral domain.
Then the following statements are equivalent :

(1) girth(Γ′(R)) = 4.
(2) Γ′(R) = Γ(R) and girth(Γ(R)) = 4.
(3) girth(Γ(R)) = 4.
(4) |Min(R)| = 2 and each minimal prime ideal of R has at least three

distinct elements.
(5) Γ(R) = Km,n with m,n ≥ 2.
(6) Γ′(R) = Km,n with m,n ≥ 2.

Proof. (1) ⇒ (2) By Theorems 2.4 and 4.1, Γ′(R) = Γ(R), and so
girth(Γ(R)) = 4. (2) ⇒ (3) is clear. (3) ⇔ (4) ⇔ (5) are obtained by
[6, Theorem 2.2]. (5) ⇒ (6) By [6, Theorem 2.2], |Min(R)| = 2. Now,
Theorem 4.1 implies that Γ′(R) = Γ(R), and thus (6) ⇒ (1) is clear. ¤

In view of Corollaries 4.2 and 4.3, we have the following corollary.

Corollary 4.4 Let R be a reduced ring with |Min(R)| = n ≥ 2. Then the
following statements are equivalent :
(1) n = 2.
(2) Γ′(R) = Γ(R).
(3) girth(Γ′(R)) = girth(Γ(R)) = {4,∞}.
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In the rest of this section, we focus on non-reduced rings for which Γ(R)
and Γ′(R) are identical.

Theorem 4.5 Let R be a non-reduced ring. Then the following statements
are equivalent :

(1) Γ(R) = Γ′(R).
(2) If xy 6= 0 for some x, y ∈ Z(R), then Ann(x) = Ann(y) and Ann(x) is

a prime ideal of R.

Proof. (1) ⇒ (2) Suppose that xy 6= 0, for some x, y ∈ Z(R). Since
Γ(R) = Γ′(R), we deduce that Ann(x) = Ann(y), by Lemma 2.2 (2). We
now show that Ann(x) is a prime ideal of R. Let ab ∈ Ann(x), a 6∈ Ann(x)
and b 6∈ Ann(x). So xa 6= 0, xb 6= 0, a, b ∈ Z(R). By Lemma 2.2 (4),
x, y /∈ Nil(R) and hence either x 6= a or x 6= b. With no loss of generality,
one may assume that x 6= b. Thus ax ∈ Rx ∩ Ann(b) and so xb = 0, a
contradiction. Therefore, Ann(x) is a prime ideal of R, as desired.

(2) ⇒ (1) If xy = 0 for all x, y ∈ Z(R), then Γ(R) is complete and so by
Lemma 2.2 (1), Γ′(R) is complete, i.e, Γ(R) = Γ′(R). To complete the proof,
we show that if xy 6= 0, then Rx ∩ Ann(y) = (0) and Ry ∩ Ann(x) = (0).
Since Ann(x) = Ann(y), it suffices to show that Rx ∩ Ann(x) = (0) and
Ry ∩ Ann(y) = (0). If x ∈ Ann(x), then x ∈ Ann(y) and so xy = 0,
a contradiction. Thus x 6∈ Ann(x). Also, if Rx ∩ Ann(x) 6= (0), then
there exists rx 6= 0 such that (rx)x = rx2 = 0, for some r 6= 1. Since
x2 6∈ Ann(x) (Ann(x) is a prime ideal), r ∈ Ann(x), a contradiction. Hence
Rx ∩Ann(x) = (0). Similarly, Ry ∩Ann(y) = (0). ¤

In light of Theorem 4.5 and [5, Theorem 2.5], we state the following
corollary.

Corollary 4.6 Let R be a non-reduced ring and suppose that Γ′(R) =
Γ(R). Then the following hold :
(1) Z(R) is an ideal of R.
(2) Nil(R)2 = 0.
(3) Ann(Z(R)) = Nil(R).

Suppose that R is a non-reduced ring. The proof of [5, Theorem 2.5]
shows that if there exists a vertex of Γ(R) which is adjacent to every other
vertex say a, then a ∈ Ann(Z(R)). By using this fact the following corollary
is proved.
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Corollary 4.7 Let R be a non-reduced ring. Then Γ(R) = Γ′(R) =
Kn ∨Km if and only if Ann(Z(R)) is a prime ideal of R.

Proof. First suppose that Γ(R) = Γ′(R) = Kn ∨ Km. Since Γ(R) =
Kn ∨ Km, every vertex of Kn is adjacent to all other vertices but there
is no adjacency between two arbitrary vertices of Km. This implies that
Ann(Z(R)) = V (Kn) ∪ {0}. Thus xy 6= 0, for every x, y ∈ V (Km), and so
Ann(x) = Ann(y) = Ann(Z(R)). Theorem 4.5 implies that Ann(Z(R)) is a
prime ideal of R.

Conversely, assume that Ann(Z(R)) is a prime ideal of R. This implies
that xy = 0, for all x, y ∈ Ann(Z(R)) and xy 6= 0, for all x, y ∈ Z(R) \
Ann(Z(R)). Now, it is easy to see that Γ(R)[Ann(Z(R))∗] and Γ(R)[Z(R)\
Ann(Z(R))] are two subgraphs of Γ(R) such that Γ(R)[Ann(Z(R))∗] is com-
plete, Γ(R)[Z(R) \ Ann(Z(R))] is null and Γ(R) = Γ(R)[Ann(Z(R))∗] ∨
Γ(R)[Z(R) \ Ann(Z(R))]. We finally show that Γ(R) = Γ′(R). Obvi-
ously, xy 6= 0, if and only if x, y ∈ Z(R) \ Ann(Z(R)). This together
with Ann(Z(R)) is prime imply that if xy 6= 0, then Ann(x) = Ann(y) =
Ann(Z(R)). So Ann(x) is a prime ideal of R. Now, by Theorem 4.5,
Γ(R) = Γ′(R). ¤

Theorem 4.8 Let R be a non-reduced ring. Then the following statements
are equivalent :

(1) Γ′(R) is a star graph.
(2) girth(Γ′(R)) = ∞.
(3) Γ′(R) = Γ(R) and girth(Γ(R)) = ∞.
(4) Ann(Z(R)) is a prime ideal of R and either |Z(R)| = |Ann(Z(R))| = 3

or = |Ann(Z(R))| = 2 and |Z(R)| = ∞.
(5) Γ′(R) = K1,1 or Γ′(R) = K1,∞.
(6) Γ(R) = K1,1 or Γ(R) = K1,∞.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (3) If a ∈ Nil(R)∗, then a is adjacent to every other vertex in

Γ′(R). Since girth(Γ′(R)) = ∞ and Γ(R) is a connected subgraph of Γ′(R),
we conclude that Γ′(R) = Γ(R), and so girth(Γ(R)) = ∞.

(3) ⇒ (4) Since R is a non-reduced ring, one may easily see that Γ′(R)
is a star graph and hence by Corollary 4.7, the result holds. (4) ⇒ (5) is
clear by Corollary 4.7.

(5) ⇒ (6) is clear, as Γ(R) is a connected subgraph of Γ′(R).
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(6) ⇒ (1) If Γ(R) = K1,1, then there is nothing to prove. Let Γ(R) =
K1,∞. By [5, Theorem 2.5], Z(R) = Ann(a) for a non-zero element a ∈ R,
and Ann(x) = Ann(y) = {0, a} = Nil(R), for every x, y ∈ Z(R) \ {0, a}. If
x− y is an edge of Γ′(R) which is not an edge of Γ(R), then we can suppose
that xy 6= 0 and Rx ∩ Ann(y) 6= (0). This implies that rxy = 0, for some
0 6= rx ∈ Rx. Therefore, rx = a and so rx2 = 0. Since x2 /∈ Nil(R), we
deduce that r = a, a contradiction. This completes the proof. ¤

We close this paper with the following example in which we investigate
the relation between two graphs Γ(Zn) and Γ′(Zn).

Example 4.9 Let R = Zn. Since Zn is an Artinian ring, Corollary 4.4
implies that if Zn is not local, then Γ(Zn) = Γ′(Zn) if and only if n = pq,
for distinct prime numbers p, q. Moreover, in this case, Γ(Zn) = Kp−1,q−1.
If Zn is local, then Γ(Zn) = Γ′(Zn) if and only if n = p2, where p is a prime
number. Moreover, in this case, Γ(Zn) = Kp−1. For instance it is easy to
see that Γ(Z10) = K1,4 = Γ′(Z10). Also, for local rings Z25 and Z8, we can
easily check that Γ(Z25) = K4 = Γ′(Z25), but Γ(Z8) = K1,2 6= K3 = Γ′(Z8).
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