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A moment problem on rational numbers
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Abstract. We give integral representations of positive and negative definite functions

defined on an interval in a certain subsemigroup of the semigroup of rational numbers.
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1. Introduction

It was shown by D. V. Widder [8, Thereom A] that a real-valued function
f(x) defined on an open interval (a, b) in R has a form

f(x) =
∫

R

e−xt dα(t), a < x < b, (1.1)

where α(t) is a non-decreasing function on R if and only if f(x) is continuous
and positive definite. Here the function f(x) is said to be positive definite
on (a, b) if

n∑

i,j=1

cicjf(xi + xj) ≥ 0

for every n ≥ 1 and for every c1, c2, . . . , cn, x1, . . . , xn ∈ R such that 2xi ∈
(a, b) for i = 1, 2, . . . , n.

In this paper, we concern positive definite functions defined on a subset
of the additive semigroup Q of rational numbers. Let −→m = {mn}∞n=1 be
a sequence of integers greater than or equal to 2, and let S(−→m) be the
subsemigroup of Q defined by

S(−→m) =
{

k

m1 · · ·mn
: k ∈ Z, n ≥ 1

}
,
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where Z denotes the set of all integers. For example, if mn = n + 1 for
n ≥ 1, we have S(−→m) = Q, and if mn = 2 for n ≥ 1, S(−→m) is the set of all
dyadic rational numbers.

Let I denote a finite or infinite interval in R, and let ϕ : I ∩S(−→m) → R

be a real-valued function on I ∩ S(−→m). We say ϕ is positive definite if

n∑

i,j=1

cicjϕ(ri + rj) ≥ 0

for all n ≥ 1, c1, c2, . . . , cn ∈ R and r1, r2, . . . , rn ∈ S(−→m) such that 2ri ∈
I ∩S(−→m) for i = 1, 2, . . . , n. The purpose of this paper is to show that every
positive definite function on I ∩ S(−→m) has an integral representation such
as (1.1) (see Section 2). The result we obtain will generalize the results of
N. Sakakibara for the case I = [0,∞) ([7, Theorem 2.2]) and D. Atanasiu
for the case S(−→m) = Q ([2, Theorem 1, Proposition 1]). In Section 3, we
extend the result of Section 2 to the case where ϕ is a mapping of I ∩S(−→m)
into the space of bounded linear operators on a complex Hilbert space. We
also give a Lévy–Khinchin type formula for negative definite functions on
I ∩ S(−→m) in Section 2.

2. Integral representations of positive and negative definite func-
tions

First we consider the case where I is an open interval. Define the func-
tion χ on S(−→m) as follows (cf. [7]):

If the sequence −→m = {mn}∞n=1 contains no even numbers, put

χ

(
k

m1 · · ·mn

)
= (−1)k,

k

m1 · · ·mn
∈ S(−→m);

If −→m contains only finitely many even numbers, we may suppose that
m1, . . . , mp are even and mq (q > p) are odd. Then we put

χ

(
k

m1 · · ·mpmp+1 · · ·mn

)
= (−1)k,

k

m1 · · ·mpmp+1 · · ·mn
∈ S(−→m).

It is clear that χ is well-defined and multiplicative, i.e.
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χ(r1 + r2) = χ(r1)χ(r2), r1, r2 ∈ S(−→m).

In fact, the functions r ∈ S(−→m) 7→ erx and r ∈ S(−→m) 7→ χ(r)erx, where
x ∈ R, are the semicharacters of S(−→m) [7].

Throughout the paper, E+(I, A) denotes the set of all positive Radon
measures µ on A, where A is an open or closed subset of R, such that the
function x 7→ erx is µ-integrable for all r ∈ I.

Theorem 2.1 Let a, b ∈ R ∪ {−∞,∞} such that a < b and let −→m =
{mn}∞n=1 be a sequence of integers mn ≥ 2. Let ϕ be a positive definite
function on (a, b) ∩ S(−→m).

(1) If the sequence −→m contains at most finitely many even numbers, then
there exist positive Radon measures µ, ν ∈ E+((a, b),R) such that

ϕ(r) =
∫

R

erxdµ(x) +
∫

R

χ(r)erxdν(x), r ∈ (a, b) ∩ S(−→m).

Moreover, the pair (µ, ν) is uniquely determined by ϕ.
(2) If the sequence −→m contains infinitely many even numbers, then there

exists a uniquely determined measure µ ∈ E+((a, b),R) such that

ϕ(r) =
∫

R

erxdµ(x), r ∈ (a, b) ∩ S(−→m).

Proof. (1) Fix α, β ∈ 2S(−→m) = {2r : r ∈ S(−→m)} which satisfy a < α <

β < b. Using the above notation, we may put α = d0(m1 · · ·mq)−1, β =
d1(m1 · · ·mq)−1 where d0 and d1 are even numbers and q > p. For a fixed
integer n ≥ 1, put Mn = (d1 − d0)mq+1 · · ·mq+n and Ln = m1 · · ·mq+n,
and define the sequence {sk}Mn

k=0 by sk = ϕ(α + k/Ln), k = 0, 1, . . . , Mn.
Then for ci ∈ R, i = 0, 1, . . . , Mn/2, we have

Mn/2∑

i,j=0

cicjsi+j =
Mn/2∑

i,j=0

cicjϕ

((
α

2
+

i

Ln

)
+

(
α

2
+

j

Ln

))
≥ 0,

because of the positive definiteness of ϕ. By [1, Theorem 2.6.3], there exists
a finite positive Radon measure τn on R such that
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ϕ

(
α +

k

Ln

)
=

∫

R

tkdτn(t), k = 0, 1, . . . , Mn − 1,

and ϕ(α + k/Ln) = ϕ(β) ≥ ∫
R

tkdτn(t) for k = Mn. Define the mappings
fn and gn on R = R ∪ {−∞} by

fn : R → [0,∞); fn(x) = exp
x

Ln
,

gn : R → (−∞, 0]; gn(x) = − exp
x

Ln
,

and let µn, νn be positive Radon measures on R which satisfy

µn ◦ f−1
n = τn|[0,∞), νn ◦ g−1

n = τn|(−∞,0],

respectively. Then we have

ϕ

(
α +

k

Ln

)
=

∫

R

exp
kx

Ln
dµn(x) +

∫

R

(−1)k exp
kx

Ln
dνn(x).

Since µn(R) + νn(R) = ϕ(α) < +∞ for all n ≥ 1, there exist subse-
quences {µni

}∞i=1 and {νni
}∞i=1 which converge vaguely to positive measures

µ0 and ν0 respectively (see [2, Proposition 2.4.6, 2.4.10]). Put s = k/Ln for
k = 0, 1, . . . , Mn − 1. If ni > n, we have

ϕ(α + s) = ϕ

(
α +

kmq+n+1 · · ·mq+ni

m1 · · ·mq+ni

)
(2.1)

=
∫

R

esx dµni
(x) +

∫

R

χ(s)esx dνni
(x). (2.2)

Using that for each nonnegative continuous function f on a locally compact
space the integral

∫
f dµ is lower semicontinuous in µ with respect to the

vague topology, we find that for s = k/Ln, k = 0, 1, . . . , Mn/2,

∫

R

e2sxdµ0(x) ≤ ϕ(α + 2s),
∫

R

e2sx dν0(x) ≤ ϕ(α + 2s).

Since esx ≤ (1 + e2sx)/2, it follows that the function esx is µ0- (and ν0-)
integrable for s = k/Ln, k = 0, 1, . . . , Mn − 1. Define the function h(x) by
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h(x) = 1+ e2(s+1)x. Then the sequence {hµni
}∞i=1 converges to hµ0 vaguely

and

sup
i≥1

∫

R

h(x)dµni
(x) ≤ ϕ(α) + ϕ(α + 2(s + 1)).

Therefore, since esx/h(x) is a continuous function on R vanishing at infinity,
we have

lim
i→∞

∫

R

esx dµni
(x) = lim

i→∞

∫

R

esx

h(x)
h(x) dµni

(x)

=
∫

R

esx

h(x)
h(x) dµ0(x)

=
∫

R

esx dµ0(x),

and similarly

lim
i→∞

∫

R

esx dνni
(x) =

∫

R

esxdν0(x).

Thus by (2.2) we have

ϕ(α + s) =
∫

R

esxdµ0(x) +
∫

R

χ(s)esxdσ0(x),

for s = k/Ln, k = 0, 1, . . . , Mn−1. Since this equality holds for every n ≥ 1,
putting r = α + s we see that

ϕ(r) =
∫

R

erxe−αx d(µ0|R)(x) +
∫

R

χ(r)erxe−αx d(ν0|R)(x),

r ∈ (α, β) ∩ S(−→m).

Consequently

ϕ(r) =
∫

R

erx dµ(x) +
∫

R

χ(r)erx dν(x), r ∈ (α, β) ∩ S(−→m), (2.3)
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where dµ(x) = e−αx d(µ0|R)(x) and dν(x) = e−αx d(ν0|R)(x).
We now prove the uniqueness of µ and ν. Suppose that

∫

R

erx dµ(x) +
∫

R

χ(r)erx dν(x) =
∫

R

erx dµ′(x) +
∫

R

χ(r)erx dν′(x),

for r ∈ (α, β) ∩ S(−→m). If r ∈ (α, β) ∩ 2S(−→m), we have

∫

R

erx d(µ + ν − µ′ − ν′)(x) = 0.

Define the holomorphic function Φ(z) on the strip α < Re z < β in the
complex plane by

Φ(z) =
∫

R

ezx d(µ + ν − µ′ − ν′)(x).

Then the identity theorem ensures that Φ(z) ≡ 0 for α < Re z < β because
the set (α, β) ∩ 2S(−→m) is dense in the interval (α, β). Since for fixed α <

γ < β, the function y ∈ R 7→ Φ(γ + iy) is the Fourier transform of eγ(µ +
ν − µ′ − ν′), it follows that µ + ν − µ′ − ν′ = 0. Using a similar argument
for the equality

∫

R

erx d(µ− ν − µ′ + ν′)(x) = 0, r ∈ (α, β) ∩ (S(−→m) \ 2S(−→m)),

we have µ−ν−µ′+ν′ = 0. Consequently µ = µ′ and ν = ν′. Since α and β

are arbitrary, we conclude that (2.3) is valid not only for r ∈ (α, β) ∩ S(−→m)
but also for r ∈ (a, b)∩S(−→m), and that the pair (µ, ν) is uniquely determined.

(2) Suppose that −→m = {mn}∞n=1 contains infinitely many even numbers.
In this case, we have 2S(−→m) = S(−→m). Fix α, β ∈ S(−→m) which satisfy
a < α < β < b, and put α = d0(m1 · · ·mp0)

−1, β = d1(m1 · · ·mp0)
−1, where

d0, d1 are even. For fixed n ≥ 1, put Mn = (d1 − d0)mp0+1 · · ·mp0+n and
Ln = m1 · · ·mp0+n. Then the sequence {sk}Mn

k=0 defined by sk = ϕ(α +
k/Ln), k = 0, 1, . . . , Mn, is a truncated Stieltjes moment sequence. To see
this, pick a sufficiently large number n0 such that mp0+n0 is even. Then for
ci ∈ R, i = 0, 1, . . . , Mn/2, we have
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Mn/2∑

i,j=0

cicjsi+j =
Mn/2∑

i,j=0

cicjϕ

(
α +

i + j

Ln

)
≥ 0,

and

Mn/2−1∑

i,j=0

cicjsi+j+1

=
Mn/2−1∑

i,j=0

cicjϕ

(
α +

i + j

Ln
+ 2

mp0+n+1 · · ·mp0+n0−1 · mp0+n0
2

m1 · · ·mp0+n0

)
≥ 0.

Therefore there exists a finite positive Radon measure τn on [0,∞) such that

ϕ

(
α +

k

Ln

)
=

∫ ∞

0

tk dτn(t), k = 0, 1, . . . , Mn − 1.

By an argument similar to that in the proof of (1), we find a unique measure
µ ∈ E+((a, b),R) such that

ϕ(r) =
∫

R

erx dµ(x), r ∈ (a, b) ∩ S(−→m).

Thus the proof is complete. ¤

For α ∈ S(−→m), let Eα denote the shift operator on RS(−→m) defined by
Eαϕ(r) = ϕ(α + r), ϕ ∈ RS(−→m), r ∈ S(−→m). In [3, Theorem 7.1.10], it is
shown that a bounded function ϕ on a commutative semigroup S is com-
pletely monotone if and only if ϕ is completely positive definite on S. The
following theorem gives an analogous result, which is a generalization of [2,
Theorem 3].

Theorem 2.2 Let a ∈ R and let −→m = {mn}∞n=1 be a sequence of integers
mn ≥ 2. For a function ϕ : (a,∞) ∩ S(−→m) → R, the following conditions
are mutually equivalent :

(1) For any natural number p and for any α1, . . . , αp ∈ (0,∞) ∩ S(−→m),

(E0 − Eα1) · · · (E0 − Eαp)ϕ(r) ≥ 0
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holds for r ∈ (a,∞) ∩ S(−→m);
(2) For any α ∈ (0,∞) ∩ S(−→m), the functions Eαϕ(r) and (E0 − Eα)ϕ(r)

are both positive definite on (a,∞) ∩ S(−→m);
(3) There exists a measure µ ∈ E+((−∞,−a), [0,∞)) such that

ϕ(r) =
∫ ∞

0

e−rxdµ(x), r ∈ (a,∞) ∩ S(−→m).

Proof. The proof is similar to that of [2, Theorem 3] and omitted. For the
implication (2) =⇒ (3), see also [3, Lemma 7.3.8]. ¤

Next we consider the case where I = [a, b) is a half-open interval. Let
δa(r) denote the function on I ∩ S(−→m) defined by δa(a) = 1 and δa(r) = 0
for r 6= a.

Theorem 2.3 Let a ∈ 2S(−→m), b ∈ R ∪ {∞} such that a < b and let−→m = {mn}∞n=1 be a sequence of integers mn ≥ 2. Let ϕ be a positive definite
function on [a, b) ∩ S(−→m).

(1) If the sequence −→m contains at most finitely many even numbers, then
there exist a nonnegative constant ω and µ, ν ∈ E+([a, b),R) such that

ϕ(r) = ωδa(r) +
∫

R

erxdµ(x) +
∫

R

χ(r)erxdν(x),

r ∈ [a, b) ∩ S(−→m). (2.4)

Moreover the triple (ω, µ, ν) is uniquely determined by ϕ.
(2) If the sequence −→m contains infinitely many even numbers, then there

exist a nonnegative constant ω and µ ∈ E+([a, b),R) such that

ϕ(r) = ωδa(r) +
∫

R

erxdµ(x), r ∈ [a, b) ∩ S(−→m). (2.5)

The pair (ω, µ) is uniquely determined by ϕ.

Proof. (1) Since a ∈ 2S(−→m), putting α = a in the proof of Theorem 2.1
(1), we have

ϕ(r) = ωδa(r) +
∫

R

erx dµ(x) +
∫

R

χ(r)erxdν(x), r ∈ [a, β) ∩ S(−→m),
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where ω = µ0({−∞}) + ν0({−∞}) ≥ 0. Then the same argument as in the
proof of Theorem 2.1 (1) shows (2.4) and the uniqueness of µ and ν. The
uniqueness of ω follows from the equality

lim
r↓a,r∈2S(−→m)

ϕ(r) =
∫

R

eaxdµ(x) +
∫

R

eaxdν(x) = ϕ(a)− ω.

The assertion (2) is proved analogously. ¤

Remark 2.1 If we put S(−→m) = Q in Theorem 2.1(2) and Thoerem 2.2(2),
we obtain [2, Theorem 1, Proposition 1]. If we put [a, b) = [0,∞) in Theorem
2.2, we obtain [7, Theorem 2.2].

A real-valued function ψ on I ∩ S(−→m) is said to be negative definite if

n∑

i,j=1

cicjψ(ri + rj) ≤ 0

for all n ≥ 2, c1, c2, . . . , cn ∈ R such that
∑n

i=1 ci = 0 and r1, . . . , rn ∈ S(−→m)
such that 2ri ∈ I∩S(−→m) for i = 1, 2, . . . , n. Using Theroem 2.1 and Theorem
2.2, we can obtain an integral representation of negative definite functions
on I ∩ S(−→m).

Theorem 2.4 Let a, b ∈ R ∪ {−∞,∞} such that a < b and let −→m =
{mn}∞n=1 be a sequence of integers mn ≥ 2. Let ψ be a negative definite
function on (a, b) ∩ S(−→m). Let α ∈ 2S(−→m) such that a < α < b and let
β ∈ S(−→m) such that β > 0 and a < α + 2β < b.

(1) If the sequence −→m contains at most finitely many even numbers, then ψ

has a representation of the form

ψ(r) = A + Br − Cr2 +
∫

R\{0}

(
eαx − erx − r − α

β
eαx(1− eβx)

)
dµ(x)

−
∫

R

χ(r)erxdν(x)

for r ∈ (a, b) ∩ S(−→m), where A,B, C are real constants such that C ≥ 0
and µ, ν are positive Radon measures such that
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∫

0<|x|≤1

x2dµ(x) < +∞,

∫

|x|≥1

erxdµ(x) < +∞ and
∫

R

erxdν(x) < +∞

for r ∈ (a, b)∩S(−→m). Moreover, the quintuple (A,B, C, µ, ν) is uniquely
determined by ψ, α and β.

(2) If the sequence −→m contains infinitely many even numbers, then ψ has a
representation of the form

ψ(r) = A + Br − Cr2 +
∫

R\{0}

(
eαx − erx − r − α

β
eαx(1− eβx)

)
dµ(x)

for r ∈ (a, b) ∩ S(−→m), where A,B, C are real constants such that C ≥ 0
and µ is a positive Radon measure such that

∫

0<|x|≤1

x2dµ(x) < +∞ and
∫

|x|≥1

erxdµ(x) < +∞

for r ∈ (a, b) ∩ S(−→m). Moreover, the quadruple (A,B, C, µ) is uniquely
determined by ψ, α and β.

Proof. We prove only (1). Replacing ψ by ψ − ψ(α) if necessary, we may
suppose that ψ(α) = 0. By Theorem 2.1 (1) and [3, Theorem 3.2.2], we have

e−tψ(r) =
∫

R

e(r−α)xdµt(x) +
∫

R

χ(r)e(r−α)xdνt(x),

for r ∈ (a, b) ∩ S(−→m), t > 0,

where µt and νt are finite positive Radon measures on R such that µt(R)+
νt(R) = 1. For r ∈ (a, b) ∩ S(−→m), we have

∫

R

(
1− e(r−α)x − r − α

β
(1− eβx)

)
dµt(x)

+
∫

R

(
1− χ(r)e(r−α)x − r − α

β
(1− χ(β)eβx)

)
dνt(x)
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= 1− e−tψ(r) − r − α

β
(1− e−tψ(α+β)),

so

1
t

∫

R

(
1− e(r−α)x − r − α

β
(1− eβx)

)
dµt(x)

+
1
t

∫

R

(
1− χ(r)e(r−α)x − r − α

β
(1− χ(β)eβx)

)
dνt(x)

converges to ψ(r)− r − α

β
ψ(α +β) as t → 0. Similarly, if r ∈ S(−→m) satisfies

a < α + 2r < b, we have

lim
t→0

1
t

( ∫

R

(1−erx)2dµt(x)+
∫

R

(1−χ(r)erx)2dνt(x)
)

= 2ψ(α+r)−ψ(α+2r),

which implies that

sup
0<t≤1

∫

R

1
t
(1− erx)2dµt(x) ≤ Ar,

sup
0<t≤1

∫

R

1
t
(1− χ(r)erx)2dνt(x) ≤ Ar (2.6)

for some constant Ar > 0 depending on r. Fix β′ ∈ S(−→m) \ 2S(−→m) such
that β < β′ and a < α + 2β′ < b. By (2.6), there exist finite positive Radon
measures σ, τ and a sequence {tj} which tends to 0 such that

lim
j→∞

1
tj

(1− eβx)2µtj
= σ, (2.7)

lim
j→∞

1
tj

(1 + eβ′x)2νtj = lim
j→∞

1
tj

(1− χ(β′)eβ′x)2νtj = τ (2.8)

in vague topology.
For a fixed r ∈ (a, b) ∩ S(−→m), choose δ, γ ∈ S(−→m) \ 2S(−→m) satisfying

δ < 0, β < γ and

a < α + 2δ < r < α + 2γ < b.
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Then it follows from (2.6), (2.7) and [3, Proposition 2.4.4] that

lim
j→∞

1
tj

∫

R

f(x)(1− eδx)2dµtj (x) =
∫

R

f(x)
(

1− eδx

1− eβx

)2

dσ(x), (2.9)

lim
j→∞

1
tj

∫

R

f(x)(1− eγx)2dµtj
(x) =

∫

R

f(x)
(

1− eγx

1− eβx

)2

dσ(x) (2.10)

for every continuous function f on R vanishing at infinity. Using (2.9) and
(2.10), we have

lim
j→∞

1
tj

∫

R

(
1− e(r−α)x − r − α

β
(1− eβx)

)
dµtj

(x)

= lim
j→∞

1
tj

∫

R

1−e(r−α)x− r−α
β (1−eβx)

(1− eδx)2 + (1− eγx)2
{
(1− eδx)2 + (1− eγx)2

}
dµtj

(x)

=
∫

R

1− e(r−α)x − r−α
β (1− eβx)

(1− eβx)2
dσ(x)

=
(r − α)(α + β − r)

2β2
σ({0})

+
∫

R\{0}

(
eαx − erx − r − α

β
eαx(1− eβx)

)
dµ(x),

where µ = (e−αx/(1− eβx)2)σ|R\{0}. Similarly,

1
tj

∫

R

(
1− χ(r)e(r−α)x − r − α

β
(1− χ(β)eβx)

)
dνtj

(x)

=
1
tj

∫

R

1− χ(r)e(r−α)x − r−α
β (1− χ(β)eβx)

(1 + eδx)2 + (1 + eγx)2

× {
(1 + eδx)2 + (1 + eγx)2

}
dνtj

(x)

converges to

∫

R

1− χ(r)e(r−α)x − r−α
β (1− χ(β)eβx)

(1 + eβ′x)2
dτ(x)
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=
∫

R

(
eαx − χ(r)erx − r − α

β
eαx(1− χ(β)eβx)

)
dν(x)

as j →∞, where ν = (e−αx/(1 + eβ′x)2)τ . Thus we get

ψ(r) =
r − α

β
ψ(α + β) +

(r − α)(α + β − r)
2β2

σ({0})

+
∫

R\{0}

(
eαx − erx − r − α

β
eαx(1− eβx)

)
dµ(x)

+
∫

R

(
eαx − χ(r)erx − r − α

β
eαx(1− χ(β)eβx)

)
dν(x).

By (2.6), we have

∫

R\{0}

(
1− erx

1− eβx

)2

dσ(x) ≤ Ar,

∫

R

(
1− χ(r)erx

1 + eβ′x

)2

dτ(x) ≤ Ar

for r ∈ S(−→m) satisfying a < α+2r < b, and it follows that µ and ν have the
asserted properties. Moreover, since we have

2ψ(r + β)− ψ(r)− ψ(r + 2β) = 2Cβ2 +
∫

R\{0}
erx(eβx − 1)2dµ(x)

+
∫

R

χ(r)erx(χ(β)eβx − 1)2dν(x)

=
∫

R

erxdµ̃(x) +
∫

R

χ(r)erxdν̃(x)

for r ∈ (a, b − 2β) ∩ S(−→m), where µ̃ = 2Cβ2δ0 + (eβx − 1)2µ and ν̃ =
(χ(β)eβx − 1)2ν, it follows from Theorem 2.1 that C, µ, ν, A and B are
uniquely determined. ¤

In the case of half-open intervals, we can prove the following theorem.
The proof can be done in a similar way as that of Theorem 2.4.

Theorem 2.5 Let −→m = {mn}∞n=1 be a sequence of integers mn ≥ 2 and
let a ∈ 2S(−→m), b ∈ R ∪ {∞} such that a < b. Let ψ be a negative definite
function on [a, b) ∩ S(−→m) and let β ∈ S(−→m) such that a < a + 2β < b.
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(1) If the sequence −→m contains at most finitely many even numbers, then ψ

has a representation of the form

ψ(r) = A + Br − Cr2 −Dδa(r)

+
∫

R\{0}
(eax − erx − r − a

β
eax(1− eβx))dµ(x)

−
∫

R

χ(r)erxdν(x)

for r ∈ [a, b) ∩ S(−→m), where A,B, C, D are real constants such that
C, D ≥ 0 and µ, ν are positive Radon measures such that

∫

0<|x|≤1

x2 dµ(x) < +∞,

∫

|x|≥1

erxdµ(x) < +∞ and
∫

R

erxdν(x) < +∞

for r ∈ (a, b) ∩ S(−→m). Moreover, the sextuple (A,B, C, D, µ, ν) is
uniquely determined by ψ and β.

(2) If the sequence −→m contains infinitely many even numbers, then ψ has a
representation of the form

ψ(r) = A + Br − Cr2 −Dδa(r)

+
∫

R\{0}

(
eax − erx − r − a

β
eax(1− eβx)

)
dµ(x)

for r ∈ [a, b) ∩ S(−→m), where A,B, C, D are real constants such that
C, D ≥ 0 and µ is a positive Radon measure such that

∫

0<|x|≤1

x2dµ(x) < +∞ and
∫

|x|≥1

erxdµ(x) < +∞

for r ∈ (a, b)∩S(−→m). Moreover, the quintuple (A,B, C, D, µ) is uniquely
determined by ψ and β.

Remark 2.2 If we put S(−→m) = Q in Theorem 2.4 (2) and Thoerem 2.5
(2), we obtain [2, Theorem 4, Proposition 2]. If we put [a, b) = [0,∞) and
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β = 1 in Theorem 2.5, we obtain [7, Theorem 2.4].

3. Integral representations of operator-valued functions

In this section, we consider the case of operator-valued functions. Let H
be a complex Hilbert space, 〈·, ·〉 the inner product on H, B(H) the set of all
bounded linear operators on H, and B(H)+ the set of all positive operators
on H. A function ϕ : I ∩ S(−→m) → B(H) is said to be positive definite if

n∑

i,j=1

cicj〈ϕ(ri + rj)ξ, ξ〉 ≥ 0

for all n ≥ 1, c1, c2, . . . , cn ∈ C, r1, r2, . . . , rn ∈ S(−→m) such that 2ri ∈ I ∩
S(−→m) for i = 1, 2, . . . , n and ξ ∈ H, and of positive type if

n∑

i,j=1

〈ϕ(ri + rj)ξi, ξj〉 ≥ 0

for all n ≥ 1, r1, r2, . . . , rn ∈ S(−→m) such that 2ri ∈ I∩S(−→m) for i = 1, 2, . . . , n

and ξ1, ξ2, . . . , ξn ∈ H.
If ϕ is a function of positive type, then ϕ is positive definite, and the

converse is true if dimH = 1. Furthermore, it is known that a positive
definite function defined on a perfect ∗-semigroup is necessarily of positive
type ([5, Theorem 3.1, Proposition 1.1]). But there exists a positive definite
function defined on a semiperfect ∗-semigroup which is not of positive type
([4, Theorem 1], [5, Theorem 3.7]).

Let us denote by B(R) the σ-algebra of all Borel subsets of R, and
by E+(I,R,H) the set of all functions F : B(R) → B(H)+ satisfying
〈F (·)ξ, ξ〉 ∈ E+(I,R) for all ξ ∈ H.

Theorem 3.1 Let a, b ∈ R ∪ {−∞,∞} such that a < b and let −→m =
{mn}∞n=1 be a sequence of integers mn ≥ 2 which contains at most finitely
many even numbers. Let ϕ : (a, b)∩S(−→m) → B(H) be a function on (a, b)∩
S(−→m). Then the following conditions are mutually equivalent :

(1) ϕ is of positive type;
(2) ϕ is positive definite;
(3) For any fixed α ∈ (a, b)∩ 2S(−→m), there exist functions F1, F2 : B(R) →
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B(H)+ such that e−αxF1, e
−αxF2 ∈ E+((a, b),R,H) and

〈ϕ(r)ξ, η〉 =
∫

R

e(r−α)xd〈F1(x)ξ, η〉+
∫

R

χ(r)e(r−α)xd〈F2(x)ξ, η〉,

for r ∈ (a, b) ∩ S(−→m), ξ, η ∈ H.

Moreover, the pair (F1, F2) is uniquely determined by ϕ and α.

Proof. The implication (1) =⇒ (2) is clear, while the implication (3) =⇒
(1) is proved by a similar way as the proof of [5, Proposition 1.1]. Suppose
that (2) holds and fix α ∈ (a, b) ∩ 2S(−→m). By the proof of Theorem 2.1 (1),
for each ξ ∈ H there exist finite positive Radon measures µξ, νξ on R such
that

〈ϕ(r)ξ, ξ〉 =
∫

R

e(r−α)xdµξ(x) +
∫

R

χ(r)e(r−α)xdνξ(x), r ∈ (a, b) ∩ S(−→m).

For ξ, η ∈ H, define the signed measures µξ,η, νξ,η by

µξ,η =
1
4
{µξ+η − µξ−η + iµξ+iη − iµξ−iη} ,

νξ,η =
1
4
{νξ+η − σξ−η + iνξ+iη − iνξ−iη} .

Then

〈ϕ(r)ξ, η〉 =
∫

R

e(r−α)xdµξ,η(x)+
∫

R

χ(r)e(r−α)xdνξ,η(x), r ∈ (a, b)∩S(−→m).

By Theorem 2.1(1), we can see that for each B ∈ B(R) the mappings

(ξ, η) 7→ µξ,η(B), (ξ, η) 7→ νξ,η(B)

are sesqui-linear forms on H × H respectively. Furthermore, for ξ ∈ H we
have

0 ≤ µξ,ξ(B) ≤ µξ,ξ(R) ≤ 〈ϕ(α)ξ, ξ〉,

so that 0 ≤ µξ,ξ(B) ≤ ‖ϕ(α)‖ ‖ξ‖2. Therefore there exists a unique operator
F1(B) ∈ B(H)+ such that µξ,η(B) = 〈F1(B)ξ, η〉. Similarly νξ,η(B) =
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〈F2(B)ξ, η〉 with F2(B) ∈ B(H)+. Then we have

〈ϕ(r)ξ, η〉 =
∫

R

e(r−α)xd〈F1(x)ξ, η〉+
∫

R

χ(r)e(r−α)xd〈F2(x)ξ, η〉.

Thus the condition (3) holds. ¤

We can obtain a result analogous to Theorem 3.1 for the case where−→m contains infinitely many even numbers. We also obtain the following
theorem:

Theorem 3.2 Let −→m be a sequence of integers mn ≥ 2 which contains at
most finitely many even numbers, and let a ∈ 2S(−→m), b ∈ R ∪ {∞} such
that a < b. Let ϕ : [a, b) ∩ S(−→m) → B(H) be a function on [a, b) ∩ S(−→m).
Then the following conditions are mutually equivalent :

(1) ϕ is of positive type;
(2) ϕ is positive definite;
(3) There exist a positive operator T ∈ B(H) and functions F1, F2 : B(R) →

B(H)+ such that e−axF1, e−axF2 ∈ E+([a, b),R,H) and

〈ϕ(r)ξ, η〉 = δa(r)〈Tξ, η〉+
∫

R

e(r−a)xd〈F1(x)ξ, η〉

+
∫

R

χ(r)e(r−a)xd〈F2(x)ξ, η〉,

for r ∈ [a, b) ∩ S(−→m), ξ, η ∈ H.

Moreover the triple (T, F1, F2) is uniquely determined by ϕ.
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