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A tower condition characterizing normality
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Abstract. We define left relative H-separable tower of rings and continue a study

of these begun by Sugano. It is proven that a progenerator extension has right depth

2 if and only if the ring extension together with its right endomorphism ring is a left

relative H-separable tower. In particular, this applies to twisted or ordinary Frobenius

extensions with surjective Frobenius homomorphism. For example, normality for Hopf

subalgebras of finite-dimensional Hopf algebras is also characterized in terms of this

tower condition.
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1. Introduction and Preliminaries

Depth two is a bimodule condition on subrings that is equivalent to usual
notions of normality for subgroups [4], Hopf subalgebras [2] and semisimple
complex subalgebra pairs [6]; in addition, depth two is a condition of nor-
mality for a ring extension that makes it a Galois extension with respect
to a right bialgebroid coaction [16], [18]. The right depth two condition on
an algebra extension A ⊇ B is that the natural A-B-bimodule A ⊗B A is
isomorphic to a direct summand of a natural A-B-bimodule A ⊕ · · · ⊕ A:
in symbols this is AA⊗B AB ⊕ ∗ ∼= AAn

B . If A is a finite-dimensional Hopf
algebra and B is a Hopf subalgebra of A, it is shown in [2] that A ⊇ B

has right (or left) depth 2 if and only if B is a normal Hopf subalgebra of
A (i.e., B is invariant under either the left or right adjoint actions). If A

is a finite-dimensional group algebra CG, its module theory is determined
by the character theory of G, and the right depth two condition on a group
subalgebra B = CH in A is determined by a matrix inequality condition
on the induction-restriction table for the irreducible characters of G and
subgroup H; for more on this, depth greater than 2 as well as modular
representations, see [5], [6], [4], [7], [8], [9].

For the reasons just given we call a subring B ⊆ A satisfying the right
depth 2 condition above a right normal subring (and the ring extension
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A ⊇ B a right normal extension), the details appearing in Definition 1.7.
We find a characterization of normal Frobenius extensions with surjective
Frobenius homomorphism (such as finite Hopf-Galois extensions with sur-
jective trace map [15]), in terms of an old one-sided H-separability condi-
tion on a tower of rings A ⊇ B ⊇ C appearing in Sugano’s [25, Lemma
1.2]. This condition is interesting and we gather into “Sugano’s Theorem”
(Theorem 1.8) the results for a tower satisfying this condition in [25], pro-
viding a different proof. We show in Section 3 that a ring extension A ⊇ B

with the natural module AB a progenerator, together with its right endo-
morphism ring EndAB , forms a tower satisfying Sugano’s condition, called
“left relative H-separable,” if and only if A ⊇ B is a right normal exten-
sion. In Corollary 3.5 it is noted that Theorem 3.2 establishes the same
tower characterization of normality for β-Frobenius extensions with surjec-
tive Frobenius homomorphism. For example, an arbitrary Hopf subalgebra
of a finite-dimensional Hopf algebra is such a twisted Frobenius extension:
then Corollary 3.6 characterizes a normal Hopf subalgebra in terms of its
right endomorphism algebra. A new proof that right normality is equivalent
to left normality for Frobenius extensions with the surjectivity condition is
noted in Corollary 3.4.

1.1. H-separable extensions
A ring extension A ⊇ B is H-separable if A ⊗B A ⊕ ∗ ∼= An as nat-

ural A-bimodules [11]. The notion of H-separability extends certain nice
results for Azumaya algebras to ring extensions. For example, the Azumaya
isomorphism of the enveloping algebra and the endomorphism algebra is
extended for an H-separable ring extension A ⊇ B to a bimodule isomor-
phism, A⊗B A ∼= Hom(RZ , AZ) where R is the centralizer of B in A and Z

is the center of A [10]. One also shows that A ⊇ B is a separable extension,
and if this is additionally split, that R is a separable algebra over Z [10],
[25], [14]. Any bimodule M over A has a generalized Azumaya isomorphism
MA ⊗Z R ∼= MB between the A- and B-centralized elements of M .

H-separable extension theory was one of the motivational models for
[16] which extends to ring theory the notion of depth 2 for free Frobenius
extensions in [15] (see [16, Examples 3.6, 4.8, 5.8], another toy model being
Lu’s Hopf algebroids on an algebra). Examples of H-separable extensions
come from tensoring Azumaya algebras with other algebras, or looking at
certain subalgebras within Azumaya algebras; certainly group algebra and
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Hopf algebra extensions are trivial if H-separable, which is true generally
[22] but easier to prove with characters (see Proposition 2.6 in this paper).
The more general notion of depth two ring extension welcomes examples
from Hopf-Galois extensions including normal Hopf subalgebras; indeed,
depth two ring extension is equivalent, with one other condition (balanced
module), to a Galois extension with bialgebroid coactions [16], [18], where
bialgebroid is the good generalization of bialgebra from algebras to ring
extensions.

An H-separable extension A ⊇ B is the H-depth n = 1 case of odd min-
imal H-depth dH(B,A) = 2n− 1 where A⊗Bn ∼ A⊗B(n+1) as A-bimodules
([20], see below in this section for H-equivalent modules). We show in
Propositon 2.2 that a relative separable and H-separable tower A ⊇ B ⊇ C

has equality of minimal H-depth, dH(B,A) = dH(C, A). We note a different
proof of Sugano’s theorem 1.8 (cf. [25]) that shows that in such a relative
H-separable tower there is a close relation between depth 1 (centrally pro-
jective) and H-depth 1 (H-separable) extensions B ⊇ C and AC ⊇ AB , as
well as split and separable extensions.

The following unpublished characterization of H-separable extensions is
useful below.

Proposition 1.1 Let A | B be a ring extension. Then A | B is H-separable
if and only if for each A-module N , its restriction and induction satisfies
IndA

B ResA
B N ⊕ ∗ ∼= Nm for some m ∈ N via two natural transformations.

Consequently, if A | B is H-separable and A-modules V, W satisfy VB ⊕∗ ∼=
WB, then VA ⊕ ∗ ∼= Wm

A for some m ∈ N.

Proof. The second statement follows from the fact that A | B is also
separable, so that V ⊗B A → V , v ⊗ a 7→ va is a natural split epi. Note
that V ⊗B A⊕ ∗ ∼= W ⊗B A, so that the second statement follows from the
characterization in the first statement.

(⇒) Since A ⊗B A ⊕ ∗ ∼= An as A-bimodules, the implication follows
from tensoring this by N ⊗A −. Naturality follows from looking more care-
fully at the mappings, starting with a module homomorphism g : NA →
N ′

A. Another characterization of H-separability is that there are elements
ei ∈ (A⊗B A)A and ri ∈ AB (i = 1, . . . , n) such that 1⊗B 1 =

∑
i riei. For

each module MA, define natural transformations τM : M ⊗B A → Mn
A

by τM (m ⊗B a) = (mr1a, . . . , mrna), and σM : MA
n → M ⊗B A by

σM (m1, . . . , mn) =
∑

i miei; note that σMτM = idM⊗BA and the naturality
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commutative square follows readily.
(⇐) Let N = A in the hypothesis using natural transformations (as

above) σN and τN . Then there are A-bimodule homomorphisms (from
naturality) τA : A ⊗B A → Am and σA : Am → A ⊗B A such that
σA(τA(1⊗B 1))) = 1⊗B 1. Then τA(1⊗B 1) = (r1, . . . , rm) ∈ (AB)m and, de-
noting the canonical basis of Am by {c1, . . . , cm}, σA(ci) = ei ∈ (A⊗B A)A.
Since τA is a section of σA, the equation 1 ⊗B 1 =

∑m
i=1 riei follows; thus

A | B is H-separable. ¤

1.2. Left relative separable ring towers
In this paper a tower of rings A ⊇ B ⊇ C is a unital associative ring

A with subring B, and C a subring of B, so that 1C = 1B = 1A, which
is denoted by 1. Sugano in [25] defines B to be a left relative separable
extension of C in A (or briefly, a left relative separable tower) if the B-A-
epimorphism µ : B⊗C A → A, defined by µ(b⊗a) = ba, is split; equivalently,
there is a B-central element e ∈ (B ⊗C A)B such that e1e2 = 1 (where
e = e1⊗ e2 is modified Sweedler notation suppressing a finite sum of simple
tensors). Similarly one defines B to be a right relative separable extension
of C in A by requiring µ : A ⊗C B → A to be a split A-B-epimorphism.
The next lemma notes that a separable extension B ⊇ C always give rise to
a left and right relative separable extension of C in any over-ring A.

Lemma 1.2 Let A ⊇ B ⊇ C be a tower of rings. If B ⊇ C is a separable
extension, then B is a left and right relative separable extension of C in A.
Conversely, if A ⊇ B is a split extension and B is a left or right relative
separable extension of C in A, then B ⊇ C is a separable extension.

Proof. Let e ∈ (B ⊗C B)B satisfy µ(e) = e1e2 = 1, the separability condi-
tion on B ⊇ C. Then e ∈ (B⊗C A)B ∩ (A⊗C B)B defines mappings a 7→ ae

and a 7→ ea splitting µr : A⊗C B → A and µ` : B ⊗C A → A, respectively.
Suppose E : BAB → BBB is a bimodule projection (equivalently,

E(1) = 1), and µ : B ⊗C A → A is a split B-A-epimorphism (by
σ : A → B ⊗C A). Then e = σ(1) is in (B ⊗C A)B satisfying e1e2 = 1.
Note then that e1 ⊗C E(e2) is a separability element for B ⊇ C. A similar
argument for a right relative separable tower shows that B ⊇ C is separable.

¤

For example, suppose G > H > J is a tower of finite groups (i.e., H

and J are subgroups of G where J ⊆ H). Since group algebra extensions
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are always split, the lemma implies that a tower of group algebras KG ⊇
KH ⊇ KJ over a commutative ring K is left or right relative separable if
and only if KH ⊇ KJ is separable if and only if |H : J |1 is an invertible
element in K.

The lemma below provides nontrivial examples of relative separable
towers; its proof is easy and therefore omitted.

Lemma 1.3 Suppose A ⊇ C is a separable extension with separability
element e ∈ B ⊗C A for some intermediate subring B of A containing C.
Then B is a left relative separable extension of C in A.

Example 1.4 Let K be a commutative ring and A = Mn(K) the full K-
algebra of n× n matrices. Let eij denote the matrix units (i, j = 1, . . . , n).
Any of the n elements ej =

∑n
i=1 eij⊗K eji are separability idempotents for

A. This is also an example of a (symmetric) Frobenius algebra with trace
map T : A → K having dual bases eij , eji.

Let B1, B2 denote the upper and lower triangular matrix algebras re-
spectively (both of rank n(n+1)/2). Then B1 and B2 are right, respectively
left, relative separable algebras in Mn(K), since e1 ∈ A⊗K B1 ∩B2 ⊗K A.

1.3. Left relative H-separable ring towers
In the same paper [25], Sugano considers a related condition on a tower

of rings A ⊇ B ⊇ C, given by the condition on B-A-bimodules,

BB ⊗C AA ⊕ ∗ ∼= BAn
A, (1)

for some n ∈ N, i.e., B⊗C A is isomorphic to a direct summand of A⊕· · ·⊕A

as natural B-A-bimodules. We define B to be a left relative H-separable
extension of C in A (or briefly refer to a left relative H-separable tower) if
it satisfies the condition in (1). Note that if A = B the condition in (1) is
that of H-separability of B ⊇ C; if B = C, the condition becomes trivially
satisfied by any ring extension A ⊇ B. We note a lemma similar to the one
above.

Lemma 1.5 Let A ⊇ B ⊇ C be a tower of rings. If B ⊇ C is an
H-separable extension, then B is a left (and right) relative H-separable ex-
tension of C in A.

Proof. Given the H-separability condition on the natural B-B-bimodules,
B ⊗C B ⊕ ∗ ∼= Bm, we tensor this from the right by the additive functor
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−⊗B AA. After a cancellation of the type B⊗B A ∼= A, the condition in (1)
results. Tensoring similarly by additive functor A ⊗B − from the category
of B-B-bimodules into the category of A-B-bimodules results in the obvious
right relative H-separable extension condition (AA ⊗C BB ⊕ ∗ ∼= AAn

B) on
B over C in A. ¤

Note that if B is an H-separable extension of C, then B is left and right
relative separable and relative H-separable extension of C in any over-ring
A, since H-separable extensions are separable extensions [14] (and applying
both lemmas).

1.4. Preliminaries on subring normality and depth
Let A be a unital associative ring. The category of right modules over

A will be denoted by MA. Two modules MA and NA are H-equivalent (or
similar) if M ⊕ ∗ ∼= Nq and N ⊕ ∗ ∼= Mr for some r, q ∈ N (sometimes
briefly denoted by M ∼ N). It is well-known that H-equivalent modules
have Morita equivalent endomorphism rings.

Let B be a subring of A (always supposing 1B = 1A). Consider the
natural bimodules AAA, BAA, AAB and BAB where the last is a restriction
of the preceding, and so forth. Denote the tensor powers of BAB by A⊗Bn =
A⊗B · · · ⊗B A for n = 1, 2, . . ., which is also a natural bimodule over B and
A in any one of four ways; set A⊗B0 = B which is only a natural B-B-
bimodule.

Definition 1.6 If A⊗B(n+1) is H-equivalent to A⊗Bn as X-Y -bimodules,
one says B ⊆ A (or A ⊇ B) has

• depth 2n + 1 if X = B = Y ;
• left depth 2n if X = B and Y = A;
• right depth 2n if X = A and Y = B;
• H-depth 2n− 1 if X = A = Y .

(Valid for even depth and H-depth if n ≥ 1 and for odd depth if n ≥ 0.)
Note that B ⊆ A having depth n implies it has depth n + 1. Similarly if
B ⊆ A has H-depth 2n − 1, then it has H-depth 2n + 1 (and depth 2n).
Define minimum depth d(B,A), and minimum H-depth dH(B,A) to be the
least depth, or H-depth, satisfied by B ⊆ A; if B ⊆ A does not have finite
depth, equivalently finite H-depth, set d(B,A) = dH(B,A) = ∞.

For example, B ⊆ A has depth 1 iff BAB and BBB are H-equivalent
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[2]. Equivalently, BAB ⊕ ∗ ∼= BBn
B for some n ∈ N [21]. This in turn is

equivalent to there being fi ∈ Hom(BAB , BBB) and ri ∈ AB such that
idA =

∑
i fi(−)ri, the classical central projectivity condition [23]. In this

case, it is easy to show that A is ring isomorphic to B ⊗Z(B) AB where
Z(B), AB denote the center of B and centralizer of B in A. From this
we deduce immediately that a centrally projective ring extension A ⊇ B

(equivalently, depth 1 extension) has centers satisfying Z(B) ⊆ Z(A), a
condition of Burciu that characterizes depth 1 for a semisimple complex
subalgebra pair B ⊆ A. Depth 1 subgroups are normal with one other
condition on centralizers that depends on the commutative ground ring [3].

For another and important example of depth, the subring B ⊂ A has
right depth 2 iff AAB and AA⊗B AB are similar; equivalently,

AA⊗B AB ⊕ ∗ ∼= AAn
B (2)

for some n ∈ N. If A = KG is a group algebra of a finite group G, over
a commutative ring K, and B = KH is the group algebra of a subgroup
H < G, then B ⊆ A has right depth 2 iff H is a normal subgroup of G iff
B ⊆ A has left depth 2 [4]; a similar statement is true for a Hopf subalgebra
R ⊆ H of finite index and over any field [4]. For this and further reasons
mentioned in the first paragraphs of this section we propose the following
terminology that is consistent with the literature on normality of subobjects
[4], [2], [6] and of Galois extensions [16], [18].

Definition 1.7 Suppose that B ⊆ A is a subring pair. We say that B

is a right (or left) normal subring of A if B ⊆ A satisfies the right (or left)
depth 2 condition above. Similarly, if B → A is a ring homomorphism, we
say that the ring extension A | B is a right (or left) normal extension if the
bimodules induced by B → A satisfy the right (or left) depth 2 condition.
A normal extension or normal subring is both left and right normal.

For example, centrally projective, or depth 1, ring extensions are normal
extensions. As a corollary of [21, Theorem 3.2] we know that a QF extension
is left normal if and only if it is right normal (extending the equivalence of
left and right normality for Frobenius extensions in [16]). The Galois theory
of a normal extension A ⊇ B with the additional condition that AB is a
balanced module (with respect to its endomorphism ring EndAB) is briefly
summarized as follows: the ring T := (A⊗B A)B ∼= End AA⊗B AA has right
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bialgebroid structure (and is left projective) over the centralizer subring
AB := R [16] with coaction on A, denoted by a 7→ a(0) ⊗R a(1) ∈ A ⊗R T ,
having coinvariant subring B, such that

A⊗B A
∼=−→ A⊗R T (3)

given by the canonical Galois mapping a⊗B c 7→ ac(0) ⊗R c(1) with inverse
given by a⊗R t 7→ at1 ⊗B t2 [18].

1.5. Sugano’s theorem
Compiling results in [25] into a theorem and using the terminology of

depth, we provide a different proof (except in (7) below). Let A ⊇ B ⊇ C

be a tower of rings, and consider the centralizers D := AC ⊇ AB := R.

Theorem 1.8 Suppose B is a left relative H-separable extension of C in
A; i.e., BB ⊗C AA ⊕ ∗ ∼= BAn

A. Then the following hold :

(1) D is a left finitely generated projective module over its subring R;
(2) as natural B-A-bimodules, B⊗C A ∼= Hom(RD, RA) via b⊗a 7−→ (d 7→

bda);
(3) if B is a split extension of C, then D is a separable extension of R;
(4) if d(C, B) = 1, then dH(R, D) = 1;
(5) if B ⊇ C is a separable extension, then D ⊇ R is a split extension;
(6) if dH(C, B) = 1, then d(R, D) = 1;
(7) if AR = B (i.e. B has the double centralizer property in A) and BC

is a finitely generated projective module, then the isomorphism given in
(2) restricts to B ⊗C B ∼= Hom(RDR, RAR) and (a) dH(C, B) = 1 iff
d(R, D) = 1; (b) B ⊇ C is separable iff D ⊇ R is split.

Proof. The relative H-separability condition (1) on the tower A ⊇ B ⊇ C

is clearly equivalent to the two conditions

• there are g1, . . . , gn ∈ Hom(BB⊗C AA, BAA) ∼= D via gi 7→ gi(1⊗C 1),
and f1, . . . , fn ∈ Hom(BAA, BB ⊗C AA) ∼= (B ⊗C A)B via fi 7→ fi(1)
such that

∑n
i=1 fi ◦ gi = idB⊗CA;

• there are ei ∈ (B ⊗C A)B and di ∈ D for i = 1, . . . , n such that
1⊗C 1 =

∑n
i=1 eidi,

since we define ei = fi(1) and di = gi(1 ⊗C 1) ∈ AC . We will make use of
the equation
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1⊗C 1 =
∑

i

e1
i ⊗ e2

i di (4)

in almost every step of the proof below.

(1) Given d ∈ D, d =
∑

i e1
i de2

i di. Define hi ∈ Hom(RD, RR) by hi(d) =
e1
i de2

i , thus d =
∑

i hi(d)di is a finite projective bases equation.
(2) An inverse to b ⊗C a 7→ λb ◦ ρa is given by sending f ∈ Hom(RD, RA)

into
∑

i eif(di).
(3) Given a bimodule projection E : B → C, note that applying E to Eq. (4)

yields 1 =
∑

i E(e1
i )e

2
i di. At the same time, a computation shows that∑

i E(e1
i )e

2
i ⊗R di ∈ (D ⊗R D)D.

(4) Trivially D ∼= Hom(CCC , CAC), while D ⊗R D ∼= Hom(CBC , CAC) via
d ⊗R d′ 7→ λd ◦ ρd′ (with inverse given by g 7→ ∑

i g(e1
i )e

2
i ⊗R di for

each g ∈ Hom(CBC , CAC)). The mapping µ : D ⊗R D → D corre-
sponds under these isomorphisms to restriction r : Hom(CBC , CAC) →
Hom(CCC , CAC). If we have the depth one condition CBC ⊕∗ ∼= CCm

C ,
then after applying the additive functor Hom(−, CAC) and the (D-
bimodule) isomorphisms just considered, we obtain D ⊗R D ⊕ ∗ ∼= Dm

as D-D-bimodules, the H-depth one condition.
(5) If e ∈ (B ⊗C B)B satisfies e1e2 = 1, then the mapping in (2) applied to

e is a bimodule projection in Hom(RDR, RRR).
(6) If B is an H-separable extension of C, there are t elements zi ∈ (B ⊗C

B)B and t elements ri ∈ BC such that 1 ⊗C 1 =
∑t

i=1 ziri [14]. But
BC ⊆ AC = D and d 7→ z1

i dz2
i defines t mappings hi ∈ Hom(RDR, RRR)

such that d =
∑

i hi(d)ri, a centrally projective bases equation for D ⊇
R, thus d(R, D) = 1.

(7) First note that AA⊗R DD
∼= A Hom(BC , AC)D via a⊗d 7→ λa ◦ρd (with

inverse f 7→ ∑
i f(e1

i )e
2
i ⊗R di). The isomorphism in (2) restricts to the

composite isomorphism (using Proposition 20.11 in [1]) of

BB ⊗C BB
∼= BB ⊗C Hom(AAR, AAR)B

∼= B Hom(A Hom(BC , AC)R, AAR)

(since AR = B(∼= Hom(AA, AA)R) and BC is finite projective)

∼= B Hom(AA⊗R DR, AAR)B
∼= Hom(RDR, R Hom(AA, AA)R)
∼= B Hom(RDR, RAR)B .
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(8) (7a ⇐) Suppose hj ∈ Hom(RDR, RRR) and wj ∈ DR satisfy idD =∑
j hj(−)wj . Then using the isomorphism in (7) there are ej ∈ (B ⊗C

B)B ∼= Hom(RDR, RRR) such that hj(d) = e1
jde2

j for all d ∈ D. Note
that wj ∈ DR ⊆ AR = B and wj ∈ D = AC , whence wj ∈ BC . It
follows from the isomorphism (7) that 1⊗C 1 =

∑
j ejwj an equivalent

condition for H-separability, dH(C, B) = 1.
(9) (7b ⇐) Given a projection E : RDR → RRR one notes that E ∈

Hom(RDR, RAR)B ∼= (B ⊗C B)B , so that there is e ∈ (B ⊗C B)B such
that E(d) = e1de2 for all d ∈ D. In particular, e1e2 = E(1) = 1. ¤

Since H-separability implies separability for ring extensions, we might
expect some mild condition should imply the same for towers of rings. The
next corollary addresses this question.

Corollary 1.9 Suppose A ⊇ B ⊇ C is a left relative H-separable tower
satisfying D = AC is a left split extension of R = AB. Then A ⊇ B ⊇ C is
left relative separable.

Proof. Applying (2) of Sugano’s theorem, note that µ : B ⊗C A → A

corresponds to the A-dual of the inclusion ι : RR → RA, which is ι∗ :
Hom(RD, RA) → Hom(RR, RA) ∼= BAA. If ι is a split monic, then ι∗ and µ

are split B-A-epimorphisms. ¤

Corollary 1.10 Suppose K is a commutative ring, A is a K-algebra with
B a K-subalgebra satisfying the B-A-bimodule generator condition B ⊗K

A ⊕ ∗ ∼= An (for some n ∈ N). Let R be the centralizer AB. The following
holds:

(1) RA is a finite projective module;
(2) B ⊗K A ∼= End RA via b⊗ a 7→ λb ◦ ρa;
(3) if B has a K-linear projection onto K1, then A is a separable extension

of R;
(4) if B is finite projective as a K-module, then A is an H-separable exten-

sion of R;
(5) if B is a separable K-algebra, then A is a progenerator B-A-bimodule

and A ⊇ R is a split extension;
(6) if B is an Azumaya algebra with center Z such that Z ⊗K Z ∼= Z (via

µ), then A is centrally projective over its subalgebra R;
(7) if AR = B and B is a finite projective K-module, then the isomorphism
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in (2) restricts to B⊗KB ∼= End RAR and (5), (6) become iff statements.

Proof. The proof follows from Sugano’s theorem by letting C = K1, the
unit subalgebra in A and B. In (6) and (7) we make use of Sugano’s charac-
terization of an H-separable K-algebra B as being Azumaya over its center
Z subject to the condition µ : Z ⊗K Z

∼=−→ Z. In (5), the bimodule BAA

is already noted to be a generator, and it is finite projective, since given
any B-A-bimodule BMA and B-A-epimorphism φ : M → A, φ is split by
a 7→ e1me2a where e ∈ Be is a separability idempotent and φ(m) = 1. ¤

A converse to Lemma 1.5 is given in the following. The hypothesis
of cleft extension in the corollary is fullfilled for example by any finite-
dimensional A with nilradical J and separable subalgebra B ∼= A/J (using
Wedderburn’s Principal Theorem).

Corollary 1.11 Suppose π : BAB → BBB is a ring epimorphism splitting
A ⊇ B (a so-called cleft extension), and C is a subring of B such that the
left relative H-separable tower condition holds. Then B ⊇ C is H-separable
(i.e., dH(C, B) = 1).

Proof. Apply idB ⊗Cπ to the decomposition of 1⊗C 1 given in Eq. (4). We
obtain 1 ⊗C 1 =

∑
i e1

i ⊗ π(e2
i )π(di) where each e1

i ⊗C π(e2
i ) ∈ (B ⊗C B)B

and each π(di) ∈ BC : possessing Casimir elements and centralizer elements
like these characterizes H-separability of B over C. ¤

2. Subring depth in a relative separable tower

The progenerator condition in Corollary 1.10 is used again in the hy-
pothesis of the proposition below.

Proposition 2.1 Suppose a finitely generated projective K-algebra A has
subalgebra B such that A is a progenerator B-A-bimodule. Then A ⊇ B is
left normal.

Proof. Since µ : B ⊗K A → A splits, BAA ⊕ ∗ ∼= B ⊗K A; thus tensoring
by A⊗B − we obtain A⊗B A⊕∗ ∼= A⊗K A as natural A-bimodules. Since
B is a separable algebra, any B-module is K-relative projective, whence by
the hypothesis on A, BA⊕ ∗ ∼= BBm and so A⊗B A⊕ ∗ ∼= B ⊗K Am as B-
A-bimodules. Since BAA is a generator, it follows that B⊗K A⊕∗ ∼= BAq

A,
whence BA⊗B AA ⊕ ∗ ∼= BAmq

A , the left depth 2 condition on A ⊇ B. ¤
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Proposition 2.2 Suppose a tower of rings A ⊇ B ⊇ C satisfies the left
relative H-separability condition BB ⊗C AA ⊕ ∗ ∼= BAn

A and the left relative
separability condition BAA ⊕ ∗ ∼= BB ⊗C AA. Then dH(B,A) = dH(C, A).

Proof. Tensoring by AA ⊗B − the left relative H-separability condition
yields AA⊗C AA ⊕ ∗ ∼= AA⊗B An

A. Tensoring by AA⊗B − the left relative
separability condition above yields A ⊗B A ⊕ ∗ ∼= A ⊗C A as natural A-
bimodules, whence A⊗B A and A⊗C A are H-equivalent as A-A-bimodules.

Suppose that A⊗Bn is H-equivalent to A⊗Cn for any m > n ≥ 2. Then
A⊗B(m−1) and A⊗C(m−1) are H-equivalent, so A ⊗C A⊗B(m−1) and A⊗Cm

are H-equivalent, as are (A⊗C A)⊗B · · ·⊗B A and (A⊗B A)⊗B · · ·⊗B A. It
follows from this inductive argument that A⊗Bm and A⊗Cm are H-equivalent
as A-bimodules for any m > 1.

Suppose A ⊇ B has H-depth 1, equivalently, A and A ⊗B A are H-
equivalent, which is equivalent to A and A ⊗C A being H-equivalent iff
A ⊇ C has H-depth 1. From the definition of H-depth in Section 1 and the
H-equivalences noted above, A ⊇ B has H-depth n iff A ⊇ C has H-depth
n for any n ≥ 1. ¤

We improve on [17, Theorem 2.3] next.

Proposition 2.3 Suppose B is an Azumaya K-algebra and subalgebra of
a finitely generated projective K-algebra A. Then A ⊇ B has depth 1.

Proof. Since B is Azumaya, it is well-known that B is a progenerator Be-
module (e.g. [14]). Since B is a separable K-algebra, Be is a semisimple
extension of K1. Then BAB is K-relative projective, therefore BAB is finite
projective since A is projective over K. Thus A ⊕ ∗ ∼= B ⊗K Bm for some
m ∈ N. But Be ⊕ ∗ ∼= BBn

B for some n ∈ N since BBB is a generator.
Putting these together, BAB ⊕ ∗ ∼= BBmn

B . ¤

2.1. Higman-Jans-like theorem
Higman’s theorem in [10] states that a finite-dimensional group algebra

kG, where k is a field of positive characteristic p, has finite representation
type if and only if the Sylow p-subgroup of G is cyclic. The proof was
teased apart by Jans in [13] into two statements about the property of
finite representation type of a subalgebra pair of Artin algebras going up or
down according to whether A is a split or separable extension of B; e.g., a
separable and finitely generated extension A ⊇ B of Artin algebras where B
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has finitely many isoclasses of indecomposable modules implies that also A

has finite representation type; see also [24, pp. 173-174]. In generalizing this
theorem, we first need a lemma characterizing left relative separable towers
of rings A ⊇ B ⊇ C in terms of modules.

Lemma 2.4 B is a left relative separable extension of C in A if and
only if for each module AM , the mapping µM : B ⊗C M → M given by
b⊗C m 7→ bm splits naturally as a left B-module epimorphism.

Proof. (⇒) This is clear from tensoring the split epi µ : B ⊗C A → A by
− ⊗A M to obtain the split epi µM . (⇐) Apply the hypothesis to M = A

and use naturality to obtain a split B-A-bimodule epi µ : B ⊗C A → A. ¤

Let A be an Artin algebra, A−mod denote the category of finitely
generated left A-modules, and addM denote the category of summands of
finite sums of copies of a module M .

Theorem 2.5 Suppose A ⊇ B ⊇ C is a left relative separable tower of
Artin algebras, where BA and CB are finitely generated. Suppose C−mod
has finitely many isoclasses of indecomposable representatives V1, . . . , Vn.
Then the restriction functor ResA

B : A−mod → B−mod factors through the
subcategory add

⊕n
i=1 B ⊗C Vi.

Proof. Given M ∈ A−mod, its restrictions BM and CM are finitely gen-
erated. By the lemma, BM is isomorphic to a direct summand of B ⊗C M .
Since the restriction CM ∼= ⊕n

i=1 niVi for some nonnegative integers ni,
one obtains ResA

BM ⊕∗ ∼= ⊕n
i=1 niB ⊗C Vi, which is expressible as a Krull-

Schmidt decomposition into finitely many indecomposable B-module sum-
mands of B ⊗C V1, . . . , B ⊗C Vn. ¤

Of course if A = B and B ⊇ C is a separable finitely generated exten-
sion, then the theorem recovers Jans’s, “B has finite representation type if
C has.”

2.2. Triviality of Relatively H-separable Group Algebra Towers
We next note that towers of finite complex group algebras that are

left or right relative H-separable extensions are just arbitrary group algebra
extensions.

Proposition 2.6 Let A = CG ⊇ B = CH ⊇ C = CJ where G > H > J

is a tower of subgroups of a finite group G. Then A ⊇ B ⊇ C is a left or
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right relative H-separable tower of algebras if and only if H = J .

Proof. Given BB ⊗C AA ⊕ ∗ ∼= BAn
A, we tensor this with simple left A-

modules, i.e. G-modules, and make use of their (irreducible) characters. Let
ψ ∈ Irr(G) and φ ∈ Irr(H). From the relative H-separable condition above
it follows that

〈IndH
J ResG

J ψ, φ〉H ≤ n〈ResG
H ψ, φ〉H .

Letting ψ = 1G, note that ResG
J 1G = 1J for instance, so that

〈IndH
J 1J , φ〉H ≤ n〈1H , φ〉H .

This last inner product is zero if φ 6= 1H , so that also 〈IndH
J 1J , φ〉H =

0. If φ = 1H , then 〈IndH
J 1J , 1H〉H = 〈1J ,ResH

J 1H〉J = 1 by Frobenius
reciprocity. From the orthonormal expansion of IndH

J 1J in terms of Irr(H),
it follows that IndH

J 1J = 1H . Comparing degrees, it follows that |H : J | = 1,
whence H = J . The proof using the right relative H-separability condition
is a similar use of characters of right modules. The converse is of course
trivial. ¤

We have seen in Lemma 1.2 that a tower A ⊇ B ⊇ C of arbitrary
finite group algebras is always left or right relative separable if B ⊇ C is a
separable extension (iff |H : J | is invertible in the ground ring). This follows
from the fact that group algebra extensions are split extensions (since given
a subgroup H < G, the difference set G−H is closed under multiplication
by H).

3. A Characterization of normality for progenerator ring exten-
sions

The next proposition provides an alternative characterization of the left
relative H-separable condition for a tower A ⊇ B ⊇ C where BC is finitely
generated and projective.

Proposition 3.1 Suppose A ⊇ B ⊇ C is a tower of rings such that the
natural module BC is finite projective. Then the left relative H-separable
condition (1) is equivalent to the condition, (∃n ∈ N :)

A Hom(BC , AC)B ⊕ ∗ ∼= AAn
B . (5)
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Proof. Apply Hom(−A, AA), an additive functor from the category of B-A-
bimodules into the category of A-B-bimodules, to (1), BB⊗C AA⊕∗ ∼= BAn

A.
Note that Hom(B ⊗C AA, AA) ∼= Hom(BC , AC) as natural A-B-bimodules
via F 7→ F (−⊗C 1) with inverse

f 7−→ (b⊗C a 7→ f(b)a)

for every f ∈ Hom(BC , AC). Since A Hom(AA, AA)B
∼= AAB , the condition

(5) follows without the assumption that BC is finite projective.
Assuming that BC is finite projective, it follows that B ⊗C AA is finite

projective and therefore reflexive. Then Hom(A Hom(BC , AC), AA) ∼= B⊗C

A as natural B-A-bimodules. It follows reflexively that condition (5) implies
condition (1). ¤

The next theorem provides many interesting classes of examples of rel-
ative H-separable towers of rings.

Theorem 3.2 Suppose B ⊇ C is a ring extension and has the natural
module BC a progenerator. Let A := EndBC and B ↪→ A given by the left
regular representation b 7→ λb. Then B ⊇ C is right normal if and only if
the tower A ⊇ B ⊇ C is left relative H-separable.

Proof. (⇒) This direction of the proof only requires that BC is finite pro-
jective. Given the right normality condition,

BB ⊗C BC ⊕ ∗ ∼= BBm
C (6)

for some m ∈ N, apply the bimodule ABC and the additive functor
A Hom(−C , BC) to this. Note that the hom-tensor adjoint relation im-
plies that Hom(B ⊗C BC , BC) ∼= Hom(BC ,Hom(BC , BC)C) as natural A-
B-bimodules. This implies condition (5), equivalent by the proposition to
(1).

(⇐) Since we assume BC is a progenerator, the rings C and A are
Morita equivalent, with bimodules ABC and C Hom(BC , CC)A forming a
Morita context. In particular, Hom(BC , CC) ⊗A BC

∼= C as C-bimodules
and B ⊗C Hom(BC , CC) ∼= A as A-bimodules.

Supposing that condition (5) holds on the tower C ⊆ B ↪→ A, we
substitute AAB = A Hom(BC , BC)B in this condition and apply the hom-
tensor adjoint relation with the last Morita isomorphism to obtain:
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Hom(B ⊗C BC , ABC)B ⊕ ∗ ∼= AB ⊗C Hom(BC , CC)n
B .

Tensor this from the left by the additive functor C Hom(BC , CC)⊗A − and
using the (cancellation) isomorphism of Morita pointed out above. We ob-
tain C Hom(B ⊗C BC ,Hom(BC , CC)⊗A BC)B ⊕ ∗ ∼=

C Hom(B ⊗C BC , CC)B ⊕ ∗ ∼= C Hom(Bn
C , CC)B

since B⊗C BC is finite projective and one may apply the well-known natural
isomorphism [1, Proposition 20.10]. Now by reflexivity of the projective
modules Bn

C and B ⊗C BC , we apply to this last isomorphism the additive
functor Hom(−, CC) from the category of C-B-bimodules into the category
of B-C-bimodules and obtain the condition (6) with n = m. ¤

The left and right relative H-separable conditions on a tower A ⊇
B ⊇ C are equivalent if B ⊇ C is a Frobenius extension, i.e., CBB

∼=
C Hom(BC , CC)B as bimodules and BC has finite projective bases {bi} ⊂ B,

{φi} ⊂ Hom(BC , CC), (i = 1, . . . , m).

Proposition 3.3 If B ⊇ C is a Frobenius extension, then a tower
A ⊇ B ⊇ C is left relative H-separable if and only if it is right relative
H-separable.

Proof. We make use of the equivalent condition for left relative H-separable
tower in Proposition 3.1. We note that Hom(BC , AC) ∼= A⊗C Hom(BC , CC)
via f 7→ ∑

i f(bi) ⊗C φi, with inverse given by the “one-point projec-
tions” mapping a ⊗C ψ 7→ aψ(−). Observe that this mapping is an A-
B-bimodule isomorphism. It follows from the Frobenius condition CBB

∼=
B Hom(BC , CC)B that the right relative H-separable condition is satisfied
by A ⊇ B ⊇ C. ¤

As a corollary of this proposition and Theorem 3.2, we note that the
right normality condition for Frobenius extensions with surjective Frobenius
homomorphism is equivalent to left normality condition, another proof in
this case of [16].

Corollary 3.4 If B ⊇ C is a Frobenius extension, where BC is a genera-
tor, then B ⊇ C is left normal if and only if it is right normal.
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3.1. A characterization of normality for Frobenius extensions
In this subsection we characterize normal (twisted) Frobenius extensions

together with their endomorphism rings as being relative H-separable towers.
We find it convenient to change notation to A ⊇ B being the Frobenius ring
extension and E := EndAB being the top ring in the tower B ⊆ A ↪→ E

where A ↪→ E is given by a 7→ λa and λa(x) = ax.
Suppose β : B → B is a ring automorphism of B. Denote a B-module

MB as Mβ if twisted by β as follows: m · b = mβ(b). Recall that a β-
Frobenius (ring) extension A ⊇ B is characterized by having a (Frobenius)
homomorphism F : BAB → βBB satisfying F (b1ab2) = β(b1)F (a)b2 for each
b1, b2 ∈ B, a ∈ A. Dual bases {xi}, {yi} in A satisfy

∑n
i=1 xiF (yia) = a

and
∑n

i=1 β−1(F (axi))yi = a for each a ∈ A. Equivalently, AB is finite
projective and A ∼= β Hom(AB , BB) as B-A-bimodules: see [14] for more
details and references.

For example, if β is an inner automorphism, then A ⊇ B is an (ordinary)
Frobenius extension, such as a group algebra extension of a group G and
subgroup H of finite index n. (Suppose g1, . . . , gn are the right coset repre-
sentatives of H in G, K an arbitrary commutative ring, then the group alge-
bra A = KG is a Frobenius extension of the group subalgebra B = KH with
F : A → B the obvious projection defined by F (

∑
g∈G agg) =

∑
h∈H ahh

and dual bases xi = g−1
i , yi = gi.)

Corollary 3.5 Suppose A ⊇ B is a β-Frobenius extension with surjective
Frobenius homomorphism F : A → B. Let E := EndAB and embed A ↪→ E

via the left regular representation λa(x) = ax. Then the tower of rings
B ⊆ A ↪→ E is left relative H-separable if and only if B ⊆ A is right
normal.

Proof. Since F : A → B is assumed surjective, it follows that AB (and
BA by using equivalently β−1 ◦ F ) is a generator. It also follows from the
hypothesis of Frobenius extension that AB (and BA) are finite projective.
Apply Theorem 3.2 to conclude that the left relative H-separable tower
condition on B ⊆ A ↪→ E is equivalent to the right normality condition on
B ⊆ A. ¤

Recall that a Hopf subalgebra R is normal in a Hopf algebra H if R is
stable under the left and right adjoint actions of H on R. For group algebra
extensions this specializes to the usual notion of normal subgroup.
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Corollary 3.6 A Hopf subalgebra R of a finite-dimensional Hopf algebra
H is normal if and only if the tower of algebras R ⊆ H ↪→ EndHR is left
relative H-separable.

Proof. This follows from Corollary 3.5 and theorems that H is a β-
Frobenius extension of R (Oberst-Schneider), and another that HR is free
(Nichols-Zoeller). Also, as remarked in the introduction, the equivalence
of the normality condition for a Hopf subalgebra R ⊆ H with the depth 2
condition on the ring extension R ⊆ H follows from [2]. ¤

3.2. Galois correspondence proposal
Again let E denote EndAB . The condition on the tower B ⊆ A ↪→ E

in the next corollary is called the rD3 condition in [19]. The depth three
condition on A ⊇ B is that BA⊗B AB⊕∗ ∼= BAm

B for some m ∈ N. Below we
apply the same Frobenius coordinate system as above, but we may assume
that the twist automorphism β = idB .

Corollary 3.7 Suppose A ⊇ B is a Frobenius extension with surjective
Frobenius homomorphism. Then A ⊇ B has depth 3 if and only if EE ⊗A

EB ⊕ ∗ ∼= EEm
B for some m ∈ N.

Proof. The proof is similar to the proof of Theorem 3.2, but using the E-
A-bimodule isomorphism E

∼=−→ A ⊗B A given by f 7→ ∑
i f(xi) ⊗ yi, with

inverse mapping given by a ⊗B a′ 7→ λa ◦ F ◦ λa′ . The rest of the proof is
left to the reader. ¤

The two conditions of “depth three” and “depth two” on a tower go up
and down as follows. The short proof is left to the reader as an exercise
using Proposition 1.1.

Proposition 3.8 Suppose A ⊇ B ⊇ C ⊇ D is a tower of unital subrings.
If A ⊇ B has depth 1 and A ⊇ B ⊇ C is right relative H-separable, then
B ⊇ C ⊇ D satisfies the rD3 condition, BB ⊗C BD ⊕ ∗ ∼= BBn

D for some
n ∈ N. If B ⊇ D has H-depth 1 and B ⊇ C ⊇ D satisfies the rD3 condition,
then A ⊇ B ⊇ C is right relative H-separable.

In [25] the left relative separable and H-separable conditions on towers
of rings are used by Sugano for Galois correspondence in an H-separable
extension in terms of centralizers. A final thought is to ask if results for Ga-
lois correspondence of a normal extension in [19] (in terms of endomorphism
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rings) may be improved with the use of the tower condition studied in this
paper.
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