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Semi-local units at p of a cyclotomic Z,-extension congruent
to 1 modulo {, — 1
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Abstract. Let p be a prime number. Let K be an abelian number field with p t
[K : Q] and {, € K, Ko /K the cyclotomic Zp-extension, and K, the nth layer with
Ko = K. Let U, be the group of semi-local principal units of K,, at the prime p, and
Llr(bl) the elements u of U, satisfying the congruence v = 1 modulo ¢, — 1. The Galois
module structure of U,, is well understood. The purpose of this paper is to determine
the Galois module structure of Z/{fll).
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1. Introduction

Let p be a prime number. Let K be an abelian number field with
p1[K : Q] and ¢, € K, where (, is a primitive pth root of unity. Let Ko /K
be the cyclotomic Zjy-extension, and K, the nth layer with Ko = K. We
denote by U,, the product of the groups of principal units of the completions
of K,, at the primes over p. Namely, U, is the group of semi-local principal
units of K,, at the prime p. Let Uy, = 1iin1/{n be the projective limit with
respect to the relative norms K,, — K,, (m > n), and V,, the image of the
projection Uy, — U,. Denote by Lly(ll) the elements u of U,, satisfying the
congruence v = 1 modulo ¢, — 1, and put 7(11) = Ufll) N V,. We see that
Z/{él) =Upaspt[K :Q]. Let A =Gal(K/Q) and I' = Gal(K~/K). We can
regard these groups U, V,, T(Ll), T(Ll) as modules over the Galois groups
A and I'. Let y be a fixed Qp-valued character of A, and O = O, the
subring of Q, generated by the values of x over Z,. Here, Z, is the ring of
p-adic integers and @p is a fixed algebraic closure of the p-adic rationals Q,,.
Choosing a generator v of I, we identify as usual the completed group ring
O[[I']] with the power series ring A = A, = O[[s]] by the correspondence
~v < 1+ s. Then we can naturally regard the y-parts Uso (x), Un(X), etc. as
modules over A. The A-module structures of the y-parts U, (x) and V,(x)
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are well understood by some results in Iwasawa [8], Coleman [2] and Gillard
[3]. Usually, U, (x) = Vn(x) and there is an isomorphism V,(x) = A/w, as
A-modules where w,, = w,(s) = (14s)?" —1. In [4], we determined the ideal
JIn,x of A corresponding to the submodule VY (y) via this isomorphism for
the case p > 3 when p does not split in K and y is even. Here, we say that
X is even when x(—1) = 1 regarding x as a primitive Dirichlet character.
Further, in [4], [5], we applied this structure result for a normal integral
basis problem on an unramified Kummer extension over K, of degree p. In
this paper, we determine the A-module structure of ,(Ll)(x) for the general
case where p 1 [K : Q] and y is not necessarily even including the case p = 2.
The result will be used in our further study [7] on normal integral basis.

2. Theorem

To state the main theorem, we recall some fundamental facts on U, (x)
and V,,(x) mainly from [3, Section 2]. Here, x is a fixed Q,-valued character
of A. Let

be the idempotent of Z,[A] associated to x. Here, Tr denotes the trace
map from Q,(x) to Qp, Qp(x) being the quotient field of O, . For a Z,[A]-
module M such as U,, and V,,, the x-part M(x) is defined to be M*x (or
exM). Let p = 2p or p according as p = 2 or p > 3. Denote by ¢ the least
common multiple of p and the conductor of x. Identifying I' with the Galois
group Gal(K o ((5)/K(¢5)) in a natural way, we choose and fix a generator
v of T so that ¢7 = ¢**9 for all p-power-th roots ¢ of unity. (Here, (; is a
primitive pth root of unity.) We identify the subring e, Z,[A] = Z,[A](x) of
Zp|A] with O = O, via the mapping ¢ — x(0), and regard the completed
group ring O[[I']] as a subring of Z,[A][[I']]. As in Section 1, we identify
O[[I']] with the power series ring A = A, = O[[s]] by the correspondence
v < 1+ s. Thus, the groups U (x), Un(X) etc. are regarded as A-modules.
Let w; be the Teichmiiller character of conductor p. We regard x and its
dual character x* = wzx ™! also as primitive Dirichlet characters. We divide
the character x into the following three types:

(A) x(p) #1and x*(p) #1, (B)x*(p) =1, (C)x(p) =1
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As p1[K : Q], type (B) does not occur when p = 2. It is known that
Un(Xx) = Va(x) for type (A) or (B).
For type (C), it is known that
NyjoVn(x) = Vo(x) = TorzUp(x) = O/2 (1)
and that
Uo(x)/Vo(X) = Un(x)/Vn (X)- (2)

In (1), Ny,/o denotes the norm map from K, to Ko, and Torz(x) the Z-
torsion subgroup. Note that O/2 is trivial when p > 3. The isomorphism
(2) is induced from the natural lifting map Uy — U,, (see [9, p.695]). These
are consequences of local class field theory. Even for type (C), it is enough to
study M(Il)(x) for understanding U,sl)(x) because of (2) and Uy = L{él). It is
known that for type (B), the A-torsion submodule T of Uy (x) is isomorphic
to A/($), where

$=1+q)(1+s)"" -1

Let T,, be the projection of T to U, (x). It is known that

(3)

A, for type (A) or (C),
A@T, fortype (B)

as A-modules. Let V,(x) = Va(x) for type (A) or (C), and V,(x) =
Vn(x)/T,, for type (B). It is known that the above isomorphism (3) induces

~ {A/(wn), for type (A) or (B), @

A/ (wp, 2wy, /s), for type (C).

For (3) and (4), see [3, Propositions 1, 2]. Let %Ll)(x) = T(Ll)(x) for type
(A) or (C), and )77(11)()() = Vqsl)(x)Tn/Tn for type (B). Now, we define the
ideal J,,,, of A containing w, (resp. w, and 2w,/s)) for type (A) or (B)
(resp. type (C)) so that the above isomorphism (4) induces
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P () = {Jn,x/(wn)7 for type (A) or (B), -

I/ (Wn, 2wy /s), for type (C).

We define the ideal I, , of A by

(p™, pr—ikgp® |0<k<n-1), fortype (A)or (C),
In,x = (6)

<p"_1_kspk_1 |0<k<n-1), fortype (B),

when n > 1. We put Iy, = A. The following is the main result of this
paper.

Theorem  Under the above setting, we have J,, = I,y for alln >0 and
X-

In [4, Proposition 1], we proved this assertion for the case p > 3 when
p does not split in K and x is even, by showing both the inclusions I,, , C
In and Jy  C I, . The method in [4] can be applied also to the case
where p > 3, p 1 [K : Q] and x is an even character of type (A). We
showed the first inclusion I, , C J,  in a direct way. However, to show the
second one, we needed some subtle treatment of the twisted logarithm of
the “Coleman power series” associated to each element of Us,(x) combined
with the structure theorem ([3, Theorems 1, 2]) on semi-local units modulo
cyclotomic units. Thus, the method in [4] is rather complicated, and in
particular can not be applied for odd characters y. In this paper, we show
Theorem by showing (i) I,,,,, € Jy , for each x associated to K and (ii) that
the product [[, [Ay/In x| equals [T [Ay/Jn x| in quite an elementary way.

3. Proof

We denote by B(m, n) = ,,C,, the binomial coefficient. The following
lemma is easy to show (see [4, Lemma 4]).

Lemma 1 The binomial coefficient B(p", j) is divisible by p"~—* for any
kEandj with0<k<n-—1andp* <j<phtt —1.

Lemma 2 When p > 3 (resp. p = 2), B((1 + ¢q)P", j) is divisible by p
for2 <j<ptl —1 (resp. 2<j<pt? -1

j=p"tL (resp. p"t2).

), but not divisible by p when
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Proof. When p > 3, the assertion was shown in [4, Lemma 7]. It is shown
similarly for the case p = 2. ([

We fix a prime divisor v of K, over p. We also denote by v the restric-
tion of v to each subfield K,,. Let K be the completion of K, at v, U}
the group of principal units of K, UY, = lim Uy the projective limit with
respect to the relative norms K7, — K" (m > n), and V,? the image of the
projection UYL — UY. Let D C A be the decomposition group of the prime
pin K/Q, and x|p the restriction of x to D. The groups U, and V" are
naturally regarded as modules over Z,[D x I'|. We have an isomorphism

Un = Uy, ®z,10) Zp[A]
of Z,[A x I'-modules. This induces isomorphisms
Un(x) = Uy (xip) ® Oy and Vu(x) = V) (x1p) © Ox (7)

of A-modules where the tensor products are taken over the ring O, with
¥ = x|p- By (3), we can choose and fix an element u = (Un)n>0 € Uso(X)
so that the correspondence

ud «— gmod (wy,) or (wy, 2w, /s) (8)

induces the isomorphism (4). We denote by K_; the maximal subextension
of K/Q unramified at p. Then we have K = K_1((,) as pt [K : Q. We
naturally identify A_; = Gal(K_;/Q) with Gal(K/Q((p)). We put

R =[] Ouw

where w runs over the prime divisors of K_1 over p, and O,, is the ring of
integers of the completion of K_; at w. We choose and fix a primitive p"*!st
root (,n+1 of unity so that anﬂ = (pn for all n, and put 7, = (pn+1 — 1 or
(pn+2 — L according as p > 3 or p = 2. Then m, € K,,((3), and Ny, y,—1(7m,) =
Tn—1 where Ny, ,,_1 is the norm map from K, ((5) to K,,_1((s). For each
norm coherent system u = (uy,)n>0 € Uso, there exists a unique power series
fu(t) in R[[t]] with f,(0) = 1mod p such that u¥" = f,(m,) for all n by
Coleman [1]. Here, ¢ € A_; is the Frobenius automorphism at p, which
naturally acts on U,. We denote by f(t) = fu(t) € R[[t]] the Coleman
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power series associated to the fixed element u € Uy, (x). The Galois group
A x T naturally acts on R through the surjection A x I' — A_;. The
completed group ring Z,[A][[['] acts on each power series f € R[[t]] with
f£(0) = 1mod p by

o) = f(14+6)") —1) (0 e AxT)

and Z,-linearlity. Here, f, is the power series obtained from f by the Galois
action of o on its coefficients, and x : A x I' — Z)° denotes the charac-
ter representing the Galois action on all the p-power-th roots of unity. In
particular, we have

1) = f(A+8)iT—1).
We can easily show that
SO (mn) = fmn)® (9)
for o € Z,[AJ[[LT].

Proof of Theorem for type (B). Putting ¢ = x*, we have x = wpy)~! and
Y(p) = 1. As ¥(p) = 1, we may as well assume that p splits completely
in K_; and that x|p = wp. In [6], we have shown Theorem when the base
field is the pth cyclotomic field Q((,) for the character w, of Gal(Q((,)/Q).
Therefore, the assertion for the general case follows from (7) since the com-
pletion K" of K = K_1((p) equals Q,((p). O

Lemma 3 We have I, C J,,  for any n and x.

Proof. It suffices to deal with type (A) or (C). First, assume that p > 3.
We have shown the assertion in [4, Lemma 8] using Lemmas 1 and 2, under
the additional assumptions that p does not split in K and x is even. The
assertion is shown quite similarly without the additional assumptions.

We assume that p = 2. We first show that

om

= 1mod (2, t2m+2) (10)

holds for any m > 0. We easily see from Lemma 2 that
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(1+ t)(H’I)Qm —1=tmod (2, ")

for any m > 0. It follows that

m

PO =+ - =f0med (2,27, (1)
Letting m = 0, we have {7 = fmod (2, t22). Hence
f* =1 = 1mod (2, t22)

k
and (10) holds when m = 0. Let m > 1. Assume that f*© = 1 modulo
(2, t2k+2) for all k with 0 < k < m — 1. Raising to the 2™ *th power, we
obtain

k _
2.2mk

o =1mod (2, 2") (12)

for 0 < k <m — 1. On the other hand,
71 = 1mod (2, 12" (13)

holds by (11). Further, we have

m—1 ,2kt1_1
E N ( S B jw),
k=0  j=2k

and B(2™, j) is divisible by 2m~* when 2¥ < j < 2k*1 — 1 by Lemma 1.
Therefore, we see from (12) and (13) that the assertion (10) holds also for
m.

Now, let us show the lemma (for p = 2). By (4), (8) and f(7,) = u¥", we
see that it suffices to show that f(7,)® = 1 mod 2 for a = 2" and gn—1-kg2"
with 0 < k < n — 1. We note that m, = Cant2 — 1 and ()2 = (2). As
the abelian extension K/Q is of odd degree, it is unramified at the prime 2.
It follows that

f(mo) = f(¢4 — 1) = up = 1 mod 2.

This implies that f(¢) = 1mod (2, t?). Therefore, f(7,) = 1 modulo (7,)? =



404 H. Ichimura

(mn—1), and hence
f(1,)?" = 1mod (m,-1)%" = (2).

By (9) and (10), we have

2k 2k k+2

f(mn)® =17 (mn) = 1mod (ﬂn)Q
Hence, we observe that

nel_k ok
CHE = 1 mod (m,)?

f(mn)

We denote by Q,(x) the quotient field of O = O, and put d,, = [Q,(x) :
Qp]. Let ord,(x) be the additive valuation on Q, with ord,(p) = 1.

= (2). 0

Lemma 4 We have

n_1
X%, for type (A) or (C),
oA /Tunl) =8
dx( 1 n>, for type (B).

Proof.  For type (A) or (C), we see from the definition of I,, , that

n—2
A/ Tny = Ofp" @ @O/~ ) 070,
k=0
Hence, it follows that
1 = pr—1
ordy([Ay/Inx) =n+ (p=1) Y (n—1—k)p* =——.
X =0 p-=
The assertion follows similarly for type (B). O
Lemma 5 We have
Va0, for type (A) or (),

U () /U () = ~)
[V (X)/ Vi (X)] x p™¥x,  for type (B).
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Proof. The assertion is obvious for type (A). First, let us deal with type
(B). We have a filtration

Un(x) 2UD )T 2 UM ().
The natural map Uy (x) — Va(X)/ vy (x) induces an isomorphism

Un () /U )T, = V() / VD (x)-

Further, we have
UM )T /U (x) = T/ (T NUL (X)) = T/ To-

From these, we obtain the assertion.
Next, we deal with type (C). From (2), we see that

Un () /U (X) = Va ()Uo (x))/ (VD (0)Uo ()
= V., (X)) (Va (x) 0 (VY (00U (X))). (14)

For z € Vfll)(x) and y € Up(x), assume that zy € V,,(x). Then, as y €
Vi (x), it follows from (1) that y?*" = N, o(y)? = 1. Hence, y is contained in
the Z-torsion part Toryz Uy (). By (1), we have Torz Up(x) = Vo(x) C Va(x)-
Therefore, we see that zy € V,Sl)(x) as Uy = Uél), and hence

Va () N (VY 00U (1)) = VP (0)-
Thus we obtain the assertion from (14). O

Proof of Theorem. As p{[K : Q], the ramification index of p in K equals
p— 1, and ¢, — 1 is a local parameter of a prime ideal of K over p. Let
(¢ — 1) = TI{_, B be the prime decomposition of ¢, — 1 in K, and let f
be the residue class degree of PB;. We have (p — 1)fg = [K : Q]. Denote
by ‘B the unique prime ideal of K,, over B;, and O,, the ring of integers

of K,. Letting A, = []7_; Bi,n, we see that un/u,S” is isomorphic to the
group

{reO,|z=1mod A,}/{z €O, | z=1mod A" }.
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The order of this group equals
g . g ) )
[T 1% /80| = TT10n/%2, ' =200,
i=1 i=1

It follows that

pt -1

ord ([Un fUL]) = 1K 2 Q) x ——

On the other hand, it follows from Lemma 5 that

U JUD | = H [ A/ In x| % H p"x.
X X

Here, in the first product Hx (resp. the second product HX*), X runs over
a complete set of representatives of the Q)-conjugacy classes of all the @p—
valued characters of A (resp. of those of type (B)). Thus, we obtain

n o 1 *
3 ordy (1A /Jnnl) = [K - Q] x 1;_ S =Y ndy
X X

We see from Lemma 4 that

no__ 1 *
D ordy([A/In) = [K :Q x = =3 ndy.
X X

by noting that »_ d, = [K : Q]. Now, we obtain Theorem from the above
two formulas because we already know that I,, , C J,, , by Lemma 3. [l
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