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An estimate of the spread of trajectories

for Kähler magnetic fields
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Abstract. On a Kähler manifold we consider trajectories under the influence of

Kähler magnetic fields. They are smooth curves which are parameterized by their

arclengths and whose velocities and normal vectors form complex lines. In this paper

we study how trajectories spread, and give an estimate of norms of magnetic Jacobi

fields from below and an estimate of area elements of trajectory-spheres.
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1. Introduction

On a Kähler manifold M with complex structure J , we consider Kähler
magnetic fields which are constant multiples of the Kähler form BJ on M .
A trajectory γ for a Kähler magnetic field Bκ = κBJ (κ ∈ R) is a smooth
curve parameterized by its arclength satisfying the equation ∇γ̇ γ̇ = κJγ̇

(see [1], [6]). Since the velocity vector and the normal of a trajectory γ

span a complex line in the tangent space Tγ(t)M at each point γ(t), it
is likely that properties of trajectories and properties of the base Kähler
manifold M are closely related with each other. For a trivial magnetic
field B0, which is a null 2-form, trajectories are geodesics. It is needless to
say that geodesics play quite an important role in the study of Riemannian
manifolds. The authors hence consider that trajectories may play the similar
role of geodesics when they investigate Kähler manifolds from the viewpoint
of Riemannian geometry. If we say a bit more on trajectories, when BJ

is exact, that is BJ = dAJ with a 1-form AJ , trajectories (or trajectory
segments) for Bκ of constant speed are stationary curves with respect to the
energy functional

∫ b

a
{(1/2)‖c′(t)‖2 + κAJ(c′(t))} dt for smooth curves. But
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such a 1-form does not necessarily exist, it is not easy to investigate them
from this energy functional point of view.

In order to study the behavior of trajectories, it is a basic problem to
investigate how they spread on a Kähler manifold. Just like the study on
geodesics, we consider variations of trajectories and define magnetic Jacobi
fields. In the preceding paper [2], we studied the components of magnetic
Jacobi fields which are orthognal to trajectories, and give their estimates.
Though it corresponds to Rauch’s comparison theorem on Jacobi fields along
geodesics, as there is an interaction between components of magnetic Jacobi
fields which are orthogonal to trajectories and those which are parallel to
trajectories, the situation for magnetic Jacobi fields is different from that
of Jacobi fields. In this paper, by adding terms into the magnetic index
form which control components of fields parallel to trajectories, we estimate
norms of whole components of magnetic Jacobi fields from below. As an
application, we study area elements of trajectory-spheres, each of which are
formed by trajectory-segments of the same length and emanating from a
same point.

2. Magnetic Jacobi fields

Let M be a complete Kähler manifold of complex dimension n with com-
plex structure J and Riemannian metric 〈 , 〉. We take a Kähler magnetic
field Bκ = κBJ , where κ ∈ R and BJ denotes the Kähler form on M . Given
a point p ∈ M , we define a magnetic exponential map Bκ expp : TpM → M

for Bκ of the tangent space TpM at p by

Bκ expp(w) =

{
γw/‖w‖

(‖w‖), if w 6= 0p,

p, if w = 0p.

Here, for a unit tangent vector u ∈ UpM we denote by γu the trajectory
for Bκ of initial vector u. That is, a smooth curve parameterized by its
arclength satisfying ∇γ̇u γ̇u = κJγ̇u and γ̇u(0) = u.

In order to investigate magnetic exponential maps for Bκ, we need to
study their differentials, hence need to study variations of trajectories for
Bκ. A vector field Y along a trajectory γ for Bκ is said to be a normal
magnetic Jacobi field if it satisfies
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{∇γ̇∇γ̇Y − κJ∇γ̇Y + R(Y, γ̇)γ̇ = 0,

〈∇γ̇Y, γ̇〉 = 0.
(MJ)

It is known that normal magnetic Jacobi fields correspond one-to-one to vari-
ations of trajectories (see [2]). Being different from variations of geodesics,
as we suppose trajectories are parameterized by their arclength, we need the
second equality. For a vector field X along a trajectory γ for Bκ we decom-
pose it into three components and denote it as X = fX γ̇ + gXJγ̇ +X⊥ with
functions fX , gX and a vector field X⊥ which is orthogonal to both γ̇ and
Jγ̇ at each point. We set X] = gXJγ̇ + X⊥ and X> = fX γ̇ + gXJγ̇. By
use of this representation we see equalities (MJ) turn to the following:

{
f ′Y = κgY ,

(g′′Y + κ2gY )Jγ̇ +∇γ̇∇γ̇Y ⊥ − κJ(∇γ̇Y )⊥ + R(Y ], γ̇)γ̇ = 0.

We should hence note that there is an interaction between the component of
a magnetic Jacobi field which is parallel to a trajectory and that orthogonal
to the trajectory.

We say a point γ(t0) to be a spherical magnetic conjugate point of γ(0)
along a trajectory γ if there is a non-trivial normal magnetic Jacobi field
Y along γ satisfying Y (0) = 0 and Y (t0) = 0. We call this t0 a spheri-
cal magnetic conjugate value of γ(0) along γ. We denote by cs

γ(γ(0)) the
minimum positive spherical magnetic conjugate value of γ(0) along γ if it
exists. We set cs

γ(γ(0)) = ∞ when there are no positive spherical mag-
netic conjugate values along γ. If we define a map Φκ

p,r : UpM → M by
Φκ

p,r(u) = Bκ expp(ru), then its differential (dΦκ
p,r)u : Tu(UpM) → Tγu(r)M

is singular if and only if r is a spherical magnetic conjugate value of p along
γu. We recall that a point γ(t1) is called a magnetic conjugate point of γ(0)
along a trajectory γ if there is a non-trivial normal magnetic Jacobi field
Y along γ satisfying Y (0) = 0 and Y ](t1) = 0. We call such t1 a mag-
netic conjugate value of γ(0) along γ. We then have that the differential
(dBκ expp)ru : Tru(TpM) → Tγu(r)M is singular if and only if r is a mag-
netic conjugate value of γ(0) along γ. As there is an interaction between the
component parallel to a trajectory and that orthogonal to that trajectory,
the first magnetic conjugate value cγ(γ(0)) does not coincide with cs

γ(γ(0)),
in general, and satisfies cγ(γ(0)) ≤ cs

γ(γ(0)).
We here make mention of spherical magnetic conjugate values on a
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complex space form CMn(c) of constant holomorphic sectional curvature
c, which is one of a complex projective space CPn(c), a complex Euclidean
space Cn and a complex hyperbolic space CHn(c) according as c is positive,
zero or negative. On CMn(c) a normal magnetic Jacobi field Y along a
trajectory γ for Bκ (κ 6= 0) satisfying Y (0) = 0 is of the form

Y (t) =





aκ√
|c| − κ2

(
cosh

√
|c| − κ2 t− 1

)
γ̇(t)

+ a sinh
√
|c| − κ2 t Jγ̇(t)

+ e
√−1κt/2 sinh

1
2

√
|c| − κ2 t E(t),

if κ2 + c < 0,

a

{ |c|t2
2

γ̇(t) + κtJγ̇(t)
}

+ te
√−1κt/2E(t), if κ2 + c = 0,

aκ√
κ2 + c

(
1− cos

√
κ2 + c t

)
γ̇(t)

+ a sin
√

κ2 + c t Jγ̇(t)

+ e
√−1κt/2 sin

1
2

√
κ2 + c t E(t),

if κ2 + c > 0.

with a constant a and a parallel vector field E along γ (see [2]). Here, we
denote by e

√−1αtE(t) the vector field cos αt E(t) + sinαt JE(t).
We define a function sκ(·; c) : [0, 2π/

√
κ2 + c) → R by

sκ(t; c) =





2√
|c| − κ2

sinh
(√|c| − κ2 t/2

)
, if κ2 + c < 0,

t, if κ2 + c = 0,

2√
κ2 + c

sin
(√

κ2 + c t/2
)
, if κ2 + c > 0,

and put cκ(t; c) = (d/dt)sκ(t; c) and µκ(·; c) = {(κ2/4)sκ(t; c)2+cκ(t; c)2}1/2.
Here, we regard 2π/

√
κ2 + c infinity when κ2 + c ≤ 0. We use such a

convention without notice in the following. If we write down explicitly, we
have



Spread of trajectories 449

µκ(t; c) =





√
|c| cosh2

(√|c| − κ2 t/2
)− κ2

|c| − κ2
, if κ2 + c < 0,

√
|c|t2 + 4/2, if κ2 + c = 0,

√
κ2 + c cos2

(√
κ2 + c t/2

)

κ2 + c
, if κ2 + c > 0.

These functions have the following properties:

i) If c1 < c2, then sκ(t; c1) > sκ(t; c2) and µκ(t; c1) > µκ(t; c2);
ii) µκ(·; c) satisfies µκ(t; c) > 1, µκ(t; c) = 1 and µκ(t; c) < 1 according

as c < 0, c = 0 and c > 0;
iii) For sufficiently small t (> 0), we have sκ(t; c)µκ(t; c) > sκ(t; 4c) when

c > 0, and sκ(t; c)µκ(t; c) < sκ(t; 4c) when c < 0.

The authors consider that sκ(t; c)µκ(t; c) > sκ(t; 4c) when c > 0 and
sκ(t; c)µκ(t; c) < sκ(t; 4c) when c < 0 for 0 < t < π/

√
κ2 + c. Still they

can not make clear this and can only say this in a neighborhood of the
origin.

By the expression of magnetic Jacobi fields on CMn(c) we have the
following.

Proposition 1 On CMn(c), a normal magnetic Jacobi field Y along a
trajectory γ for a non-trivial Kähler magnetic field Bκ satisfies

‖Y >(t)‖ =
∥∥∇γ̇Y >(0)

∥∥sκ(t; c)µκ(t; c), ‖Y ⊥(t)‖ =
∥∥∇γ̇Y ⊥(0)

∥∥sκ(t; c),

for 0 ≤ t < 2π/
√

κ2 + c. Thus the first spherical conjugate value does
not depend on the choice of trajectories and initial points. If we denote
it by cs(κ, c), it is given as cs(κ, c) = 2π/

√
κ2 + c when κ2 + c > 0 and

cs(κ, c) = ∞ when κ2 + c ≤ 0.

We here note that on CMn(c) the first magnetic conjugate values along
trajectories for Bκ also do not depend on the choice of trajectories and
initial points. If we denote this value by c(κ, c), it is equal to π/

√
κ2 + c =

cs(κ, c)/2 (see [2]).
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3. Comparison theorems on magnetic Jacobi fields

In this section we study a comparison theorem on magnetic Jacobi fields.
As we mentioned in Section 1, we studied comparison theorems on compo-
nents of magnetic Jacobi fields which are orthogonal to trajectories in the
preceding papers [2], [3]. Since their components parallel to trajectories and
orthogonal to trajectories are interacted to each other, we here study the
whole components of magnetic Jacobi fields.

For a vector field X = fX γ̇ + gXJγ̇ + X⊥ along a trajectory γ for a
Kähler magnetic field Bκ on a Kähler manifold M , we set

ĨT
0 (X) = κ{fX(T )gX(T )−fX(0)gX(0)}+

∫ T

0

{κgX(t)−f ′X(t)}2dt+IT
0 (X]),

and call this the modified index of X. Here, IT
0 (X]) denotes the index of

X] = gXJγ̇ + X⊥ which is given by

IT
0 (X]) =

∫ T

0

{
g′2X − κ2g2

X + 〈∇γ̇X⊥ − κJX⊥,∇γ̇X⊥〉 − 〈R(X, γ̇)γ̇, X〉}dt.

As we see in [2], indices of vector fields along trajectories which are orthogo-
nal to their velocity vectors satisfy the following properties which correspond
to properties of Jacobi fields along geodesics (see [7]).

1) For a normal magnetic Jacobi field Y along a trajectory γ, we have

IT
0 (Y ]) = 〈(∇γ̇Y ])(T ), Y ](T )〉 − 〈∇γ̇Y ](0), Y ](0)〉.

2) Suppose 0 < T < cγ(γ(0)). If a vector field X along γ satisfies X] = X,
X(0) = 0 and X(T ) = Y ](T ) with some normal magnetic Jacobi field Y

satisfying Y ](0) = 0, then it satisfies IT
0 (X) ≥ IT

0 (Y ]), and the equality
holds if and only if X ≡ Y ].

We here show that the modified indices satisfy the similar properties.

Lemma 1 The modified index of a normal magnetic Jacobi field Y for Bκ

is given as

ĨT
0 (Y ) = 〈(∇γ̇Y )(T ), Y (T )〉 − 〈∇γ̇Y (0), Y (0)〉.
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Proof. Since Y is a normal magnetic Jacobi field for Bκ, we have

〈∇γ̇Y (T ), Y (T )〉 − 〈∇γ̇Y (0), Y (0)〉

=
∫ T

0

d

dt
〈∇γ̇Y (t), Y (t)〉dt =

∫ T

0

{〈∇γ̇∇γ̇Y (t), Y (t)〉+ ‖∇γ̇Y (t)‖2}dt

=
∫ T

0

{
κ〈J∇γ̇Y (t), Y (t)〉+ ‖∇γ̇Y (t)‖2 − 〈R(Y (t), γ̇(t))γ̇(t), Y (t)〉}dt.

As we have ∇γ̇Y = (g′Y + κfY )Jγ̇ +∇γ̇Y ⊥, we find

=
∫ T

0

{−κ(g′Y (t) + κfY (t))fY (t) + (g′Y (t) + κfY (t))2

+ κ〈J∇γ̇Y ⊥(t), Y ⊥(t)〉+ ‖∇γ̇Y ⊥(t)‖2

− 〈R(Y ](t), γ̇(t))γ̇(t), Y ](t)〉}dt

=
∫ T

0

{
κfY (t)g′Y (t) + g′Y (t)2 + 〈∇γ̇Y ⊥(t)− κJY ⊥(t),∇γ̇Y ⊥(t)〉

− 〈R(Y ](t), γ̇(t))γ̇(t), Y ](t)〉}dt

= κ

∫ T

0

{
fY (t)g′Y (t) + κgY (t)2

}
dt + IT

0 (Y ])

= κ
[
fY (t)gY (t)

]T

0
+ κ

∫ T

0

gY (t)
{
κgY (t)− f ′Y (t)

}
dt + IT

0 (Y ]).

This completes the proof because f ′Y ≡ κgY . ¤

Lemma 2 Let Y be a normal magnetic Jacobi field along a trajectory γ

for Bκ satisfying Y ](0) = 0. If 0 < T < cγ(γ(0)) and a vector field X along
γ satisfyies X](0) = 0 and X(T ) = Y (T ), then it satisfies ĨT

0 (X) ≥ ĨT
0 (Y ).

The equality holds if and only if X ≡ Y .

Proof. Since we have IT
0 (X]) ≥ IT

0 (Y ]), we get

ĨT
0 (X) = κfX(T )gX(T ) +

∫ T

0

{
κgX(t)− f ′X(t)

}2
dt + IT

0 (X])

≥ κfY (T )gY (T ) + IT
0 (Y ]) = ĨT

0 (Y ).
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This also shows that the equality holds if and only if both IT
0 (X]) = IT

0 (Y ])
and

∫ T

0
(κgX − f ′X)2dt = 0 hold. As we have X(T ) = Y (T ), which shows

X](T ) = Y ](T ) and fX(T ) = fY (T ), the first equality IT
0 (X]) = IT

0 (Y ])
leads us to X] ≡ Y ]. The second equality shows κgX ≡ f ′X , hence we have
f ′Y ≡ κgY ≡ κgX ≡ f ′X . As fX(T ) = fY (T ), we find fX ≡ fY . Thus we get
X ≡ Y . ¤

In order to show the inequality IT
0 (X]) ≥ IT

0 (Y ]) on indices of vector
fields orthognal to γ, we need T ≤ cγ(γ(0)). We hence need this assumption
in Lemma 2.

We here consider indices of normal magnetic Jacobi fields on a complex
space form CMn(c). We define functions tκ(· ; c) : (0, 2π/

√
κ2 + c) → R and

νκ(· ; c) : R→ R by

tκ(t; c) =
cκ(t; c)
sκ(t; c)

=





(√|c| − κ2/2
)
coth

(√|c| − κ2 t/2
)
, if κ2 + c < 0,

1/t, if κ2 + c = 0,
(√

κ2 + c/2
)
cot

(√
κ2 + c t/2

)
, if κ2 + c > 0,

νκ(t; c) =





|c| cosh
√
|c| − κ2 t− κ2

|c| cosh2
(√|c| − κ2 t/2

)− κ2
, if κ2 + c < 0,

(2|c|t2 + 4)/(|c|t2 + 4), if κ2 + c = 0,

κ2 + c cos
√

κ2 + c t

κ2 + c cos2
(√

κ2 + c t/2
) , if κ2 + c > 0.

These functions satisfy the following properties:

i) If c1 + κ2
1 < c2 + κ2

2, then tκ1(t; c1) > tκ2(t; c2) for 0 < t <

2π/
√

κ2
2 + c2;

ii) νκ(t; c) > 1, νκ(t; c) = 1 or νκ(t; c) < 1 according as c < 0, c = 0 or
c > 0;

iii) When c < 0, the function νκ(· ; c) :
[
0, π/

√
κ2 + c

] → R is monotone
increasing and satisfies νκ(t; c) < 2;

iv) When c > 0, the function νκ(· ; c) :
[
0, π/

√
κ2 + c

] → R is monotone
decreasing and satisfies νκ(t; c) > 1− (c/κ2);

v) tκ(t; c)νκ(t; c) > 2tκ(2t; c) for 0 < t < π/
√

κ2 + c.

We also note that the functions sκ(t; c)µκ(t; c) and tκ(t; c)νκ(t; c) are related
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to each other as

d

dt
log(sκ(t; c)µκ(t; c)) = tκ(t; c)νκ(t; c).

We here show logarithmic derivatives of norms of normal magnetic Jacobi
fields on a complex space form.

Proposition 2 Let γ be a trajectory for a non-trivial Kähler magnetic field
Bκ on CMn(c). A normal magnetic Jacobi field Y along γ with Y (0) = 0
satisfies

〈∇γ̇Y >(t), Y >(t)
〉

= ‖Y >(t)‖2 tκ(t; c)νκ(t; c),
〈∇γ̇Y ⊥(t), Y ⊥(t)

〉
= ‖Y ⊥(t)‖2 tκ(t; c),

for 0 < t < 2π/
√

κ2 + c.

We now study magnetic Jacobi fields on a general Kähler manifold M .
By using modified indices for vector fields along trajectories, we give an es-
timate on derivatives of norms of normal magnetic Jacobi fields from below.

Theorem 1 Let γ be a trajectory for a non-trivial Kähler magnetic
field Bκ on a Kähler manifold M . Suppose sectional curvatures satisfy
max{Riem(v, γ̇(t)) | v ∈ Uγ(t)M, v ⊥ γ̇(t)} ≤ c for some constant c for
0 ≤ t ≤ π/

√
κ2 + c. Then, for a normal magnetic Jacobi field Y along γ

satisfying Y (0) = 0, we have

〈∇γ̇Y (t), Y (t)〉 ≥ ‖Y >(t)‖2tκ(t; c)νκ(t; c) + ‖Y ⊥(t)‖2tκ(t; 4c)

for 0 < t < π/
√

κ2 + c. If the equality holds at some t0 with 0 < t0 <

π/
√

κ2 + c, then it holds at every t with 0 ≤ t ≤ t0. In this case, the normal
magnetic Jacobi field Y is of the form

Y (t) =
∥∥∇γ̇Y >(0)

∥∥sκ(t; c)
{
(κ/2)sκ(t; c)γ̇(t) + cκ(t; c)Jγ̇(t)

}

+
∥∥∇γ̇Y ⊥(0)

∥∥sκ(t; 4c)
{
cos(κt/2)E(t) + sin(κt/2)JE(t)

}
(3.1)

with a parallel vector field E along γ satisfying E(0) = ∇γ̇Y ⊥(0)/
‖∇γ̇Y ⊥(0)‖, and the curvature tensor satisfies R(Y ], γ̇)γ̇ ≡ c Y ] for 0 ≤
t ≤ t0. Here, when ∇γ̇Y ⊥(0) = 0 we take E as a null vector field.



454 P. Bai and T. Adachi

Proof. We note that cs
γ(γ(0)) ≥ cγ(γ(0)) ≥ π/

√
κ2 + c (see [3]). We take

an arbitrary T with 0 < T < π/
√

κ2 + c. When the complex dimension of M

is n, we take a complex space form M̂ = CMn(4c) of constant holomorphic
sectional curvature 4c. Let P t

γ : Tγ(t)M → Tγ(0)M and P̂ t
γ̂ : Tγ̂(0)M̂ →

Tγ̂(t)M̂ denote parallel translations along γ and along a trajectory γ̂ for Bκ

on M̂ , respectively. We take a holomorphic linear isometry I : Tγ(0)M →
Tγ̂(0)M̂ satisfying I(γ̇(0)) = ˙̂γ(0), and define a vector field X̂ along γ̂ by
X̂(t) = P̂ t

γ̂◦I◦P t
γ(Y ⊥(t)). We also take a trajectory γ̃ for Bκ on CMn(c) and

choose a normal magnetic Jacobi field f̃ ˙̃γ + g̃J ˙̃γ along γ̃ satisfying g̃(0) = 0,
g̃(T ) = gY (T ) and f̃(T ) = fY (T ). We note that f̃(0) may not be zero.
We also take a normal magnetic Jacobi field Ŷ along γ̂ satisfying Ŷ (0) = 0
and Ŷ (T ) = X̂(T ). Clearly, this satisfies Ŷ ⊥ = Ŷ . Since 〈R(Y, γ̇)γ̇, Y 〉 ≤
c‖Y ]‖2, we have

〈∇γ̇Y (T ), Y (T )
〉

= ĨT
0 (Y )

= κfY (T )gY (T )

+
∫ T

0

{
g′2Y − κ2g2

Y + 〈∇γ̇Y ⊥ − κJY ⊥,∇γ̇Y ⊥〉 − 〈R(Y, γ̇)γ̇, Y 〉}dt

≥ κfY (T )gY (T ) +
∫ T

0

(
g′2Y − κ2g2

Y − cg2
Y

)
dt

+
∫ T

0

{〈∇γ̇Y ⊥ − κJY ⊥,∇γ̇Y ⊥〉 − c‖Y ⊥‖2}dt

= κfY (T )gY (T ) +
∫ T

0

(
g′2Y − κ2g2

Y − cg2
Y

)
dt

+
∫ T

0

{〈∇ ˙̂γX̂ − κJX̂,∇ ˙̂γX̂〉 − c‖X̂‖2}dt

= ĨT
0

(
fY

˙̃γ + gY J ˙̃γ
)

+ ĨT
0 (X̂)

≥ ĨT
0

(
f̃ ˙̃γ + g̃J ˙̃γ

)
+ ĨT

0 (Ŷ )

Therefore we get
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〈∇γ̇Y (T ), Y (T )〉 ≥ {
f̃(T )2 + g̃(T )2

}
tκ(T ; c)νκ(T ; c) + ‖Ŷ (T )‖2tκ(T ; 4c)

= ‖Y >(T )‖2 tκ(T ; c)νκ(T ; c) + ‖Y ⊥(T )‖2 tκ(T ; 4c).

The equality holds if and only if the following two conditions hold:

i) fY ≡ f̃ , gY ≡ g̃ and X̂ ≡ Ŷ for 0 ≤ t ≤ T ,
ii) 〈R(Y ], γ̇)γ̇, Y ]〉 ≡ c‖Y ]‖2 for 0 < t ≤ T .

These show that if the equality holds at T then it holds for 0 ≤ t ≤ T . By
the expression of normal magnetic Jacobi fields on complex space forms, the
above condition i) shows that Y is of the form (3.1) for 0 ≤ t ≤ T . The
expression of Y , the first equality in (MJ) and the above condition ii) show
that R(Y ], γ̇)γ̇ = cY ]. This completes the proof. ¤

For the sake of completeness, we here give an estimate from above.

Theorem 2 Let γ be a trajectory for a non-trivial Kähler magnetic
field Bκ on a Kähler manifold M . Suppose sectional curvatures satisfy
min{Riem(v, γ̇(t)) | v ∈ Uγ(t)M, v ⊥ γ̇(t)} ≥ c for some constant c for
0 ≤ t ≤ cγ(γ(0)). Then, for a normal magnetic Jacobi field Y along γ

satisfying Y (0) = 0, we have

〈∇γ̇Y (t), Y (t)〉 ≤ ‖Y >(t)‖2tκ(t; c)νκ(t; c) + ‖Y ⊥(t)‖2tκ(t; 4c)

for 0 < t < cγ(γ(0)). If the equality holds at some t0 with 0 < t0 < cγ(γ(0)),
then the equality holds at every t with 0 ≤ t ≤ t0. In this case, the normal
magnetic Jacobi field Y is of the form

Y (t) =
∥∥∇γ̇Y >(0)

∥∥sκ(t; c)
{
(κ/2)sκ(t; c)γ̇(t) + cκ(t; c)Jγ̇(t)

}

+
∥∥∇γ̇Y ⊥(0)

∥∥sκ(t; 4c)
{
cos(κt/2)E(t) + sin(κt/2)JE(t)

}
,

with a parallel vector field E along γ satisfying E(0) = ∇γ̇Y ⊥(0)/
‖∇γ̇Y ⊥(0)‖, the curvature tensor satisfies R(Y ], γ̇)γ̇ ≡ c Y ] for 0 ≤ t ≤ t0.

Proof. We take a trajectory γ̃ for Bκ on CMn(c) and a trajectory γ̂ for
Bκ on CMn(4c). For an arbitrary potitive T with T < cγ(γ(0)) we choose
a normal magnetic Jacobi field Ŷ along γ̂ satisfying Ŷ (0) = 0 and Ŷ (T ) =
P̂T

γ̂ ◦ I ◦ PT
γ (Y ⊥(T )), where P̂T

γ̂ , I, PT
γ are as in the proof of Theorem 1.

We also choose a normal magnetic Jacobi field f̃ ˙̃γ + g̃J ˙̃γ along γ̃ satisfying
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g̃(0) = 0, f̃(T ) = fY (T ), g̃(T ) = gY (T ), and define a vector field X along γ

by X(t) = f̃(t)γ̇(t) + g̃(t)Jγ̇(t) + (P̂T
γ̂ ◦ I ◦ PT

γ )−1(Ŷ (t)). We are enough to
show that ĨT

0 (f̃ ˙̃γ + g̃J ˙̃γ) + ĨT
0 (Ŷ ) ≥ 〈∇γ̇Y (t), Y (t)〉. Like the calculation in

the proof of Theorem 1 we have

ĨT
0

(
f̃ ˙̃γ + g̃J ˙̃γ

)
+ ĨT

0 (Ŷ )

= κf̃(T )g̃(T ) +
∫ T

0

(
g̃′2 − κ2g̃2 − cg̃2

)
dt

+
∫ T

0

{〈∇γ̇X⊥ − κJX⊥,∇γ̇X⊥〉 − c‖X⊥‖2}dt

≥ κf̃(T )g̃(T )

+
∫ T

0

{
g̃′2 − κ2g̃2 + 〈∇γ̇X⊥ − κJX⊥,∇γ̇X⊥〉 − 〈R(X, γ̇)γ̇, X〉}dt

= ĨT
0 (X) ≥ ĨT

0 (Y ) = 〈∇γ̇Y (T ), Y (T )〉.

Thus we get our conclusion along the same lines as in the proof of Theorem
1. ¤

4. Trajectory-spheres

We shall apply our result to a problem on estimates of area-elements
of trajectory-spheres. We consider a Kähler magnetic field Bκ on a Kähler
manifold M . For a positive r, we put Sκ

p (r) = {Bκ expp(ru) | u ∈ UpM}
and call it a trajectory-sphere of arc-radius r centered at p. When κ =
0, the magnetic field B0 is the trivial magnetic field 0 , and its magnetic
exponential map is the usual exponential map. Hence trajectory-spheres for
the trivial magnetic field are nothing but geodesic spheres. Therefore we
may consider trajectory-spheres as deformations of geodesic spheres under
actions of magnetic fields.

For a unit tangent vector u ∈ UpM at a point p ∈ M , we choose unit
tangent vectors e2, . . . , e2n ∈ TpM so that {u, e2, . . . , e2n} is an orthonomal
basis of TpM . For each j we take a normal magnetic Jacobi field Yj along
a trajectory γu for Bκ satisfying Yj(0) = 0, (∇γ̇uYj)(0) = ej . As we have
Yj(t) = (dBκ expp)tu(tej), we set ακ(r, u) for r with 0 < r < cs

γ(γ(0)) as
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ακ(r, u) =

∣∣∣∣∣∣∣

〈Y2, Y2〉 · · · 〈Y2, Y2n〉
...

...
〈Y2n, Y2〉 · · · 〈Y2n, Y2n〉

∣∣∣∣∣∣∣

1/2

,

which is the Jacobian of Φκ
p,r at u. With the standard volume element dω of

S2n−1 = UpM , we can define a area element of Sκ
p (r) by use of ακ(r, u)dω

through Φκ
p,r. We shall call ακ(r, u) the density function of the area element

of Sκ
p (r).
In a complex space form CMn(c), we know that every trajectory-sphere

coincides with some geodesic sphere (see [4]). We can hence get the area-
element of a trajectory-sphere of arc-radius r in CMn(c), which is denoted
by ακ(r; c, n) because it does not depend on the choice of u and p. As we
have expressions of normal magnetic Jacobi fields, we can also compute it
directly.

Proposition 3 In a complex space form CMn(c), the density func-
tion of the area-element of a trajectory-sphere of arc-radius r is given as
ακ(r; c, n) = µκ(r; c)(sκ(r; c))2n−1.

In order to estimate density functions of area-forms on general Kähler
manifolds, we shall study the behavior of them with respect to arc-radii. For
a trajectory γ for Bκ we denote by Jγ the set of all normal magnetic Jacobi
fields along γ whose initial values are null. It is a vector space of dimension
(2n − 1). The real subspace Tγu(t)S

κ
t (p) = {Z(t) ∈ Tγu(t)M | Z ∈ Jγu

} of
Tγu(t)M is also (2n− 1) dimensional when 0 < t < cs

γu
(p).

Lemma 3 For an arbitrary r with 0 < r < cs
γu

(p), we take normal mag-
netic Jacobi fields W2, . . . , W2n along γu for Bκ satisfying the following con-
ditions:

i) Wj(0) = 0 for j = 2, . . . , 2n;
ii) {W2(r), . . . , W2n(r)} is an orthonormal basis of Tγ(r)S

κ
r (p).

We then have

1
ακ(r, u)

∂

∂t
ακ(t, u)

∣∣∣∣
t=r

=
2n∑

j=2

〈(∇γ̇uWj)(r),Wj(r)〉.

Proof. Since we see {W2(r), . . . , W2n(r)} is a basis of Jγ , we can write
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the normal magnetic Jacobi field Yj ∈ Jγu
with (∇γ̇u

Yj)(0) = ej as Yj =∑2n
`=2 aj`W` with some real numbers aj` (` = 2, . . . , 2n) for j = 2, . . . , 2n.

We define a matrix A by A = (aij) and a matrix-valued function W by
W (t) = (〈Wk(t),W`(t)〉). As we have 〈Yi, Yj〉 =

∑
k,` aikaj`〈Wk,W`〉, we

obtain

ακ(t, u)2 = det(〈Yi(t), Yj(t)〉) = det(AW (t) tA) = det(A)2 det(W (t)).

We hence have

1
ακ(r, u)

∂

∂t
ακ(t, u)

∣∣∣∣
t=r

=
∂

∂t
log ακ(t, u)

∣∣∣∣
t=r

=
1
2

∂

∂t
log

(
det(A)2|det(W (t))|)∣∣

t=r

=
1
2

∂

∂t
log

(|det(W (t))|)
∣∣
t=r

=
1
2
trace(W ′(r)W (r)−1),

where we set W ′(r) = ((d/dt)〈Wk(t),W`(t)〉). Since we choose normal mag-
netic fields Wi so that {W2(r), . . . , W2n(r)} is orthonormal, we have W (r)
is the identity matrix. Thus we obtain

1
ακ(r, u)

∂

∂t
ακ(t, u)

∣∣∣∣
t=r

=
1
2
trace(W ′(r)) = trace

(〈(∇γ̇u
Wi)(r),Wj(r)〉

)
,

and get the conclusion. ¤

5. Estimates on density functions of area elements

We now give estimates on the density function ακ(r, u) of the area-
element of a trajectory-sphere for Bκ on a Kähler manifold M . First we
give an estimate of the density function from below. We set

βκ(r; c, n) = sκ(r; c)µκ(r; c)
{
min{sκ(r; c)µκ(r; c), sκ(r; 4c)}}2(n−1)

.

It satisfies βκ(r; c, n) > sκ(r; c)µκ(r; c)(s2κ(r; 4c))2(n−1) for 0 < t <

π/
√

κ2 + c. If we compare this with the density function ακ(r; c, n) =
µκ(r; c)(sκ(r; c))2n−1 of trajectory-spheres in a complex space form CMn(c),
we have
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



ακ(r; c, n) > βκ(r; c, n), when c > 0,

ακ(r; 0, n) = βκ(r; 0, n), when c = 0,

ακ(r; 4c, n) > βκ(r; c, n) > ακ(r; c, n), when c < 0,

for 0 < r ≤ π/
√

κ2 + c. When we study some geometric objects, it is nat-
ural to compare them with those in a standard Riemannian manifold. In
our case, standard Kähler manifolds are complex space forms. But, unfortu-
nately, our comparison theorems on magnetic Jacobi fields need assumptions
on sectional curvatures. We therefore use βκ(r; c, n) to estimate density
functions of area elements. We also note that in a real space form RMm(c)
of constant sectional curvature c, which is one of a standard sphere Sm, a
Euclidean space Rm and a real hyperbolic space RHm, the area element of
a geodesic sphere of radius r is given by (s(r; c))m−1dω.

Theorem 3 Let M be a Kähler manifold of complex dimension n, and
u ∈ UpM be an arbitrary unit tangent vector at an arbitrary point p ∈ M . If
sectional curvatures satisfy max{Riem(v, γ̇u(t)) | v ∈ Uγu(t)M, v ⊥ γ̇u(t)} ≤
c with some constant c for 0 ≤ t < π/

√
κ2 + c, then we have the following

properties.

(1) ακ(t, u) ≥ βκ(t; c, n) for 0 < t ≤ π/
√

κ2 + c.
(2) If ακ(t0, u) = βκ(t0; c, n) holds at some t0 with 0 < t0 < π/

√
κ2 + c,

then c ≥ 0 and on the interval [0, t0] we have ακ(t, u) = βκ(t; c, n)
and R(v, γ̇u(t))γ̇u(t) = cv for every v ∈ Tγu(t)M which is orthogonal to
γ̇u(t).

Proof. We take an arbitrary r with 0 < r < π/
√

κ2 + c and choose normal
magnetic Jacobi fields W2, . . . , W2n ∈ Jγu so that W2(r)> = W2(r) and that
W2(r), . . . , W2n(r) are orthonormal. By Lemma 3 and Theorem 1, we have

∂

∂t
log ακ(t, u)

∣∣∣∣
t=r

=
2n∑

j=2

〈
(∇γ̇u

Wj)(r),Wj(r)
〉

≥
2n∑

j=2

∥∥W>
j (r)

∥∥2
tκ(r; c)νκ(r; c) +

2n∑

j=2

∥∥W⊥
j (r)

∥∥2
tκ(r; 4c).

By putting a =
∑2n

j=3 ‖W>
j (r)‖2 and b =

∑2n
j=3 ‖W⊥

j (r)‖2 (> 0), we de-
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fine a function ε(t) by ε(t) =
{
sκ(t; c)µκ(t; c)

}1+a
sκ(t; c)b. Then the above

inequality is rewritten as

∂

∂t
log ακ(t, u)

∣∣∣
t=r

≥ d

dt
log ε(t)

∣∣∣
t=r

.

Thus we find that the function ακ(t, u)/ε(t) is monotone increasing. As we
have limt↓0 ακ(t, u)/ε(t) = 1 and ε(t) ≥ βκ(t; c, n) because a + b = 2(n− 1),
we get ακ(t, u) ≥ βκ(t; c, n).

We now suppose ακ(t0, u) = βκ(t0; c, n). We take the above normal
magnetic Jacobi field W2, . . . , W2n for r = t0. Theorem 1 and the above
first inequality show that R(W ]

j , γ̇u)γ̇u = cW ]
j for 0 < t ≤ t0. Since

{W2(t), . . . , W2n(t)} is a basis of (Tγ(t)M)] = {v ∈ Tγ(t)M | v ⊥ γ̇(t)},
we have R(v, γ̇u(t))γ̇u(t) = cv for all v ∈ (Tγ(t)M)] and 0 < t ≤ t0. Also
the inequality ε(t) ≥ βκ(t; c, n) and the properties of sκ(r; c), µκ(r; c) show
that c ≥ 0. ¤

Given a point p ∈ M on a Kähler manifold and a constant κ, we set
ικ(p) = sup{r > 0 | Bκ expκ |Br(op) is a diffeomorphism} and call it the
Bκ-injectivity radius at p. We put ικ(M) = inf{ικ(p) | p ∈ M}. When M

is simply connected and its sectional curvatures satisfy RiemM ≤ c < 0, it
is known that ικ(M) = ∞ for κ with |κ| ≤

√
|c| (see [4]). If 0 < r < ικ(p),

the area of a trajectory-sphere Sκ
p (r) in M is given by

∫
UpM

ακ(r, u)dS(u).
In particular, in CMn(c) it is given by ακ(r; c, n)ω2n with the volume ω2n

of the unit sphere in a Euclidean space R2n. As a consequence of Theorem
3 we have the following.

Corollary 1 Let M be a Kähler manifold of complex dimension n and
whose sectional curvatures satisfy RiemM ≤ c for some constant c. At an
arbitrary point p, the area of a trajectory-sphere is estimated from below as
area(Sκ

p (r)) > βκ(r; c, n)ω2n if 0 < r < ικ(p).

Next we give an estimate of the density function from above. We set

δκ(r; c, n) = sκ(r; c)µκ(r; c)
{
max{sκ(r; c)µκ(r; c), sκ(r; 4c)}}2(n−1)

.

This satisfies
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



ακ(r; c, n) > δκ(r; c, n) > ακ(r; 4c, n), when c > 0,

ακ(r; 0, n) = δκ(r; 0, n), when c = 0,

δκ(r; c, n) > ακ(r; c, n), when c < 0,

for 0 < r ≤ π/
√

κ2 + c.

Theorem 4 Let M be a Kähler manifold of complex dimension n, and
u ∈ UpM be an arbitrary unit tangent vector at an arbitrary point p ∈ M . If
sectional curvatures satisfy min{Riem(v, γ̇u(t)) | v ∈ Uγu(t)M, v ⊥ γ̇u(t)} ≥
c with some constant c for 0 ≤ t < cγu

(γu(0)), then we have the following
properties.

(1) ακ(t, u) ≤ δκ(t; c, n) for 0 < t ≤ cγu
(γu(0)).

(2) If ακ(t0, u) = δκ(t0; c, n) holds at some t0 with 0 < t0 < cγu
(γu(0)),

then c ≤ 0 and on the interval [0, t0] we have ακ(t, u) ≡ δκ(t; c, n) and
R(v, γ̇(t))γ̇(t) = cv for all v ∈ Tγ(t)M which are orthogonal to γ̇(t).

Proof. We take an arbitrary r with 0 < r < cγu
(γu(0)), and choose normal

magnetic Jacobi fields W2, . . . , W2n ∈ Jγu
so that W2(r)> = W2(r) and

W2(r), . . . , W2n(r) are orthonormal. By Lemma 3 and Theorem 2, we have

∂

∂t
log ακ(t;u)

∣∣∣∣
t=r

=
2n∑

j=2

〈
(∇γ̇u

Wj)(r),Wj(r)
〉

≤
2n∑

j=2

∥∥W>
j (r)

∥∥2
tκ(r; c)νκ(r; c) +

2n∑

j=3

∥∥W⊥
j (r)

∥∥2
tκ(r; 4c)

≤ d

dt
log ε(t)

∣∣∣∣
t=r

,

where ε(t) = {sκ(t; c)µκ(t; c)}1+asκ(t; c)b with a =
∑2n

j=3 ‖W>
j (r)‖2 and

b =
∑2n

j=3 ‖W⊥
j (r)‖2 (> 0). Since we have ε(t) ≤ δκ(t; c, n), along the same

lines as in the proof of Theorem 3 we get the conclusion. ¤

Corollary 2 Let M be a Kähler manifold of complex dimension n and
whose sectional curvatures satisfy RiemM ≥ c for some constant c. At an
arbitrary point p, the area of a trajectory-sphere is estimated from above as
area(Sκ

p (r)) ≤ βκ(r; c, n)ω2n if 0 < r < inf{cγu
| u ∈ UpM}.
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