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A moment problem on rational numbers
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Abstract. We give integral representations of positive and negative definite functions
defined on an interval in a certain subsemigroup of the semigroup of rational numbers.

Key words: moment problem, positive definite function, semigroup.

1. Introduction

It was shown by D. V. Widder [8, Thereom A] that a real-valued function
f(z) defined on an open interval (a,b) in R has a form

f(z) = /Re_mt da(t), a<z<b, (1.1)

where «(t) is a non-decreasing function on R if and only if f(z) is continuous
and positive definite. Here the function f(z) is said to be positive definite
on (a,b) if

Z Ciij(xi + 1']‘) > 0

1,j=1

for every n > 1 and for every ci,¢2,...,Cpn,x1,...,T, € R such that 2x; €
(a,b) fori=1,2,...,n.

In this paper, we concern positive definite functions defined on a subset
of the additive semigroup @ of rational numbers. Let m = {m,}5; be
a sequence of integers greater than or equal to 2, and let S(mi) be the
subsemigroup of @ defined by

S(Fi):{ :keZ,n>1},

ml...mn
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where Z denotes the set of all integers. For example, if m, = n + 1 for
n > 1, we have S(m) = Q, and if m,, = 2 for n > 1, S(mi) is the set of all
dyadic rational numbers.

Let I denote a finite or infinite interval in R, and let ¢ : INS(m) — R
be a real-valued function on I N S(7). We say ¢ is positive definite if

Z cicjo(ri+r;) >0

i,j=1

for all n > 1, ¢1,¢2,...,¢, € R and r1,79,...,7, € S(m) such that 2r; €
INS(m) fori =1,2,...,n. The purpose of this paper is to show that every
positive definite function on I N S(M) has an integral representation such
as (1.1) (see Section 2). The result we obtain will generalize the results of
N. Sakakibara for the case I = [0,00) ([7, Theorem 2.2]) and D. Atanasiu
for the case S(m) = Q (]2, Theorem 1, Proposition 1]). In Section 3, we
extend the result of Section 2 to the case where ¢ is a mapping of I N S(m)
into the space of bounded linear operators on a complex Hilbert space. We
also give a Lévy—Khinchin type formula for negative definite functions on
InS(m) in Section 2.

2. Integral representations of positive and negative definite func-
tions

First we consider the case where I is an open interval. Define the func-
tion x on S(mi) as follows (cf. [7]):
If the sequence m = {m,, }>>, contains no even numbers, put

e e e

ml...mn ml...mn

If i contains only finitely many even numbers, we may suppose that

mi,...,m, are even and m, (¢ > p) are odd. Then we put
k k
o )= e (7).
ml PR mpmp+1 PR mn ml DY mpmp+1 PR mn

It is clear that x is well-defined and multiplicative, i.e.
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x(r1 +1r2) = x(r1)x(r2), r1,7m9 € S(M).

In fact, the functions r € S(mi) — €™ and r € S(mi) — x(r)e™, where
x € R, are the semicharacters of S(mi) [7].

Throughout the paper, E (I, A) denotes the set of all positive Radon
measures j on A, where A is an open or closed subset of R, such that the
function x — €™ is p-integrable for all r € I.

Theorem 2.1 Let a,b € RU {—oc,00} such that a < b and let m =
{m,}22, be a sequence of integers m, > 2. Let ¢ be a positive definite
function on (a,b) N S(m).

(1) If the sequence m contains at most finitely many even numbers, then
there exist positive Radon measures p,v € E((a,b), R) such that

o(r) = / e du(z) +/ x(r)e™dv(z), r € (a,b)NS(m).
R R
Moreover, the pair (u,v) is uniquely determined by ¢.
(2) If the sequence m contains infinitely many even numbers, then there
exists a uniquely determined measure p € Ey((a,b), R) such that

o(r) = /Remd,u(a?), r € (a,b) N S(m).

Proof. (1) Fix o, 8 € 25(m) = {2r : r € S(m)} which satisfy a < a <
B < b. Using the above notation, we may put o = do(my---my)~1, 8 =
di(my---mg)~1 where dy and d; are even numbers and ¢ > p. For a fixed
integer n > 1, put M,, = (d1 — do)mgy1 -+ Mgyn and L, = mq -+ Mgpn,
and define the sequence {s;,}." by sy = w(a + k/L,),k = 0,1,..., M,.
Then for ¢; € R, i=0,1,...,M,/2, we have

M, /2 M, /2 o i o ]
Z Cicj81+j = Z Cing0<<2 + L) + (2 + L)) Z 0,
n n

1,7=0 1,7=0

because of the positive definiteness of ¢. By [1, Theorem 2.6.3], there exists
a finite positive Radon measure 7,, on R such that
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k
¢<a+> :/ tde’ﬂ(t)v k:O)l)"'aMn_l)
L R

n

and @(a + k/Ly) = ¢(B) > [gt*dr,(t) for k = M,. Define the mappings
fn and g, on R = RU {—00} by

Ja:R—=10,00);  fule) =exp

T
gn + R — (—00,0]; gn(x) = —exp T
n
and let u,, v, be positive Radon measures on R which satisfy

—1 —1
fn © [, :Tn’[o,oo)a Vn ©Gn :Tn|(foo,0]v

respectively. Then we have

k kx kx
=) = i, —1)¥ exp o dv, ().
<p<a+ Ln> /Rexp i dpn (x) + /R( )¥ exp I dvy, ()

Since pn(R) + vn(R) = ¢(a) < 400 for all n > 1, there exist subse-
quences { iy, 152, and {v,, }$2, which converge vaguely to positive measures
o and vy respectively (see [2, Proposition 2.4.6, 2.4.10]). Put s = k/L,, for
k=0,1,...,M, — 1. If n; > n, we have

oo+ s) = <p<a + m;’;”“ Hatn: > (2.1)
1 DR mq+nl

:/Resz dﬂni($)+/ x(8)e5® dum, (). (2.2)

R

Using that for each nonnegative continuous function f on a locally compact
space the integral [ fdu is lower semicontinuous in p with respect to the
vague topology, we find that for s = k/L,, k =0,1,..., M, /2,

/ e*Tdpg(r) < p(a + 2s), / e** dug (1) < p(a + 2s).
R R

Since €% < (1 + €2%)/2, it follows that the function 5% is po- (and vg-)
integrable for s = k/L,, k = 0,1,..., M, — 1. Define the function h(x) by
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h(z) = 1+¢e>+tD2 Then the sequence {h,, }52, converges to hjug vaguely
and

sw/h@ww) () + pla+2(s +1)).
i>1 JR

Therefore, since e** /h(x) is a continuous function on R vanishing at infinity,
we have

lim [ e**duy,(z hm/ ) dpin, (x)
1— 00 E 11— 00 h
:/Rh(x)h( x) dpo()

— [ e duaf)
R

and similarly

1— 00

lim [ e** dvy,(z) :/ e*dyy(x).
R R

Thus by (2.2) we have

¢m+@=L&wmm+an%mwx

fors=k/L,, k=0,1,..., M, —1. Since this equality holds for every n > 1,
putting r = o + s we see that

wmzﬁfmfwammmw+/x@é%ﬂﬂwﬂm@»

R
r € (o, )N S(m).

Consequently
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where du(z) = e ** d(uo|r)(z) and dv(z) = e~ ** d(vy|r)(x).
We now prove the uniqueness of ¢ and v. Suppose that

/Re”" du(z) + /Rx(r)em dv(x) = /Rem dp'(z) + /Rx(r)em dv'(z),

for r € (o, 3) N S(m). If r € (o, 3) N 2S(7i), we have

/ erdlp+v—p —v)(x)=0.
R

Define the holomorphic function ®(z) on the strip « < Rez < f in the
complex plane by

<I>(z):/Remd(,u—l—y—,u/—l/)(a:).

Then the identity theorem ensures that ®(z) =0 for @ < Rez < 3 because
the set (o, 8) N 28(7m) is dense in the interval (a, 3). Since for fixed a <
v < B, the function y € R — ®(v + iy) is the Fourier transform of e”(u +
v—u =), it follows that u + v — p/ — v/ = 0. Using a similar argument

for the equality
[ =y = @) = 0. € (0,6) 0 (SG) \ 28(7).

we have u—v — ' +v' = 0. Consequently p = p/ and v = v/. Since o and 3
are arbitrary, we conclude that (2.3) is valid not only for r € (a, 3) N S(77)
but also for r € (a, b)NS (M), and that the pair (i, v) is uniquely determined.

(2) Suppose that m = {m,, }>2; contains infinitely many even numbers.
In this case, we have 2S(m) = S(m). Fix a,8 € S(m) which satisfy
a<a<f<b, and put a =do(my---my,)"t, B =di(my--mp,)" ", where
do,d; are even. For fixed n > 1, put M,, = (di — do)mpy+1 - Mpy+n and
L, = mq---mpy4n. Then the sequence {sk}ﬁﬁo defined by sp = @(a +
k/Ly,), k =0,1,..., M,, is a truncated Stieltjes moment sequence. To see
this, pick a sufficiently large number ng such that mp,,, is even. Then for
¢ € R i=0,1,...,M,/2, we have
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M, /2 M, /2

1+
E CiCjSitj = E CiCj<P<a+ > >0,
“ “ L,
1,7=0 1,j=0
and
M, /2—1
g CiCjSit+j+1
1,j=0
Mn/2_1 . . m, +
1+ Mpo+nt1 """ Mpotno—1 - %
= g cicijp| o+ +2 > 0.
G0 L, my - Mpo+ng

Therefore there exists a finite positive Radon measure 7,, on [0, 00) such that

k S
¢<a+>:/ tden(t)v k‘:O,l,...,Mn—l.
Ln 0

By an argument similar to that in the proof of (1), we find a unique measure
u€ Ey((a,b), R) such that

o(r) = /Rem du(x), r € (a,b) N S(m).

Thus the proof is complete. O

For a € S(mi), let E, denote the shift operator on R5™) defined by
Eyo(r) = pla+71), ¢ € RSy ¢ S(mi). In [3, Theorem 7.1.10], it is
shown that a bounded function ¢ on a commutative semigroup S is com-
pletely monotone if and only if ¢ is completely positive definite on S. The
following theorem gives an analogous result, which is a generalization of [2,
Theorem 3].

Theorem 2.2 Let a € R and let mi = {m,,}°, be a sequence of integers
m, > 2. For a function ¢ : (a,00) N S(m) — R, the following conditions
are mutually equivalent:

(1) For any natural number p and for any as, ..., a, € (0,00) N S(M),

(Eo — Eay) -+ (Eo — Ea, )p(r) >0
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holds for r € (a,00) N S(m);

(2) For any a € (0,00) N S(m), the functions Eop(r) and (Ey — Eq)p(r)
are both positive definite on (a,00) N S(Mi);

(3) There exists a measure p € E4((—o0, —a),[0,00)) such that

o(r) = / e "du(x), r € (a,00) N S(m).
0
Proof.  The proof is similar to that of [2, Theorem 3] and omitted. For the
implication (2) = (3), see also [3, Lemma 7.3.8]. O

Next we consider the case where I = [a,b) is a half-open interval. Let
8a(r) denote the function on I N S(m) defined by 6,(a) = 1 and 6,(r) = 0
for r # a.

Theorem 2.3 Let a € 2S(m), b € RU {oo} such that a < b and let
m = {m, }>2, be a sequence of integers m, > 2. Let ¢ be a positive definite
function on [a,b) N S(m).

(1) If the sequence m contains at most finitely many even numbers, then
there exist a nonnegative constant w and p,v € E,([a,b), R) such that

o) =wba(r) + [ edu(o) + [ x(rerav(),
R R
r € [a,b) N S(m). (2.4)
Moreover the triple (w, p,v) is uniquely determined by .

(2) If the sequence m contains infinitely many even numbers, then there
exist a nonnegative constant w and p € E4([a,b), R) such that

o(r) = wi (1) + /R e du(z), relab)nNSE).  (2.5)

The pair (w, 1) is uniquely determined by .

Proof. (1) Since a € 25(mi), putting o = a in the proof of Theorem 2.1
(1), we have

o(r) = wda(r) + /Rem du(x) + /Rx(r)emdl/(x), r € la,3)NS(m),
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where w = po({—00}) + vo({—00}) > 0. Then the same argument as in the
proof of Theorem 2.1 (1) shows (2.4) and the uniqueness of x and v. The
uniqueness of w follows from the equality

lim Mmzlfwwwyﬁéwmwmzwm_w.

rla,r€28(m)

The assertion (2) is proved analogously. O

Remark 2.1 If we put S(7) = Q in Theorem 2.1(2) and Thoerem 2.2(2),
we obtain [2, Theorem 1, Proposition 1]. If we put [a, b) = [0, c0) in Theorem
2.2, we obtain [7, Theorem 2.2].

A real-valued function ¢ on I N S(m) is said to be negative definite if

n

Z Cicjw(ri +Tj) S 0

i,j=1

foralln > 2, ¢1,c2,...,¢, € Rsuchthat Y. ¢; =0and ry,...,r, € S(M)
such that 2r; € INS(m) fori =1,2,...,n. Using Theroem 2.1 and Theorem

2.2, we can obtain an integral representation of negative definite functions
on I NS(m).

Theorem 2.4 Let a,b € RU {—o0,00} such that a < b and let m =
{mn}52, be a sequence of integers m, > 2. Let ¢ be a negative definite
function on (a,b) N S(m). Let a € 25(m) such that a < a < b and let
B € S(m) such that B >0 and a < o+ 23 < b.

(1) If the sequence mi contains at most finitely many even numbers, then 1)
has a representation of the form

r—o«

¢(r) = A+ Br—Cr? + / (eo‘” — e — e (1 - 6ﬁ””)>du(w)
R\{0}

—AMW%M@

for r € (a,b) N S(m), where A, B,C are real constants such that C >0
and p, v are positive Radon measures such that
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| atduta) <+,
0<|z|<1

/ e"du(zr) < 400 and / e"dv(z) < o0
|| >1 R

forr € (a,b)NS(Mi). Moreover, the quintuple (A, B, C, p,v) is uniquely
determined by v, a and (3.

(2) If the sequence m contains infinitely many even numbers, then v has a
representation of the form

r—«

Y(r) = A+ Br —Cr* + / <em —e — e (1 — eﬁx))d,u(a:)
R\{0} B

for r € (a,b) N S(m), where A, B,C are real constants such that C >0
and p 1s a positive Radon measure such that

/ r?du(z) < 400 and / e du(r) < +o00
0<|z[<1 |z[>1

for r € (a,b) N S(m). Moreover, the quadruple (A, B,C, ) is uniquely
determined by ¥, and (.

Proof.  'We prove only (1). Replacing 9 by 1 — ¢ («) if necessary, we may
suppose that ¥ (a) = 0. By Theorem 2.1 (1) and [3, Theorem 3.2.2], we have

e ) — [ () 1 [ A o)
R R

for 7 € (a,b) N S(m), t >0,

where p; and v, are finite positive Radon measures on R such that u:(R) +
vi(R) = 1. For r € (a,b) N S(mi), we have

/R <1 — e TR eﬁm)> dpn(z)

# [ (1=l = It @) Janto
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r—o

— 1 — e t(r) _ (1 — e~ tlath)y,

SO

converges to ¥(r) — %L/J(a + ) as t — 0. Similarly, if r € S(m1) satisfies
a < a+2r <b, we have

}Lr%1(/R(l—em)2dut(x)—i-/la(l—X(?")em)Qth(x)) = 2¢(a+r)—(a+2r),

which implies that

1
sup / —(1 =€) dpy(x) < Ay,
R

0<t<1

sup / 1(1 — x(r)e™)2dv(z) < A, (2.6)
R

0<t<1

for some constant A, > 0 depending on r. Fix # € S(m) \ 25(ni) such
that < " and a < a4+ 203’ < b. By (2.6), there exist finite positive Radon
measures o, 7 and a sequence {¢;} which tends to 0 such that

1
lim —(1 - e’ = o, (2.7)
j—oo 1

1 , 1 ,
lm —(1+e?%)2, = lim —(1—x(8)e” "), =7 (2.8)
Jj—oo T J—oo 1

in vague topology.
For a fixed 7 € (a,b) N S(m), choose §,y € S(m) \ 25(m) satisfying
6 <0,8<~vyand

a<a+20<r<a+2y<hb.
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Then it follows from (2.6), (2.7) and [3, Proposition 2.4.4] that

_e5x 2
tin & [ f@0 =P = [ @155 ) . @)

i—ooty JR
1 . 1— e\ ?
Jim & [ 5@ = @) = [ @ (155 ) a0

for every continuous function f on R vanishing at infinity. Using (2.9) and
(2.10), we have

lim 1/3 (1 _elr—z T ;0‘(1 - eﬁx)>dutj (z)

jmoo b
1 1*6(7470‘)1*%(1*6633)
= I - 1_5w2 1_'yw2dv
jilgotj/R (1—ed%)2 4 (1 — e17)? 1= )"+ (1= ") pdpuy (2)
1 —elr—o)e _r—a(] _ of)
— B
= /R ETDE do(x)

_r—a)a+p-7)
= T e o))

+/ (eax —e — T_ae‘m(l —eﬁx)>du(1‘),
R\{0} B

where p = (e7** /(1 — €°%)?)o| g\ (0} Similarly,

(1=t = E 0316 ), o

L1 L= x(r)elm T — e (1= x(B)e)
ot /R (L+em)2 4 (1+ )2

x {(1+e)? + (1+ e’*)? by, (x)

converges to

— oy (r)elr—a)e _r=a (] _ 1 (B)efe
/1 x(r) ERUR U O P
R

(1+efo)?
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= [ (e = xme = TR ) vt

as j — oo, where v = (7% /(1 4 ¢'%)2)r. Thus we get

T« (r—a)(a+p—r)
0) = 5wl )+ EE

+/ <e‘” —err -1 ae‘”(l - eﬁz)>d,u(:v)
R\{0} g

a({0})

By (2.6), we have

1—ere)? 1—x(r)e™ 2
[ (55%) wwsa. [(F05) ww<a,
R\{0} (& R +e

for r € S(m) satisfying a < a+2r < b, and it follows that g and v have the
asserted properties. Moreover, since we have

2(r + ) — (r) — il +26) = 206 + /R o € )

4 /R X (x(B)eP™ — 1)2du(x)

_ / e di(z) + / (e ()
R R
for r € (a,b — 28) N S(mi), where i = 20326y + (e** — 1)?u and v =
(x(B)eP* — 1)%v, it follows from Theorem 2.1 that C,u, v, A and B are
uniquely determined. ([

In the case of half-open intervals, we can prove the following theorem.
The proof can be done in a similar way as that of Theorem 2.4.

Theorem 2.5 Let m = {m,}5%, be a sequence of integers m, > 2 and
let a € 25(m), b € RU {oo} such that a < b. Let 1) be a negative definite
function on [a,b) N S(M) and let B € S(mi) such that a < a+ 28 < b.
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If the sequence m contains at most finitely many even numbers, then 1
has a representation of the form

v(r)=A+ Br — cr? — Dé,(r)

+/ (eax _ erm _
R\{0}

- /R X(r)edy(z)

r—a

e (1 = ")) du(x)

for v € [a,b) N S(m), where A,B,C,D are real constants such that
C,D >0 and u, v are positive Radon measures such that

/ 2% dp() < +oo,
0<|z|<1

/ e"dp(xr) < +oo and / e"dv(zr) < +oo
|2|>1 R

for r € (a,b) N S(m). Moreover, the sextuple (A, B,C,D,u,v) is
uniquely determined by v and 3.

If the sequence mi contains infinitely many even numbers, then v has a
representation of the form

Y(r) = A+ Br — Cr? — Dé,(r)

+ / <e‘m e T ae‘m(l - eﬁ$)>du(x)
R\{0} B

for r € [a,b) N S(m), where A,B,C,D are real constants such that
C,D >0 and p is a positive Radon measure such that

/ r2dpu(z) < +oo  and / e"du(r) < +o0
0<|z|<1 o] =>1

forr € (a,b)NS(m). Moreover, the quintuple (A, B,C, D, j1) is uniquely
determined by ¥ and (.

Remark 2.2 If we put S(m) = Q in Theorem 2.4 (2) and Thoerem 2.5
(2), we obtain [2, Theorem 4, Proposition 2|. If we put [a,b) = [0,00) and
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B =1 in Theorem 2.5, we obtain [7, Theorem 2.4].

3. Integral representations of operator-valued functions

In this section, we consider the case of operator-valued functions. Let H
be a complex Hilbert space, (-, -) the inner product on H, B(H) the set of all
bounded linear operators on H, and B(H), the set of all positive operators
on H. A function ¢ : I N S(m) — B(H) is said to be positive definite if

n

> cigi(e(ri +15)6,6) >0

ij=1

for all n > 1,¢1,¢0,...,¢0 € C,71,79,...,7, € S(m) such that 2r; € I N
S(m) for i =1,2,...,n and & € H, and of positive type if

n

Z (p(ri +15)&,8) =0

ij=1

forallm > 1,7y,72,...,7, € S(m) such that 2r; € INS(m) fori =1,2,...,n
and 61,52,...,571 cH.

If ¢ is a function of positive type, then ¢ is positive definite, and the
converse is true if dim’H = 1. Furthermore, it is known that a positive
definite function defined on a perfect *-semigroup is necessarily of positive
type ([5, Theorem 3.1, Proposition 1.1]). But there exists a positive definite
function defined on a semiperfect *-semigroup which is not of positive type
([4, Theorem 1], [5, Theorem 3.7]).

Let us denote by B(R) the o-algebra of all Borel subsets of R, and
by Ei(I,R,H) the set of all functions F' : B(R) — B(H); satisfying
(F(-)§,6) € E4(I,R) for all £ € H.

Theorem 3.1 Let a,b € RU {—oc,00} such that a < b and let m =
{mn}52, be a sequence of integers m,, > 2 which contains at most finitely
many even numbers. Let ¢ : (a,b)NS(m) — B(H) be a function on (a,b)N
S(m). Then the following conditions are mutually equivalent:

(1) ¢ is of positive type;
(2) ¢ is positive definite;
(3) For any fized o € (a,b) N2S(m), there exist functions Fy, Fy : B(R) —
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B(H)4 such that e “*Fy,e”“*Fy € Ey((a,b), R,H) and

(e = [

AR @) + [ xR ),
R R

forr € (a,b)NS(m), &,n € H.
Moreover, the pair (Fy, Fy) is uniquely determined by ¢ and «.

Proof. The implication (1) = (2) is clear, while the implication (3) =
(1) is proved by a similar way as the proof of [5, Proposition 1.1]. Suppose
that (2) holds and fix a € (a,b) N25(m). By the proof of Theorem 2.1 (1),
for each ¢ € 'H there exist finite positive Radon measures p¢, v on R such
that

i) = [

e(ra)xdﬂg(x>+/ X(T)e(rfo‘)xd%(w): r e (a,b)ﬂS(m).
R

R

For £,n € H, define the signed measures ji¢ 5, Ve, by
1 . .
Pen = 5 lern — pe—n + thgrin — ikg—in} ,
1 . .
Ven = 1 {Vern — oy +iVerin — WWe—in} -
Then
() = [ =g @)+ [ () @), v € (0, bI0S(R).

By Theorem 2.1(1), we can see that for each B € B(R) the mappings

(&,n) = pen(B),  (§,m) = veq(B)

are sesqui-linear forms on H x H respectively. Furthermore, for £ € H we
have

0 < pee(B) < pee(R) < (p(a)§,§),

so that 0 < e ¢(B) < [|p(a)|l |€]]?. Therefore there exists a unique operator
Fy(B) € B(H)+ such that pe,(B) = (Fi(B)¢&n). Similarly ve ,(B) =
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(Fy(B)¢,m) with Fo(B) € B(H)+. Then we have

wr)n) = [

CVF ) + [ XA @),
R R

Thus the condition (3) holds. O

We can obtain a result analogous to Theorem 3.1 for the case where
m contains infinitely many even numbers. We also obtain the following
theorem:

Theorem 3.2 Let mi be a sequence of integers my, > 2 which contains at
most finitely many even numbers, and let a € 25(m), b € RU {oco} such
that a < b. Let o : [a,b) N S(m) — B(H) be a function on [a,b) N S(m).
Then the following conditions are mutually equivalent:

(1) ¢ is of positive type;

(2) ¢ is positive definite;

(3) There ezist a positive operator T € B(H) and functions Fy, F : B(R) —
B(H)4 such that e **Fy, e” " Fy € E,([a,b), R,H) and

(P(r)Esm) = 8a(r)(TE,m) + / T (E (2)€, )

R
+ [ X p e )

forr € [a,b) N S(m), £,1 € H.
Moreover the triple (T, Fy, Fy) is uniquely determined by .
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