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Bi-flows on a network
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Abstract. Flows on a network play an important role in the theory of discrete har-

monic functions. In the study of discrete bi-harmonic functions, we encounter a con-

cept of bi-flows. In this paper, we are concerned with minimization problems for

bi-flows which are analogous to those for flows.
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1. Introduction

In the theory of discrete potential theory on networks, it is well-known
that flows have played an important role related to discrete harmonic func-
tions. For example, a minimizing problem related to flows from a node
to the ideal boundary with unit strength characterizes the harmonic Green
function. In this paper, we introduce an arc-arc incidence matrix b(y, y′) of
two arcs y and y′ and an operator Br related to it. We say that a function
w on arcs is a bi-flow if Brw is a flow. If u is a bi-harmonic function de-
fined on nodes, then we see that the discrete derivative w = du is a bi-flow.
We shall consider two minimizing problems related to bi-flows from a node
to the ideal boundary. The optimal solution of each minimizing problem
characterizes the bi-harmonic Green function.

We organize this paper as follows: Some properties of b and Br will be
given in Section 3. We define bi-flows as well as weak bi-flows in Section 4.
Two minimizing problems related to bi-flows are given in Sections 5 and 6.

2. Preliminaries

Let N = {X, Y,K, r} be an infinite network which is connected and
locally finite and has no self-loops. Here X is the set of nodes and Y is
the set of arcs. The node-arc incidence matrix K is a function on X × Y

and K(x, y) = −1 if x is the initial node x−(y) of y; K(x, y) = 1 if x
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is the terminal node x+(y) of y; otherwise K(x, y) = 0. The resistance r

is a strictly positive function on Y . Let L(X) be the set of all real valued
functions on X and let L0(X) be the set of all u ∈ L(X) with finite supports.
We define L(Y ) and L0(Y ) similarly.

For u ∈ L(X) and w ∈ L(Y ), we define du ∈ L(Y ) and ∂w ∈ L(X) by

du(y) = −r(y)−1
∑

x∈X

K(x, y)u(x),

∂w(x) =
∑

y∈Y

K(x, y)w(y).

Also we define the Laplacian ∆u ∈ L(X) and the bi-Laplacian ∆2u ∈ L(X)
for u ∈ L(X) by

∆u = ∂(du), ∆2u = ∆(∆u).

For y ∈ Y , let e(y) = {x ∈ X;K(x, y) 6= 0} = {x+(y), x−(y)}. For a ∈ X,
denote by X(a) the set of nodes x ∈ X such that K(a, y)K(x, y) 6= 0 for
some y ∈ Y .

We shall study the bi-Laplacian and bi-flows on a network by using an
arc-arc incidence function b on Y × Y .

3. An arc-arc incidence function

An arc-arc incidence function b on Y × Y is defined by

b(y, y′) =
∑

z∈X

K(z, y)K(z, y′) =
∑

z∈e(y)∩e(y′)

K(z, y)K(z, y′).

Proposition 3.1 The arc-arc incidence function b has the following prop-
erties:

( i ) b(y, y′) = b(y′, y) for all y, y′ ∈ Y ;
( ii ) b(y, y) = 2;
(iii) b(y, y′) = K(x, y)K(x, y′) if y and y′ meet only one node x, i.e.,

e(y) ∩ e(y′) = {x};
(iv) b(y, y′) = 0 if e(y) ∩ e(y′) = ∅;

In case e(y) = e(y′) and y 6= y′,
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( v ) b(y, y′) = 2 if x+(y) = x+(y′) and x−(y) = x−(y′);
(vi) b(y, y′) = −2 if x+(y) = x−(y′) and x−(y) = x+(y′).

Define a linear operator Br from L(Y ) to L(Y ) by

Brw(y) = r(y)−1
∑

y′∈Y

b(y, y′)w(y′).

Lemma 3.1 Brw = −d∂w on Y .

Proof. A simple calculation shows that

Brw(y) = r(y)−1
∑

y′∈Y

( ∑

z∈X

K(z, y)K(z, y′)
)

w(y′)

= r(y)−1
∑

z∈X

K(z, y)
( ∑

y′∈Y

K(z, y′)w(y′)
)

= r(y)−1
∑

z∈X

K(z, y)∂w(z) = −d∂w(y). ¤

Define c(x, z) for x, z ∈ X by

c(x, z) =
∑

y∈Y

r(y)−1K(x, y)K(z, y).

Lemma 3.2 ( i ) c(x, z) 6= 0 if and only if z ∈ X(x).
( ii )

∑
z∈X c(x, z) = 0.

(iii) ∆u(x) = −∑
z∈X c(x, z)u(z).

Proof. (i) It is trivial that z /∈ X(x) implies c(x, z) = 0. If x = z, then
K(x, y)K(z, y) ∈ {0, 1} for all y ∈ Y and K(x, y)K(z, y) = 1 for some y ∈ Y .
Therefore c(x, z) > 0. Let z ∈ X(x) \ {x}. Then K(x, y)K(z, y) ∈ {0,−1}
for all y ∈ Y and K(x, y)K(z, y) = −1 for some y ∈ Y . Therefore c(x, z) <

0.
(ii) Since

∑
z∈X K(z, y) = 0 for every y ∈ Y , we have

∑

z∈X

c(x, z) =
∑

y∈Y

r(y)−1K(x, y)
∑

z∈X

K(z, y) = 0.
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(iii)
∑

z∈X

c(x, z)u(z) =
∑

z∈X

∑

y∈Y

r(y)−1K(x, y)K(z, y)u(z)

=
∑

y∈Y

r(y)−1K(x, y)
∑

z∈X

K(z, y)u(z)

= −
∑

y∈Y

K(x, y)du(y) = −∂du(x) = −∆u(x). ¤

4. Bi-flows

Let a, b ∈ X. We say that w ∈ L(Y ) is a flow from a to b of strength
I[w] if the following condition is fulfilled:

∂w(x) = (εb(x)− εa(x))I[w],

where εa(x) = 0 if x 6= a and εa(a) = 1. Denote by F(a, b) the set of all
flows from a to b.

Lemma 4.1 Brw(y) = r(y)−1(K(b, y)−K(a, y))I[w] for w ∈ F(a, b).

Proof. We have by Lemma 3.1

Brw(y) = −d∂w(y) = r(y)−1
∑

z∈X

K(z, y)(εb(z)− εa(z))I[w]

= r(y)−1(K(b, y)−K(a, y))I[w]. ¤

We say that w ∈ L(Y ) is a bi-flow from a to b of strength J [w] if
Brw ∈ F(a, b) and J [w] = I[Brw], i.e.,

∂Brw(x) = (εb(x)− εa(x))J [w].

Denote by BF(a, b) the set of all bi-flows from a to b.
Assume that X(a) ∩X(b) = ∅. We say that w ∈ L(Y ) is a weak bi-flow

from a to b of strength J̃ [w] if

∂Brw(x) = 0 for all x ∈ X \ {X(a) ∪X(b)},

J̃ [w] = −
∑

x∈X(a)

∂Brw(x) =
∑

x∈X(b)

∂Brw(x).
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Denote by WBF(a, b) the set of all weak bi-flows from a to b.
Denote by C and CB the set of cycles on N and the set of bicycles on

N ,

C = {w ∈ L(Y ); ∂w = 0}, CB = {w ∈ L(Y ); ∂Brw = 0}.

Denote by KB and H the kernel of Br and the set of all harmonic functions
on X,

KB = {w ∈ L(Y );Brw = 0}, H = {u ∈ L(X);∆u = 0}.

Lemma 4.2 {dh;h ∈ H} ⊂ C ⊂ KB ⊂ CB.

Proof. Let h ∈ H. Then ∂(dh) = ∆h = 0, so that dh ∈ C. Let w ∈ C.
Then by Lemma 3.1 Brw = −d∂w = 0, so that w ∈ KB . The inclusion
KB ⊂ CB is trivial. ¤

Proposition 4.1 ( i ) C ⊂ F(a, b) and CB ⊂ BF(a, b) for a, b ∈ X.
( ii ) {w ∈ F(a, b); I[w] = 0} = C and {w ∈ BF(a, b);J [w] = 0} = CB for

a, b ∈ X.
(iii) F(a, a) = C and BF(a, a) = CB for a ∈ X.
(iv) F(a1, b1)∩F(a2, b2) = C and BF(a1, b1)∩BF(a2, b2) = CB for a1, a2,

b1, b2 ∈ X with {a1, b1} 6= {a2, b2}.
Proof. We shall show the assertions for F(a, b); the assertions for BF(a, b)
can be similarly proved. We easily have (i) and (ii).

To prove (iii), it suffices to show that F(a, a) ⊂ C. Let w ∈ F(a, a).
Then ∂w = (εa − εa)I[w] = 0, so that w ∈ C.

We shall prove (iv). We need to show that F(a1, b1) ∩ F(a2, b2) ⊂ C.
We may assume a1 /∈ {a2, b2}. Using (iii) we may also assume that a1 6= b1

and a2 6= b2. Let w ∈ F(a1, b1) ∩ F(a2, b2). Then ∂w(a1) = −I[w] from
w ∈ F(a1, b1) and ∂w(a1) = 0 from w ∈ F(a2, b2). We have I[w] = 0, so
that ∂w = 0. ¤

Theorem 4.1 Assume that X(a) ∩X(b) = ∅.
( i ) BF(a, b) ⊂ WBF(a, b) and J [w] = J̃ [w] for w ∈ BF(a, b).
( ii ) F(a, b) ⊂ WBF(a, b) and J̃ [w] = 0 for w ∈ F(a, b).
(iii) F(a, b) ∩BF(a, b) = C.
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Proof. It is easy to see that (i) holds. We shall prove (ii). Let w ∈ F(a, b).
By Lemma 4.1

∂Brw(x) =
∑

y∈Y

K(x, y)r(y)−1(K(b, y)−K(a, y))I[w]

= (c(x, b)− c(x, a))I[w]. (1)

For x ∈ X \ (X(a) ∪X(b)) we have ∂Brw(x) = 0 by Lemma 3.2 (i). Also
Lemma 3.2 (i) and (ii) show that

∑
x∈X(a) ∂Brw(x) = −∑

x∈X(a) c(x, a)I[w]
= 0. Similarly

∑
x∈X(b) ∂Brw(x) = 0.

Next we prove (iii). Lemma 4.2 and Proposition 4.1 (i) show that C ⊂
F(a, b) ∩BF(a, b). We shall show the converse. Let w ∈ F(a, b) ∩BF(a, b).
Let x ∈ X(a) \ {a}. Then the equation (1) shows that 0 = ∂Brw(x) =
−c(x, a)I[w]. Lemma 3.2 (i) implies I[w] = 0, which means ∂w = 0. ¤

Theorem 4.2 Suppose that X(a) ∪X(b) 6= (X(a) ∩X(b)) ∪ {a, b}. Then
F(a, b) ∩BF(a, b) ⊂ C ∩KB.

Proof. It is clear that (X(a) ∩ X(b)) ∪ {a, b} ⊂ X(a) ∪ X(b). By our
assumption, there exists x0 ∈ X(a) ∪X(b) such that x0 /∈ (X(a) ∩X(b)) ∪
{a, b}. We may assume that x0 ∈ X(a), x0 /∈ X(b) and x0 6= a. Let
w ∈ F(a, b) ∩BF(a, b). Since K(x0, y)K(b, y) = 0 for all y ∈ Y , we have by
Lemma 4.1

0 = ∂Brw(x0) =
∑

y∈Y

K(x0, y)Brw(y)

= −I[w]
∑

y∈Y

r(y)−1K(x0, y)K(a, y) = −I[w]c(x0, a).

Lemma 3.2 (i) shows that c(x0, a) 6= 0, and that I[w] = 0. Thus ∂w = 0 on
X. Lemma 4.1 shows that Brw = 0 on Y . ¤

5. Bi-flows to the ideal boundary

Now we recall some definitions related to the energy H[w] of w ∈ L(Y )
and the Dirichlet sum D[u] of u ∈ L(X):
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〈w, w′〉 =
∑

y∈Y

r(y)w(y)w′(y),

H[w] = 〈w, w〉 =
∑

y∈Y

r(y)w(y)2,

L2(Y ; r) = {w ∈ L(Y );H[w] < ∞},

D[u, u′] = 〈du, du′〉 =
∑

y∈Y

r(y)du(y)du′(y),

D[u] = D[u, u] = H[du] =
∑

y∈Y

r(y)(du(y))2,

D(N) = {u ∈ L(X);D[u] < ∞}.

Lemma 5.1 〈du, du′〉 = −∑
x∈X u(x)∆u′(x) for u ∈ L0(X) and for u′ ∈

D(N).

Proof.

〈du, du′〉 =
∑

y∈Y

r(y)du(y)du′(y) = −
∑

y∈Y

∑

x∈X

K(x, y)u(x)du′(y)

= −
∑

x∈X

u(x)
∑

y∈Y

K(x, y)du′(y) = −
∑

x∈X

u(x)∂du′(x)

= −
∑

x∈X

u(x)∆u′(x). ¤

It is known that D(N) (L2(Y ; r) resp.) is a Hilbert space with respect
to the norm ‖u‖2 = (D[u] + u(x0)2)1/2 (H[w]1/2 resp.) with a fixed node
x0 ∈ X. Denote by D0(N) the closure of L0(X) in the Hilbert space D(N)
(see [3]).

The Green function ga ∈ L(X) with pole at a ∈ X is defined as the
unique function satisfying the conditions:

ga ∈ D0(N) and ∆ga = −εa on X.

We know that ga exists for every a if and only if N is hyperbolic, i.e.,
D0(N) 6= D(N) (see [2]). Denote by HD(N) the set of all u ∈ D(N) such
that ∆u = 0.
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Lemma 5.2 D0(N) ∩HD(N) = {0} if and only if N is hyperbolic.

Proof. If N is parabolic, then 1 ∈ D(N) = D0(N), which is also harmonic.
This means 1 ∈ D0(N) ∩HD(N).

Conversely, we assume that N is hyperbolic. Let u ∈ D0(N)∩HD(N).
Then both u = u + 0 and u = 0 + u are the Royden decompositions. The
uniqueness of the Royden decomposition implies that u = 0. ¤

We say that w ∈ L(Y ) is a flow from a ∈ X to the ideal boundary with
strength I[w] if

∂w(x) = −εa(x)I[w].

Let F(a,∞) be the set of all flows w from a to the ideal boundary. It is
well-known that dga is characterized as the unique optimal solution to the
following extremal problem:

d∗(a,∞) = inf{H[w];w ∈ F(a,∞), I[w] = 1}.

We say that w ∈ L(Y ) is a bi-flow from a ∈ X to the ideal boundary
with strength J [w] if

∂Brw(x) = −εa(x)J [w].

Notice that

J [w] = ∆∂w(a).

Denote by BF(a,∞) the set of all bi-flows from a to the ideal boundary of
N .

Analogous to d∗(a,∞), we consider the following extremal problem:

d∗B(a,∞) = inf{H[w];w ∈ BF(a,∞), ∂w ∈ D0(N), J [w] = 1}. (∗)

The bi-harmonic Green function qa ∈ L(X) with pole at a is defined by

qa(x) =
∑

z∈X

ga(z)gz(x)

if the sum converges (see [1], [4]). Notice that
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∆qa = −ga and ∆2qa = εa on X,

and that dqa is a feasible solution to the problem (∗).
We proved the following lemma in [6, Theorem 4.2]:

Lemma 5.3 Let N be parabolic and u ∈ D(N). If
∑

x∈X |∆u(x)| < ∞,
then

∑
x∈X ∆u(x) = 0.

Corollary 5.1 If d∗B(a,∞) < ∞, then N is hyperbolic and ∂w = −ga for
all feasible solution w to the problem (∗).
Proof. Let w be a feasible solution to the problem (∗). Then u = ∂w ∈
D0(N) and ∆u(x) = −∂Brw(x) = εa(x). By the above lemma, N must be
hyperbolic and u = −ga. ¤

The next theorem is an extension of [4, Theorem 3.1], which shows that
qa ∈ D(N) is equivalent to qa ∈ D0(N).

Theorem 5.1 The following are equivalent :

( i ) qa ∈ D(N);
( ii ) qa ∈ D0(N);
(iii) d∗B(a,∞) < ∞.

In this case dqa is a unique optimal solution to the problem (∗).
Proof. It is obvious that (ii) implies (i). Suppose that qa ∈ D(N). Since
dqa is a feasible solution to the problem (∗), it follows that d∗B(a,∞) < ∞.
This shows that (i) implies (iii).

We shall show that (iii) implies (ii). We assume that d∗B(a,∞) < ∞.
First we shall prove that there exists an optimal solution to the problem (∗).
Let {wn} be a minimizing sequence of (∗). Then (wn + wm)/2 is a feasible
solution to the problem (∗), so that we have

d∗B(a,∞) ≤ H[(wn + wm)/2] ≤ H[(wn + wm)/2] + H[(wn − wm)/2]

= (H[wn] + H[wm])/2 → d∗B(a,∞)

as n,m → ∞. Thus H[wn − wm] → 0 as n,m → ∞. There exists w∗ ∈
L2(Y ; r) such that H[wn − w∗] → 0 as n → ∞. Since {wn} converges
pointwise to w∗ and N is locally finite, we obtain w∗ ∈ BF(a,∞) and
J [w∗] = 1. Also ∂wn = −ga implies that
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∂w∗ = lim
n→∞

∂wn = −ga ∈ D0(N).

Therefore w∗ is an optimal solution to the problem (∗).
To prove the uniqueness of an optimal solution to the problem (∗), let

w′ be another optimal solution to the problem (∗). Then

d∗B(a,∞) ≤ H[(w∗ + w′)/2] ≤ H[(w∗ + w′)/2] + H[(w∗ − w′)/2]

= (H[w∗] + H[w′])/2 = d∗B(a,∞),

so that H[w∗ − w′] = 0. Hence w∗ = w′.
For any ω ∈ L0(Y ) ∩ C(N) and any t ∈ R, we see that w∗ + tω is a

feasible solution to the problem (∗). Thus

d∗B(a,∞) ≤ H[w∗ + tω] = H[w∗] + 2t〈w∗, ω〉+ t2H[ω],

so that 〈w∗, ω〉 = 0. By the usual way, we see that there exists u∗ ∈ L(X)
such that w∗ = du∗ (see the proof of [6, Theorem 3.2] for details).

Since D[u∗] = H[w∗] < ∞, it follows that u∗ ∈ D(N). Let u∗ = v∗ + h

be the Royden decomposition with v∗ ∈ D0(N) and h ∈ HD(N). Let
w′ = dv∗. Then w′ is a feasible solution to the problem (∗), so that

D[v∗] + D[h] = D[u∗] = H[w∗] ≤ H[w′] = D[v∗].

This means that D[h] = 0 and H[w∗] = H[w′], i.e., h is a constant function
and w∗ = w′ = dv∗.

Let {Nn} be an exhaustion of N and g
(n)
a the Green function of Nn with

pole at a. We have

∑

z∈X

ga(z)g(n)
x (z) = −

∑

z∈X

(
∆v∗(z)

)
g(n)

x (z) = D[v∗, g(n)
x ].

Since {g(n)
x }n converges to gx (see [3, Section 3]), it follows that

∑

z∈X

ga(z)gx(z) ≤ lim inf
n→∞

∑

z∈X

ga(z)g(n)
x (z) = lim

n→∞
D[v∗, g(n)

x ]

= D[v∗, gx] ≤ D[v∗]1/2D[gx]1/2 < ∞.



Bi-flows on a network 213

In particular, we obtain
∑

z∈X ga(z)2 < ∞, so that qa ∈ L(X) by [4, Theo-
rem 2.3].

Define f(x), fn(x) and hn(x) by

f(x) =
∑

z∈X

gx(z)∆v∗(z) = −qa(x) ∈ L(X)

fn(x) =
∑

z∈X

g(n)
z (x)∆v∗(z)

hn = v∗ + fn.

Notice that hn is harmonic on Xn and

D[hn, fn] = −
∑

x∈X

(∆hn(x))fn(x) = 0,

so that D[v∗] = D[hn]+D[fn]. We see by Lebesgue’s dominated convergence
theorem that {fn(x)} converges pointwise to f(x) for all x ∈ X. Since
{D[fn]} is bounded, we see by [5, Theorem 4.1] that qa = −f ∈ D0(N).

Let f ′ = qa − v∗. Then

∆f ′ = ∆qa −∆v∗ = −ga + ga = 0,

so that f ′ ∈ D0(N) ∩HD(N). Lemma 5.2 shows f ′ = 0. Therefore qa =
v∗ ∈ D0(N) and dv∗ = dqa. ¤

6. Another extremal problem

Analogous to d∗(a,∞) and d∗B(a,∞), we consider the following ex-
tremum problem:

d∗∗B (a,∞) = inf{H[w];w ∈ BF(a,∞), J [w] = 1}. (∗∗)

Clearly d∗∗B (a,∞) ≤ d∗B(a,∞).

Theorem 6.1 Assume that d∗∗B (a,∞) < ∞. Then there exists a unique
optimal solution w∗∗ to the problem (∗∗). Also there exists v∗∗ ∈ D0(N)
such that w∗∗ = dv∗∗.
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Proof. Let {wn} be a minimizing sequence of (∗∗). Then (wn + wm)/2 is
a feasible solution to the problem (∗∗), so that we have

d∗∗B (a,∞) ≤ H[(wn + wm)/2] ≤ H[(wn + wm)/2] + H[(wn − wm)/2]

= (H[wn] + H[wm])/2 → d∗∗B (a,∞)

as n,m → ∞. Thus H[wn − wm] → 0 as n,m → ∞. There exists w∗∗ ∈
L2(Y ; r) such that H[wn − w∗∗] → 0 as n → ∞. Since {wn} converges
pointwise to w∗∗ and N is locally finite, we obtain w∗∗ ∈ BF(a,∞) and
J [w∗∗] = 1. Therefore w∗∗ is an optimal solution to the problem (∗∗).

To prove the uniqueness let w′ be another optimal solution to the prob-
lem (∗∗). Then

d∗∗B (a,∞) ≤ H[(w∗∗ + w′)/2] ≤ H[(w∗∗ + w′)/2] + H[(w∗∗ − w′)/2]

= (H[w∗∗] + H[w′])/2 = d∗∗B (a,∞),

so that H[w∗∗ − w′] = 0. Hence w∗∗ = w′.
For any ω ∈ L0(Y ) ∩ C(N) and any t ∈ R, we see that w∗∗ + tω is a

feasible solution to the problem (∗∗). Thus

d∗∗B (a,∞) ≤ H[w∗∗ + tω] = H[w∗∗] + 2t〈w∗∗, ω〉+ t2H[ω],

so that 〈w∗∗, ω〉 = 0. By the usual way, we see that there exists u∗∗ ∈ L(X)
such that w∗∗ = du∗∗. Since D[u∗∗] = H[w∗∗] < ∞, u∗∗ ∈ D(N).

If N is hyperbolic type, then we let u∗∗ = v∗∗ + h be the Royden
decomposition with v∗∗ ∈ D0(N) and h ∈ HD(N); otherwise let v∗∗ =
u∗∗ ∈ D(N) = D0(N). Let w′ = dv∗∗. Then w′ is a feasible solution to the
problem (∗∗), so that

D[v∗∗] + D[h] = D[u∗∗] = H[w∗∗] ≤ H[w′] = D[v∗∗].

This means that D[h] = 0 and H[w∗∗] = H[w′], i.e., h is a constant function
and w∗∗ = w′ = dv∗∗. ¤

We say that a network N satisfies the condition (LD) if there exists
a constant c such that D[∆u] ≤ cD[u] for all u ∈ L0(X). We say that a
network N is of bounded degree if supx∈X

∑
y∈Y |K(x, y)| < ∞.
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Next proposition provides a sufficient condition for the condition (LD).

Proposition 6.1 Assume that r ≡ 1 and that N is of bounded degree.
Then D[∆u] ≤ 8ν2

0D[u] for all u ∈ D(N), where ν0 = supx∈X

∑
y∈Y

·|K(x, y)|. Especially N satisfies the condition (LD).

Proof. First note that a simple calculation shows that

( n∑

j=1

αj

)2

≤ n
n∑

j=1

α2
j

for α1, . . . , αn ∈ R.
Let w = du and v = ∆u. Then

dv(y) = −
∑

y′∈Y

b(y, y′)w(y′) = −
∑

y′∈Y

∑

x∈X

K(x, y)K(x, y′)w(y′).

Since the number of y′ ∈ Y with
∑

x∈X K(x, y)K(x, y′)w(y′) 6= 0 is at most
2ν0 for each y, it follows that

(dv(y))2 =
( ∑

y′∈Y

∑

x∈X

K(x, y)K(x, y′)w(y′)
)2

≤ 2ν0

∑

y′∈Y

(∑

x∈X

K(x, y)K(x, y′)w(y′)
)2

.

Since the number of x ∈ X with K(x, y)K(x, y′) 6= 0 is at most two for each
y, y′ ∈ Y , we have (

∑
x∈X K(x, y)K(x, y′))2 ≤ 2

∑
x∈X(K(x, y)K(x, y′))2.

Using |K(x, y)K(x, y′)|2 = |K(x, y)K(x, y′)| we obtain

(dv(y))2 ≤ 4ν0

∑

y′∈Y

(∑

x∈X

|K(x, y)K(x, y′)|
)

w(y′)2.

Let Y (x) = {y ∈ Y ;K(x, y) 6= 0} for x ∈ X. Then
∑

x∈X

∑
y′∈Y (x) w(y′)2 =

2
∑

y∈Y w(y)2. By the above estimation, we have

D[∆u] = H[dv] =
∑

y∈Y

(dv(y))2
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≤ 4ν0

∑

y∈Y

∑

y′∈Y

( ∑

x∈X

|K(x, y)K(x, y′)|
)

w(y′)2

= 4ν0

∑

y′∈Y

(∑

x∈X

(∑

y∈Y

|K(x, y)|
)
|K(x, y′)|

)
w(y′)2

≤ 4ν2
0

∑

y′∈Y

∑

x∈X

|K(x, y′)|w(y′)2

= 4ν2
0

∑

x∈X

∑

y′∈Y (x)

w(y′)2 = 8ν2
0

∑

y∈Y

w(y)2

= 8ν2
0D[u]. ¤

Lemma 6.1 Assume that N satisfies the condition (LD). If u ∈ D0(N),
then ∆u ∈ D0(N).

Proof. Let {fn} be a sequence in L0(X) such that ‖fn − u‖2 → 0 as
n → ∞. Then ‖fn − fm‖2 → 0 as n,m → ∞ and {D[fn]} is bounded. By
the condition (LD) there exists a constant c > 0 such that

D[∆fn −∆fm] ≤ cD[fn − fm] → 0 (n,m →∞).

Thus ‖∆fn − ∆fm‖2 → 0 as n,m → ∞. Therefore {∆fn} is a Cauchy
sequence in D0(N). We can find ϕ ∈ D0(N) such that ‖∆fn − ϕ‖2 → 0 as
n →∞. Since {fn(x)} converges pointwise to u(x), it follows that {∆fn(x)}
converges pointwise to ∆u(x). Since {∆fn(x)} also converges pointwise to
ϕ(x) and {D(∆fn)} is bounded, we see that ∆u = ϕ ∈ D0(N) by [5,
Theorem 4.1]. ¤

Theorem 6.2 Assume that N satisfies the condition (LD). Then
d∗∗B (a,∞) = d∗B(a,∞). If d∗∗B (a,∞) < ∞, then dqa is a unique optimal
solution to the problem (∗∗).
Proof. Since d∗∗B (a,∞) ≤ d∗B(a,∞), we shall show that d∗∗B (a,∞) ≥
d∗B(a,∞). We may assume that d∗∗B (a,∞) < ∞. Let w∗∗ and v∗∗ be the
same as in Theorem 6.1. By Lemma 6.1, we see that ∆v∗∗ ∈ D0(N). This
means that w∗∗ = dv∗∗ is a feasible solution to the problem (∗). We have
d∗B(a,∞) ≤ H[w∗∗] = d∗∗B (a,∞).
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Assume that d∗∗B (a,∞) < ∞. Then N is hyperbolic by Corollary 5.1.
Let f ′ = qa − v∗∗. Since qa ∈ D0(N) by Theorem 5.1, it follows that f ′ ∈
D0(N) and ∆f ′ = ∆qa−∆v∗∗ = −ga+ga = 0, so that f ′ ∈ D0(N)∩HD(N).
Hence f ′ = 0. This means that dqa = dv∗∗ is a unique optimal solution to
the problem (∗∗). ¤

7. An example

We show an example of w ∈ BF(a,∞) for the following network:

Example 7.1 Let X = {xn;n ≥ 0}, Y = {yn;n ≥ 1}, e(yn) = {xn−1, xn}
for n ≥ 1. Let K(xn, yn) = 1, K(xn−1, yn) = −1 for n ≥ 1 and K(x, y) = 0
for any other pairs. For a strictly positive function r on Y , N = {X, Y,K, r}
is an infinite network.

Let rn = r(yn), Rn =
∑∞

k=n+1 rk and ρn =
∑n

k=1 rk. We assume that
ρ :=

∑∞
n=1 rn < ∞. Then it is easy to see that

gxk
(xn) = Rn (0 ≤ k ≤ n), gxk

(xn) = Rk (k > n).

Let w be a feasible solution to the problem (∗∗) with a = x0 and let
v = ∂w. Let wn = w(yn) for n ≥ 1. Let vn = v(xn) for n ≥ 0. We have

Brw(yn) =
1

r(yn)

∑

x∈X

K(x, yn)∂w(x) =
1
rn

(vn − vn−1),

∂Brw(x0) =
∑

y∈Y

K(x0, y)Brw(y) = −Brw(y1) = − 1
r1

(v1 − v0),

∂Brw(xn) =
∑

y∈Y

K(xn, y)Brw(y) = Brw(yn)−Brw(yn+1)

=
1
rn

(vn − vn−1)− 1
rn+1

(vn+1 − vn).

Since ∂Brw(x0) = −1 and ∂Brw(xn) = 0 for n ≥ 1, it follows that r−1
n (vn−

vn−1) = 1. Thus

vn = ρn + v0.
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From

vn =
∑

y∈Y

K(xn, y)w(y) = wn − wn+1 (n ≥ 1), v0 = −w1,

it follows that wn − wn+1 = ρn + v0, and that

wn = −
n−1∑

k=1

ρk − (n− 1)v0 + w1 = −
n−1∑

k=1

ρk − nv0.

Let

An =
n−1∑

k=1

ρk, α =
∞∑

n=1

n2rn, β =
∞∑

n=1

nrnAn, γ =
∞∑

n=1

rnA2
n.

Then

H[w] =
∞∑

n=1

rnw2
n =

∞∑
n=1

rn(−An − nv0)2 = αv2
0 + 2βv0 + γ. (2)

Now let w′ be a feasible solution to the problem (∗). In a similar way
we let w′n = w′(yn) and v′n = v′(xn) = ∂w′(xn) and obtain

v′n = ρn + v′0,

w′n = −
n−1∑

k=1

ρk − nv′0 = −An − nv′0.

Since v′ ∈ D0(N), we have limn→∞ v′n = 0, or v′0 = −ρ. Therefore

w′n = −An + nρ. (3)

Since ρ = R0 and ρk = R0 −Rk for k ≥ 1, we have

w′n = −
n−1∑

k=1

(R0 −Rk) + nR0 =
n−1∑

k=0

Rk. (4)

Notice that this is a unique feasible solution to the problem (∗). By (3)
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d∗B(a,∞) = H[w′] =
∞∑

n=1

rn(−An + nρ)2 = αρ2 − 2βρ + γ.

(a) Assume that all of α, β, γ converge. First we note that αρ > β.
Indeed,

An =
n−1∑

k=1

ρk =
n−1∑

k=1

k∑

j=1

rj =
n−1∑

j=1

(n− j)rj < n
n∑

j=1

rj = nρn,

and that

β =
∞∑

n=1

nrnAn <

∞∑
n=1

n2rnρn <

∞∑
n=1

n2rnρ = αρ.

Now (2) is minimized at v0 = −β/α, so that

d∗∗B (a,∞) = γ − β2

α
.

It follows that

d∗B(a,∞)− d∗∗B (a,∞) = αρ2 − 2βρ +
β2

α
= α

(
ρ− β

α

)2

> 0.

Theorem 6.2 implies that N does not satisfy the condition (LD).
(b) Taking rn = n−5/3 for n ≥ 1, since Rn = O(n−2/3), by (4) we have

w′n = O(n1/3), and that H[w′] = O(
∑∞

n=1 n−5/3(n1/3)2) = ∞. This means
d∗B(a,∞) = ∞. On the other hand the bi-harmonic Green function qa is
given by

qa(xn) =
∞∑

k=0

ga(xk)gxk
(xn) =

n∑

k=0

RkRn +
∞∑

k=n+1

R2
k = O(n−1/3).

Thus qa ∈ L(X) does not imply d∗B(a,∞) < ∞.
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